Status of 174 Mhz RF system for BEP

The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system. Новая ВЧ-си...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2012
Автори: Biryuchevsky, Yu.A., Gorniker, E.I., Kendjebulatov, E.K., Krutikhin, S.A., Kurkin, G.Ya., Petrov, V.M., Pilan, A.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/108664
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Status of 174 Mhz RF system for BEP / Yu.A. Biryuchevsky, E.I. Gorniker, E.K. Kendjebulatov, S.A. Krutikhin, G.Ya. Kurkin, V.M. Petrov, A.M. Pilan // Вопросы атомной науки и техники. — 2012. — № 3. — С. 49-52. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-108664
record_format dspace
spelling Biryuchevsky, Yu.A.
Gorniker, E.I.
Kendjebulatov, E.K.
Krutikhin, S.A.
Kurkin, G.Ya.
Petrov, V.M.
Pilan, A.M.
2016-11-13T15:32:01Z
2016-11-13T15:32:01Z
2012
Status of 174 Mhz RF system for BEP / Yu.A. Biryuchevsky, E.I. Gorniker, E.K. Kendjebulatov, S.A. Krutikhin, G.Ya. Kurkin, V.M. Petrov, A.M. Pilan // Вопросы атомной науки и техники. — 2012. — № 3. — С. 49-52. — Бібліогр.: 4 назв. — англ.
1562-6016
PACS: 29.20.db
https://nasplib.isofts.kiev.ua/handle/123456789/108664
The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system.
Новая ВЧ-система накопителя БЭП (являющегося инжектором комплекса ВЭПП-2000) позволит увеличить энергию частиц в БЭП от 0,9 до 1 ГэВ. ВЧ-система работает на частоте 174 МГц и состоит из ускоряющего резонатора, ВЧ-генератора мощности и системы управления.
Нова ВЧ-система накопичувача БЕП (що є інжектором комплексу ВЕПП-2000) дозволить збільшити енергію частинок БЕП від 0,9 до 1 ГеВ. ВЧ-система працює на частоті 174 МГц і складається з прискорюючого резонатора, ВЧ-генератора потужності і системи управління.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Элементы ускорителей
Status of 174 Mhz RF system for BEP
ВЧ-система 174 Мгц накопителя БЭП
ВЧ-система 174 Мгц накопичувача БЕП
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Status of 174 Mhz RF system for BEP
spellingShingle Status of 174 Mhz RF system for BEP
Biryuchevsky, Yu.A.
Gorniker, E.I.
Kendjebulatov, E.K.
Krutikhin, S.A.
Kurkin, G.Ya.
Petrov, V.M.
Pilan, A.M.
Элементы ускорителей
title_short Status of 174 Mhz RF system for BEP
title_full Status of 174 Mhz RF system for BEP
title_fullStr Status of 174 Mhz RF system for BEP
title_full_unstemmed Status of 174 Mhz RF system for BEP
title_sort status of 174 mhz rf system for bep
author Biryuchevsky, Yu.A.
Gorniker, E.I.
Kendjebulatov, E.K.
Krutikhin, S.A.
Kurkin, G.Ya.
Petrov, V.M.
Pilan, A.M.
author_facet Biryuchevsky, Yu.A.
Gorniker, E.I.
Kendjebulatov, E.K.
Krutikhin, S.A.
Kurkin, G.Ya.
Petrov, V.M.
Pilan, A.M.
topic Элементы ускорителей
topic_facet Элементы ускорителей
publishDate 2012
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt ВЧ-система 174 Мгц накопителя БЭП
ВЧ-система 174 Мгц накопичувача БЕП
description The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will increase the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system. Новая ВЧ-система накопителя БЭП (являющегося инжектором комплекса ВЭПП-2000) позволит увеличить энергию частиц в БЭП от 0,9 до 1 ГэВ. ВЧ-система работает на частоте 174 МГц и состоит из ускоряющего резонатора, ВЧ-генератора мощности и системы управления. Нова ВЧ-система накопичувача БЕП (що є інжектором комплексу ВЕПП-2000) дозволить збільшити енергію частинок БЕП від 0,9 до 1 ГеВ. ВЧ-система працює на частоті 174 МГц і складається з прискорюючого резонатора, ВЧ-генератора потужності і системи управління.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/108664
citation_txt Status of 174 Mhz RF system for BEP / Yu.A. Biryuchevsky, E.I. Gorniker, E.K. Kendjebulatov, S.A. Krutikhin, G.Ya. Kurkin, V.M. Petrov, A.M. Pilan // Вопросы атомной науки и техники. — 2012. — № 3. — С. 49-52. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT biryuchevskyyua statusof174mhzrfsystemforbep
AT gornikerei statusof174mhzrfsystemforbep
AT kendjebulatovek statusof174mhzrfsystemforbep
AT krutikhinsa statusof174mhzrfsystemforbep
AT kurkingya statusof174mhzrfsystemforbep
AT petrovvm statusof174mhzrfsystemforbep
AT pilanam statusof174mhzrfsystemforbep
AT biryuchevskyyua včsistema174mgcnakopitelâbép
AT gornikerei včsistema174mgcnakopitelâbép
AT kendjebulatovek včsistema174mgcnakopitelâbép
AT krutikhinsa včsistema174mgcnakopitelâbép
AT kurkingya včsistema174mgcnakopitelâbép
AT petrovvm včsistema174mgcnakopitelâbép
AT pilanam včsistema174mgcnakopitelâbép
AT biryuchevskyyua včsistema174mgcnakopičuvačabep
AT gornikerei včsistema174mgcnakopičuvačabep
AT kendjebulatovek včsistema174mgcnakopičuvačabep
AT krutikhinsa včsistema174mgcnakopičuvačabep
AT kurkingya včsistema174mgcnakopičuvačabep
AT petrovvm včsistema174mgcnakopičuvačabep
AT pilanam včsistema174mgcnakopičuvačabep
first_indexed 2025-11-26T20:18:18Z
last_indexed 2025-11-26T20:18:18Z
_version_ 1850773052820815872
fulltext ISSN 1562-6016. ВАНТ. 2012. №3(79) 49 STATUS OF 174 MHz RF SYSTEM FOR BEP Yu.A. Biryuchevsky, E.I. Gorniker, E.K. Kendjebulatov, S.A. Krutikhin, G.Ya. Kurkin, V.M. Petrov, A.M. Pilan Budker INP, Novosibirsk, Russia E-mail: Kendjebulatov@mail.ru The new RF system for the BEP storage ring (which is an injector of VEPP-2000 accelerating complex) will in- crease the particles energy in the BEP from 0.9 to 1 GeV. RF system operates at a frequency of 174 MHz and consists of an accelerating cavity, RF power generator and control system. PACS: 29.20.db 1. INTRODUCTION Booster storage ring BEP is a part of the injector of VEPP-2000 accelerator [1]. BEP is used to store elec- tron and positron beams and to accelerate them up to the energy of 0.9 GeV, before injection into the storage ring VEPP-2000. The BEP upgrade program requires a re- placement of the existing RF system (operating at a fre- quency of 26.8 MHz − second harmonic of the revolu- tion frequency) by a new one with operating frequency of 174.4 MHz (13th harmonic of the revolution fre- quency). The new booster RF system consists of an ac- celerating cavity, RF generator and control system. A coaxial accelerating cavity with maximum voltage of 120 kV has mechanisms for tuning the fundamental and higher order modes (HOM). Maximum output CW power of RF generator is 20 kW. A GU-92A tetrode is used in its output stage. Preliminary stages of the generator are based on transistors. The control system controls the amplitude and phase of the accelerating voltage and provides synchronization for filling the ring separatrixes. Parts of the RF system are in production now. 2. ACCELERATING CAVITY New cavity dimensions should not exceed the di- mensions of the existing one, because the cavity will be installed at the same location of the storage ring. Basic requirements to the new BEP cavity are: operating fre- quency − 174.4 MHz, accelerating voltage − about 110 kV, maximum RF power transferred to the beam − about 14 kW. The cavity design is shown in Fig.1. 3 1 2 4 4 5 5 6 7 8 9 33 11 22 44 44 55 55 66 77 88 99 Fig.1. BEP cavity design: 1 - bimetallic walls; 2 - coaxial inserts; 3 - cavity input coupler; 4 - main cavity tuners; 5 - cavity HOM tuners; 6 - sampling loop; 7 - vacuum pumping port; 8 - vacuum pump; 9 - cavity stand ISSN 1562-6016. ВАНТ. 2012. №3(79) 50 The cavity has a cylindrical body (D = 600 mm, L = 340 mm), consisting of a copper shell and bimetal- lic (copper/stainless steel) walls (Fig.1, pos.1). Bimetal design of the walls increases their mechanical stability and reduces the sensitivity of cavity geometry to atmos- pheric pressure. Coaxial inserts (pos.2) are located symmetrically at the cavity axis. This design allows to lower the frequency of the operating mode and reduces the number and influence on the beam of cavity higher order modes (HOM). Central location, symmetry and small size of the accelerating gap provide additional reduction of the HOMs influence on the beam for those HOMs with odd number of variations along the cavity axis. Vacuum cavity wall − coaxial insert conflate-joints contain additional copper rings that provide RF contact between parts. Neighboring to joints areas are rounded. As shown by power numerical simulation [2], these roundings reduce the probability of multipactor dis- charge in these parts. Cavity operating frequency is tuned by two movable plungers with gear boxes. These tuners are identical to those used for the race-track microtron-recuperator cav- ity [3]. They are located diametrically opposite (pos.4). Maximum tuner immersion into the cavity is 20 mm. Simulations show that at such tuner stroke and cavity voltage not exceeding 120 kV, multipactor discharge at this area does not build up. Maximum possible operat- ing frequency tuning range is 1.2 MHz. This wide range allows obtaining the desired range of operational tuning (± 130 kHz) for various combinations of the plungers positions and thus to make some preliminary detuning of HOMs. Additional HOM detuning is produced by the cavity HOM tuners (pos.5). These elements are completely identical to those used in the race-track microtron- recuperator cavity also. Their locations provide maxi- mum frequency shift of several first HOMs. Cavity input coupler (pos. 3) is designed to transfer to the cavity about 20 kW of RF power. Input coupler loop sizes provide matching of fully beam loaded cavity with 75-Ohm feeding line. Table 1 BEP cavity parameters Harmonic number 13 RF frequency (MHz) 174.3755 RF frequency tuning (kHz) ±130 Rτ2 cavity (MOhm) 1.4 Total current (A) 0.2 Beam energy (MeV) 1000 Energy loss/turn (keV) 69.2 RF voltage (kV) 112 Radiation power (kW) 13.8 Cavity RF losses (kW) 4.5 Total RF power (kW) 18.3 Preliminary baking of the cavity at a temperature of 150°C, and ion-getter vacuum pump PVIG-250 (250 l/s) should provide cavity vacuum not worse than 10-7 Torr. Cavity parameters are given in Table 1. At the mo- ment cavity design is completed. Input coupler and cav- ity body are being produced at BINP workshop. 3. RF GENERATOR FOR BEP STORAGE RING 3.1. GENERAL PARAMETERS OF THE RF GENERATOR The required RF power of 20 kW for driving the RF cavity in CW regime at a frequency of 174 MHz is pro- vided by an RF generator. It consists of an output stage with vacuum tube and a solid state preamplifier. The design of the output stage with vacuum tube is based on the design that is widely used at BINP in all generators at frequencies of 180 MHz. The preamplifier can yield output power up to 2 kW. The output stage is directly connected to RF cavity through a 75 Ohm coaxial feeder. Cavity gap voltage is changed by adjusting the drive signal at preamplifier input from 0 to 5 W. The electric power for the generator is supplied from three- phase network 380 V, it doesn’t exceed 50 kW. In the output stage a water- and forced-air cooled tetrode GU-92A is employed. The stage is made on common-greed scheme. The tetrode works in a B class with a cutoff angle about 100º. This decreases the effi- ciency compared to the C class operation but improves gain linearity at low input signal power level. For effec- tive operation of automatic gain control system it is necessary to eliminate any abrupt gain changes within full range of the input signal levels. Preamplifier is equipped with water cooling, and is mounted inside a separate case which is fixed on a sup- port of the output stage. DC power supplies for the out- put stage and preamplifier are situated in separate cabi- nets together with control, interlock, monitor and pro- tection systems. Basic requirements to DC power supplies and cool- ing systems are summarized in Table 2. Table 2 Basic requirements to DC power supplies and cooling systems Output RF power кВт 20 Anode DC voltage кВ 8 Anode DC current А 5 Screen grid voltage В +900 Screen grid current А 0,2 Bias voltage at 1-st grid В -(80…150) 1-st grid current А 0,1 Filament voltage (decreased) В 8,0 Filament current A 120 Cooling water flow rate l/min 40 Water pressure drop Bar 2.5 Cooling air flow rate m3/hour 400 At present time the output stage is assembled and undergoes RF parameter measurements. Power supplies, control, interlock, monitor and protection systems are being prepared for switch on. 3.2. DESIGN OF THE OUTPUT STAGE WITH GU-92А TETRODE The equivalent circuit of the output stage is given in Fig.2 at the left. On this scheme all locations of block- ing capacitors С1-С14 are shown for reference; designa- tions: F1, F2 – filament connections; C1, C2 – connec- ISSN 1562-6016. ВАНТ. 2012. №3(79) 51 tions of the 1-st and 2-nd grids; Anode – anode output; А-RF, C-RF – sensors of RF voltages on input and out- put circuits; DC1 – directional coupler. On the right part of Fig.2 there is a sketch of the output stage design. Common grid scheme is realized by RF shortening of both grids via ceramic capacitors (5), and then by RF shortening of screen grid current to the hull via ceramic capacitors (18). Blocking ceramic capacitors (15) shorten the anode circuit RF current to the hull of the stage. Generator tetrode GU-92A (6) with water cooling jacket (9) is designed as a quick-detachable unit. Mounting and demounting of this unit is accomplished by lever lift device (12). The tuning of resonance frequency of anode circuit is accomplished by air capacitor (7), the movable plate of which is actuated by drive (8). Tuning range of the anode circuit is 6 MHz. The variable air capacitor (17) changes coupling co- efficient between anode circuit and output coaxial feeder going to the accelerating RF cavity. The coupling may be adjusted by changing the gap by the drive (16). Input circuit of the stage does not need operational tuning. The required values of resonant frequency and coupling coefficient with input coaxial 50-Ohm cable. (19) are adjusted once during the first tuning by chang- ing gaps of air capacitors – 23 and 20 correspondingly. Fig.2. The equivalent circuit and design of the output stage Resistor 200 W, 50 Ohm (21) is used for shunting numerous resonant modes of the input circuit and pre- amplifier in order to prevent self-excitation of the gen- erator at frequencies much lower and much higher the operational one (the experience shows that Q-factor must be decreased to 10…100 in the frequency range of 20…1000 MHz). Filament voltage is applied to the tube via connec- tors (2) and elements of the input circuit (3). Two stages of RF filters (1) weaken RF radiation from the generator to an acceptable level. DC voltage is applied to screen and control grids via RF filters (22). DC anode voltage is supplied via RF filter (13) installed inside the support of the output stage. Cooling water flows in and out through pipes (10) made of insulating material. 4. CONTROL SYSTEM The control system controls the amplitude and phase of the 174 MHz cavity accelerating voltage. This system is similar to the one currently in operation (Fig.3). The system has three feedback loops. One of them controls the cavity gap voltage amplitude by the cavity sampling loop signal. To do this, the detected RF signal from the loop is compared to the reference constant voltage (Vref) by the error amplifier (EA). EA output signal regulates the controlled amplifier (CA) transfer factor. The ampli- tude of the RF cavity voltage is maintained proportional to the reference voltage. Instability of the cavity RF voltage amplitude does not exceed 0.3·10-3. For the cavity frequency self-tuning the RF signal from the cavity sampling loop and the signal from the feeder sampling loop (which is proportional to the cur- rent of the cavity input coupler loop) are fed to Phase meter #2 (PM #2) input. The Phase meter output signal controls the servo amplifier (SA), which is connected to the cavity frequency tuning mechanism. A fixed phase shift may be set by adjusting the external reference volt- age. Phase control error does not exceed 5 degrees. The third feedback loop provides a rigid binding of the cavity RF voltage phase to the reference voltage from the master generator. The Phase meter #1 (PM #1) receives the cavity sampling loop signal and the refer- ISSN 1562-6016. ВАНТ. 2012. №3(79) 52 ence RF voltage signal. The Phase meter output signal controls the electronic phase shifter PS #1. Cavity RF voltage phase instability does not exceed 0.5 deg rela- tive to the reference RF signal. The phase shifters PS #2 and PS #3 are based on the commutated strip-lines and used for the phase meters initial setup. From BEP Master Oscillator PS #1 CA PM #1 PS #2 EA PM #2 SAPS #3 RF amplifier RF cavity Vref. Fig.3. Simplified block-diagram of RF system BEP It is assumed in the new RF system, that the particles will be injected into BEP from the cooling storage-ring (CSR). This ring is a part of the injection complex VEPP- 5 [4], currently being commissioned. The CSR ring revo- lution frequency is equal to 10.94 MHz. Before the injec- tion, BEP revolution frequency will be tuned by the phase-locked loop circuit (PLL) so that accelerators revo- lution frequencies ratio is equal to FBEP / FCSR = 352/287. Under this condition the bunch positions in both storage rings are repeated with the frequency of greatest com- mon divisor of their revolution frequencies − 38.1 kHz. CSR deflector kickers and BEP inflector start from one of the pulses that follow with this frequency. By adjust- ing the delay of the BEP revolution frequency signal at the PLL input, one can choose the number of the BEP separatrix filled. After filling of the BEP separatrix its revolution fre- quency is controlled independently by a computer. Fur- ther rise of the BEP particles energy follows. Before injection of the particles into VEPP-2000, the revolution frequencies of the rings are synchronizated by the scheme which is similar to the one described above. BEP revolution frequency is tuned again. The revolution frequencies ratio is FBEP/FVEPP-2000 = 299/274. In order to not excite the electron bunch phase oscillations in the BEP, a provision has been made for correction of the transient processes in the PLL circuit. In both cases, after PLL circuits is switched on, BEP particles orbit deviation from the optimal one is less than a few tenths of a millimeter, which is quite acceptable. Resolution and accuracy of injection into BEP and VEPP-2000 is not worse than 50 ps. The control system will partly use the old electronics. New modules are being manufactured and tuned. REFERENCES 1. Yu.M. Shatunov, et al. Project of a new electron- positron collider VEPP-2000 // Proc. of EPAC 2000, Vienna, Austria, 2000. 2. A.V. Grudiev, et al. Simulation of Multipacting in RF Cavities and Periodical Structures // Proc. of PAC 97, Vancouver, B.C., Canada, 1997. 3. N. Gavrilov, et al. RF Cavity for the Novosibirsk Race-Track Microtron-Recuperator: Preprint Bud- kerINP 94-92, Novosibirsk, 1994. 4. M.S. Avilov, et al. Status of VEPP-5 injection com- plex // Proceedings of RuPAC XIX, Dubna, 2004. Статья поступила в редакцию 23.09.2011 г. ВЧ-СИСТЕМА 174 МГц НАКОПИТЕЛЯ БЭП Ю.А. Бирючевский, Э.И. Горникер, Е.К. Кенжебулатов, С.А. Крутихин, Г.Я. Куркин, В.М. Петров, А.М. Пилан Новая ВЧ-система накопителя БЭП (являющегося инжектором комплекса ВЭПП-2000) позволит увели- чить энергию частиц в БЭП от 0,9 до 1 ГэВ. ВЧ-система работает на частоте 174 МГц и состоит из уско- ряющего резонатора, ВЧ-генератора мощности и системы управления. ВЧ-СИСТЕМА 174 МГц НАКОПИЧУВАЧА БЕП Ю.А. Бірючевський, Є.І. Горнікєр, Є.К. Кєнжебулатов, С.А. Крутіхін, Г.Я. Куркін, В.М. Петров, А.М. Пілан Нова ВЧ-система накопичувача БЕП (що є інжектором комплексу ВЕПП-2000) дозволить збільшити ене- ргію частинок БЕП від 0,9 до 1 ГеВ. ВЧ-система працює на частоті 174 МГц і складається з прискорюючого резонатора, ВЧ-генератора потужності і системи управління.