Cluster expansion in cite percolation problem on cubic lattice
The cluster expansion of the Bernoulli random field percolation probability of the cubic lattice has been built. On its basis, it has been obtained the upper guaranteed estimate of the percolation threshold and corresponding accuracy estimates are proposed when some approximations are built. Построе...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Belgorod State University
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/107533 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Cluster expansion in cite percolation problem on cubic lattice / E.S. Antonova, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 321-323. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-107533 |
|---|---|
| record_format |
dspace |
| spelling |
Antonova, E.S. Virchenko, Yu.P. 2016-10-21T18:25:49Z 2016-10-21T18:25:49Z 2012 Cluster expansion in cite percolation problem on cubic lattice / E.S. Antonova, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 321-323. — Бібліогр.: 3 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/107533 PACS: 02.50.Cw The cluster expansion of the Bernoulli random field percolation probability of the cubic lattice has been built. On its basis, it has been obtained the upper guaranteed estimate of the percolation threshold and corresponding accuracy estimates are proposed when some approximations are built. Построено кластерное разложение для вероятности перколяции бернуллиевского случайного поля на кубической решётке. На его основе получена верхняя гарантированная оценка для порога перколяции и даны оценки точности получаемых при использовании приближений. Побудовано кластерний розклад для імовірності перколяцiї бернулiєвського випадкового поля на кубічній решітці. На його основі одержана верхня гарантована оцінка для порогу перколяцiї i подані оцінки точності наближень, якi застосовуються. en Belgorod State University Вопросы атомной науки и техники Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Cluster expansion in cite percolation problem on cubic lattice Кластерное разложение в перколяционной задаче узлов на кубической решётке Кластерний розклад у перколяцiйнiй проблемi вузлiв на кубiчнiй решітці Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Cluster expansion in cite percolation problem on cubic lattice |
| spellingShingle |
Cluster expansion in cite percolation problem on cubic lattice Antonova, E.S. Virchenko, Yu.P. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| title_short |
Cluster expansion in cite percolation problem on cubic lattice |
| title_full |
Cluster expansion in cite percolation problem on cubic lattice |
| title_fullStr |
Cluster expansion in cite percolation problem on cubic lattice |
| title_full_unstemmed |
Cluster expansion in cite percolation problem on cubic lattice |
| title_sort |
cluster expansion in cite percolation problem on cubic lattice |
| author |
Antonova, E.S. Virchenko, Yu.P. |
| author_facet |
Antonova, E.S. Virchenko, Yu.P. |
| topic |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| topic_facet |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| publishDate |
2012 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Belgorod State University |
| format |
Article |
| title_alt |
Кластерное разложение в перколяционной задаче узлов на кубической решётке Кластерний розклад у перколяцiйнiй проблемi вузлiв на кубiчнiй решітці |
| description |
The cluster expansion of the Bernoulli random field percolation probability of the cubic lattice has been built. On its basis, it has been obtained the upper guaranteed estimate of the percolation threshold and corresponding accuracy estimates are proposed when some approximations are built.
Построено кластерное разложение для вероятности перколяции бернуллиевского случайного поля на кубической решётке. На его основе получена верхняя гарантированная оценка для порога перколяции и даны оценки точности получаемых при использовании приближений.
Побудовано кластерний розклад для імовірності перколяцiї бернулiєвського випадкового поля на кубічній решітці. На його основі одержана верхня гарантована оцінка для порогу перколяцiї i подані оцінки точності наближень, якi застосовуються.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/107533 |
| citation_txt |
Cluster expansion in cite percolation problem on cubic lattice / E.S. Antonova, Yu.P. Virchenko // Вопросы атомной науки и техники. — 2012. — № 1. — С. 321-323. — Бібліогр.: 3 назв. — англ. |
| work_keys_str_mv |
AT antonovaes clusterexpansionincitepercolationproblemoncubiclattice AT virchenkoyup clusterexpansionincitepercolationproblemoncubiclattice AT antonovaes klasternoerazloženievperkolâcionnoizadačeuzlovnakubičeskoirešetke AT virchenkoyup klasternoerazloženievperkolâcionnoizadačeuzlovnakubičeskoirešetke AT antonovaes klasterniirozkladuperkolâciiniiproblemivuzlivnakubičniirešítcí AT virchenkoyup klasterniirozkladuperkolâciiniiproblemivuzlivnakubičniirešítcí |
| first_indexed |
2025-11-26T09:48:30Z |
| last_indexed |
2025-11-26T09:48:30Z |
| _version_ |
1850618100905410560 |
| fulltext |
CLUSTER EXPANSION IN CITE PERCOLATION PROBLEM
ON CUBIC LATTICE
E.S. Antonova and Yu.P. Virchenko ∗
Belgorod State University, 308015, Belgorod, Russia
(Received November 12, 2011)
The cluster expansion of the Bernoulli random field percolation probability of the cubic lattice has been built. On its
basis, it has been obtained the upper guaranteed estimate of the percolation threshold and corresponding accuracy
estimates are proposed when some approximations are built.
PACS: 02.50.Cw
1. INTRODUCTION
We consider the set Z3 consisting of elements which
are named vertexes. Let ϕ be the binary symmetric
relation defined on this set. It is named the adjacency
and it is such that for each vertex x = 〈n1, n2, n3〉, all
vertexes y ∈ {x±ek; k = 1, 2, 3} where e1 = 〈1, 0, 0〉,
e2 = 〈0, 1, 0〉, e3 = 〈0, 0, 1〉 are adjacent to x. Such
adjacent relation transforms Z3 to the infinite peri-
odic graph [1] which is named the cubic lattice and,
further, we denote it by the same symbol Z3.
Let {c̃(x);x ∈ Z3} be the random uniform
Bernoulli field with values {0, 1} on the graph Z3.
It is completely defined by the probability c =
Pr{c̃(x) = 1} named the concentration. For each
random realization c̃(x), x ∈ Z3, there exists the set
W̃ = {x : c̃(x) = 1} one-to-one compared to it. It
is named the configuration W̃ . The probability dis-
tribution of random configurations W̃ is completely
defined by the random field {c̃(x);x ∈ Z3}.
The sequence γ = 〈x0,x1, ...,xn〉 consisting of
vertexes belonging to the configuration W̃ and such
that xi−1ϕxi, i = 1 ÷ n and xj �= xk at j �= k is
named the nonintersecting path γ on the W̃ having
the length n. Paths define the equivalence relation
on W̃ which is named the connection.
If there is the infinite nonintersecting path γ(x)
on W̃ having infinite length and the initial vertex x
then one may say that there exists the percolation
on W̃ from the vertex x. If the percolation prob-
ability P (c,x) = Pr{∃(γ(x) ⊂ W̃ )} > 0 then one
may say that the Bernoulli random field has the per-
colation from the vertex x at the concentration c.
For the cubic lattice, due to its uniformity, the per-
colation probability does not depend on the vertex
x, P (c,x) ≡ P (c). Therefore, there exists the value
c∗ = inf{c : P (c) > 0} named the percolation thresh-
old.
2. CLUSTER EXPANSION
Since the connection relation is defined on configura-
tions by means of paths settled in them, it decom-
poses each configuration on connected nonintersect-
ing components as each equivalence relation is done.
They are named clusters. If the cluster belonging to
the configuration W̃ contains the vertex x, it is de-
noted by W̃ (x). If the cluster W̃ (x) is infinite, and
only in this case, there exists the percolation on the
corresponding configuration. Let Γ be the class of all
finite clusters containing the vertex 0. Consequently,
the probability Pr{c̃(0) = 1} = c of the event when
the zero vertex is fulled up is summarized of the fol-
lowing probabilities. Firstly, it is all probabilities of
events when the chosen vertex is contained in one of
clusters from the class Γ, and, secondly, it is the prob-
ability of the event when this vertex is contained in
the infinite cluster. Consequently, it is fulfilled the
so-called cluster expansion [2]
c = P (c) +
∑
W∈Γ
P (W ), (1)
here P (W ) = Pr{W ⊂ W̃} is the probability of the
fact that the cluster W is contained in the configura-
tion W̃ . The cluster expansion is converged at each
concentration c according to its building. Therefore,
it may be the source of approximations of the perco-
lation threshold in that case when one may find some
upper estimates of remainders corresponding to ini-
tial terms of series (1). In such a case one may ob-
tain the upper estimate of the percolation threshold
c∗. Besides, generally speaking, more accurate upper
estimates of the percolation threshold are obtained
by more accurate estimates of series remainders.
∗Corresponding author E-mail address: virch@bsu.edu.ru
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 321-323.
321
Upper estimates of the series (1) are built on the
basis of the concept of external border ∂+W [1] of
each finite cluster W . The border ∂W of the finite
cluster W is the set {x �∈ W : ∃(yϕx : y ∈ W )}. The
external border ∂+W of the finite cluster W is the set
{x �∈ W : ∃(γ(x) ⊂ Z3 : γ(x)∩(∂W ∪W \{x}) = ∅)}.
It is fulfilled the elementary estimate
P (W ) < (1 − c)|∂+W | . (2)
Obtaining of upper estimates of series (1) remainders
is based on the using of this inequality. However, in
the connection with the inequality (2), it is plausible
to do them by the following way: to introduce the
class Δ of all sets such that each of them may be ex-
ternal border of anything finite cluster containing the
vertex 0. In this case, the upper estimate of the sum
of probabilities P (W ) on all clusters W correspond-
ing to the same external border S ∈ Δ takes place.
This estimate is analogous to (2),
P [S] ≡
∑
W∈Δ : ∂+W=S
P (W ) < (1 − c)|S| . (3)
Then the upper estimate takes place
∑
S∈Δ: |S|≥n
P [S] <
∞∑
l=n
(1 − c)lNl, (4)
where Nl is the number of sets belonging to the class
Δ and having the “area” |S| being less than l.
Estimation of the series convergence interval and,
therefore, obtaining of the upper estimate of percola-
tion threshold are reduced to calculation of remainder
estimates of the last series in (4).
3. UPPER ESTIMATE OF NUMBER Nl
Thus, the important source of upper estimates of se-
ries remainders are produced by possibly more accu-
rate upper estimates of main term of the asymptotic
ln Nl when l → ∞. In problems of discrete percola-
tion theory on plane lattices, the upper estimates ob-
taining of the number Nl is based on the Kesten the-
orem which consists of the assertion: for each plane
lattice, the class Δ consists of simple closed contours
on the conjugate lattice which surround the vertex
0. Therefore, we obtain the reduction of the problem
under consideration to the estimation of the num-
ber of all pointed out contours having the length l.
We have proved geometrical theorem analogous to
Kesten’s one when the lattice is cubic.
Theorem 1. For cubic lattice, the class Δ con-
sists of all sets on it such that they are connected on
the conjugate lattice and may be imbedded by home-
omorphic way without edge intersection on closed ori-
ented surface in R3. Each set of the class Δ decom-
poses the surface on foursided faces when this imbed-
ding is done.
The proved theorem permits to construct the enu-
meration algorithm of the class Δ and, therefore, to
find upper estimates of the number Nl. Ii is proved
the following assertion.
Theorem 2. For cubic lattice Z3, it takes place
the inequality
Nl <
l − 2
4
5l−1 . (5)
4. UPPER ESTIMATE OF PERCOLATION
THRESHOLD
Upper estimates of percolation threshold are obtained
on the basis of lower estimates of those concentrations
Pr{c̃(0) = 1} = c for which the series
∑
l
(1−c)lNl [3]
is converged. In a result, as a consequence from the
inequality (5), we have gone to the following asser-
tion.
Theorem 3. The percolation threshold of uni-
form Bernoulli field on cubic lattice satisfies the in-
equality c∗ < 0, 8.
At last, the estimate (5) gives the possibility to
find the accuracy of approximation of the percolation
probability. In particular, in the case of restriction by
one series term P (W ) = c(1 − c)6 corresponding to
the cluster {0}, we obtain that the accuracy of such
a probability approximation is given by the estimate
c(1 − (1 − c)6) − P (c) ≤
∞∑
l=10, l– even
(1 − c)lNl ≤
≤ 1
20
∞∑
l=10, l– even
(l − 2)[5(1 − c)]l,
when c > 0, 8.
5. CONCLUSIONS
We have found the guaranteed estimates of perco-
lation threshold in the cite percolation problem on
three-dimensional lattice. Up to now rigorous math-
ematical results in discrete percolation theory con-
nected with concrete evaluation or accurate estima-
tion percolation characteristics are known only for
two-dimensional lattices.
References
1. H. Kesten. Percolation Theory for Mathemati-
cians. Boston: Birkhauser, 1982.
2. Yu.P. Virchenko, Yu.A. Tolmacheva. Method of
Sequential Approximative Estimates in Descrete
Percolation Theory // Studies in Mathemati-
cal Physics Research / Ed. Charles V. Benton,
New York: Nova Science Publishers, Inc., 2004,
p. 155-175.
3. M.V. Menshikov, S.A. Molchanov, A.F. Sido-
renko. Percolation theory and its applications
// Itogi nauki i tekhniki. Ser. “Teor. ver., mat.
stat. i teor. kiber”. Moscow: VINITI, 1986, v. 24,
p. 53-110 (in Russian).
322
�������� � ��
� �����
���� ���� �� �
����� �
�
�� �������� � �������
���� �������
����
�������
��������� �
������� �
� ����
� � � ����������
����� ��
�����
������� � ��
����� �� � �
���
������ �������� �
��� ������ �� ����
������� �
�
��
���
��
� �����
� � �����
����� ��
�
�� �����
�������
�� ��
���� ��
��� ����
�
��
�
���
��
���������� �
���� � ���� �������� �� �����
�
��
�� �������� �������
���� �������
����
�������
�������
�� �
�����
� ����
� � � ��� ����� ����� �� ! ����� "������� �
�
������� �� � �
��� �#
� � ��� �� � �
���� ����� �����
�
������ �
�
����
�
�� ��
� � ������ ����� �� ! ���
� �� ��
������� �
�
����$ �� �
�������%�����
&'&
|