Development of the BINP AMS complex at CCU SB RAS

The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. Созданный в ИЯФ ускор...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2012
Автори: Rastigeev, S.A., Frolov, A.R., Goncharov, A.D., Klyuev, V.F., Konstantinov, E.S., Kutnykova, L.A., Parkhomchuk, V.V., Petrozhitskii, A.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/108744
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-108744
record_format dspace
spelling Rastigeev, S.A.
Frolov, A.R.
Goncharov, A.D.
Klyuev, V.F.
Konstantinov, E.S.
Kutnykova, L.A.
Parkhomchuk, V.V.
Petrozhitskii, A.V.
2016-11-15T11:40:02Z
2016-11-15T11:40:02Z
2012
Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ.
1562-6016
PACS: 29.30.Aj
https://nasplib.isofts.kiev.ua/handle/123456789/108744
The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented.
Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу ¹⁴С. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению концентрации радиоуглерода в тестовых образцах.
Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу ¹⁴С. Представлено поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Применение ускоренных пучков: детекторы и детектирование ядерных излучений
Development of the BINP AMS complex at CCU SB RAS
Развитие комплекса УМС ИЯФ в ЦКП СО РАН
Розвиток комплексу УМЗ ІЯФ в ЦКП СО РАН
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Development of the BINP AMS complex at CCU SB RAS
spellingShingle Development of the BINP AMS complex at CCU SB RAS
Rastigeev, S.A.
Frolov, A.R.
Goncharov, A.D.
Klyuev, V.F.
Konstantinov, E.S.
Kutnykova, L.A.
Parkhomchuk, V.V.
Petrozhitskii, A.V.
Применение ускоренных пучков: детекторы и детектирование ядерных излучений
title_short Development of the BINP AMS complex at CCU SB RAS
title_full Development of the BINP AMS complex at CCU SB RAS
title_fullStr Development of the BINP AMS complex at CCU SB RAS
title_full_unstemmed Development of the BINP AMS complex at CCU SB RAS
title_sort development of the binp ams complex at ccu sb ras
author Rastigeev, S.A.
Frolov, A.R.
Goncharov, A.D.
Klyuev, V.F.
Konstantinov, E.S.
Kutnykova, L.A.
Parkhomchuk, V.V.
Petrozhitskii, A.V.
author_facet Rastigeev, S.A.
Frolov, A.R.
Goncharov, A.D.
Klyuev, V.F.
Konstantinov, E.S.
Kutnykova, L.A.
Parkhomchuk, V.V.
Petrozhitskii, A.V.
topic Применение ускоренных пучков: детекторы и детектирование ядерных излучений
topic_facet Применение ускоренных пучков: детекторы и детектирование ядерных излучений
publishDate 2012
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Развитие комплекса УМС ИЯФ в ЦКП СО РАН
Розвиток комплексу УМЗ ІЯФ в ЦКП СО РАН
description The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу ¹⁴С. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению концентрации радиоуглерода в тестовых образцах. Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу ¹⁴С. Представлено поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/108744
citation_txt Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT rastigeevsa developmentofthebinpamscomplexatccusbras
AT frolovar developmentofthebinpamscomplexatccusbras
AT goncharovad developmentofthebinpamscomplexatccusbras
AT klyuevvf developmentofthebinpamscomplexatccusbras
AT konstantinoves developmentofthebinpamscomplexatccusbras
AT kutnykovala developmentofthebinpamscomplexatccusbras
AT parkhomchukvv developmentofthebinpamscomplexatccusbras
AT petrozhitskiiav developmentofthebinpamscomplexatccusbras
AT rastigeevsa razvitiekompleksaumsiâfvckpsoran
AT frolovar razvitiekompleksaumsiâfvckpsoran
AT goncharovad razvitiekompleksaumsiâfvckpsoran
AT klyuevvf razvitiekompleksaumsiâfvckpsoran
AT konstantinoves razvitiekompleksaumsiâfvckpsoran
AT kutnykovala razvitiekompleksaumsiâfvckpsoran
AT parkhomchukvv razvitiekompleksaumsiâfvckpsoran
AT petrozhitskiiav razvitiekompleksaumsiâfvckpsoran
AT rastigeevsa rozvitokkompleksuumzíâfvckpsoran
AT frolovar rozvitokkompleksuumzíâfvckpsoran
AT goncharovad rozvitokkompleksuumzíâfvckpsoran
AT klyuevvf rozvitokkompleksuumzíâfvckpsoran
AT konstantinoves rozvitokkompleksuumzíâfvckpsoran
AT kutnykovala rozvitokkompleksuumzíâfvckpsoran
AT parkhomchukvv rozvitokkompleksuumzíâfvckpsoran
AT petrozhitskiiav rozvitokkompleksuumzíâfvckpsoran
first_indexed 2025-11-25T12:13:22Z
last_indexed 2025-11-25T12:13:22Z
_version_ 1850512015956639744
fulltext ISSN 1562-6016. ВАНТ. 2012. №3(79) 188 ПРИМЕНЕНИЕ УСКОРЕННЫХ ПУЧКОВ: ДЕТЕКТОРЫ И ДЕТЕКТИРОВАНИЕ ЯДЕРНЫХ ИЗЛУЧЕНИЙ DEVELOPMENT OF THE BINP AMS COMPLEX AT CCU SB RAS S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii BINP, Novosibirsk, Russia E-mail: S.A.Rastigeev@inp.nsk.su The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the 14С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. PACS: 29.30.Aj 1. INTRODUCTION The accelerator mass spectrometry is an ultra- sensitive method of isotopic analysis for archaeology, geology, biomedical science and other fields. The AMS is mainly dedicated for radiocarbon dating of samples by measurements of the ratio between carbon isotopes. The ratio between isotopes 14C and 12C in modern sam- ples is about 10-12. The radiocarbon concentration in “dead” samples is reduced by half every 5730 years, and can be less than 10-15. The radiocarbon concentration is measured by direct counting of 14C ions, and only 1 mg or less of carbon sample is required for this method. The BINP AMS system consists of the ion source, low energy channel, tandem accelerator and high- energy channel [1]. The ion source is used for produc- tion of the negative ions by bombarding the carbon tar- get with positive cesium ions. The low energy beam line is used for initial isotopes selection. The folded type vertical tandem accelerator is applied for rejection of the molecular ions and of course for obtaining necessary beam energy for rare isotopes detector. The high-energy beam line is used for the subsequent ions selection and for radioisotopes detection. The negative ion beam, horizontally extracted from the source, passes through the 90° injection magnet. Then the ions are vertically accelerated to the positively charged high voltage terminal and stripped to plus charge state in magnesium vapors stripper. Then they pass through the 180° electrostatic bend and then again are accelerated vertically into the high energy accelerat- ing tube to the ground potential. The extracted radioiso- tope ions are horizontally put to the final detector [2] through high-energy channel with 90° magnet. The most distinguishing feature of our AMS ma- chine is the use of additional electrostatic separator of ion beam, located inside the terminal. Interfering iso- baric molecules are destroyed by collisions in the strip- per into the terminal and are selected immediately after the stripping process. It is important to decrease the background from molecular fragments before the sec- ond stage of acceleration [3], because the energy of fragments is always less then the ion energy (at this moment). The next important distinguishing feature is magnesium vapours stripper [4] instead of the gas strip- per. The gas flow into the accelerator tubes leads to big energy spread in the beam thus limiting the sensitivity and accuracy of spectrometer. The molecular destruc- tion and ion recharging by magnesium are localized into the hot tube of the stripper. 2. PRESENT STATUS The BINP AMS facility is in operation for radiocar- bon concentration measurements at CCU in Novosi- birsk. The accelerator is placed into underground room with radiation shielding. The inner size of the room is 6 6 7.5× × meters. The 1 MV terminal voltage was achieved by using low cost air-gas mixture. The tank was pumped to the 0.8 atm air pressure, and then the tank pressure was in- creased to 1.6 atm by four nitrogen gas-cylinder. The 4 kg of SF6 gas was added (+0.02 atm) to increase the electrical strength of the mixture. The 1 MV has been achieved without breakdowns. The new modification of the magnesium vapors stripper was used last year without replacement of mag- nesium. All hot parts of striper are located in vacuum for prevention of corrosion of striper surface by the tank gas mixture. The power consumption by stripper is about 50 W. The electrical power, required in the terminal equip- ment, is generated by the 500 W gaseous turbine. The turbine is fed by compressed air follows from compres- sor, which is placed at ground potential. For prevention of water condensation on the cool surface of the gas turbine feeding dielectric tube (inside of the accelerator tank), the lower part of the tube (outside of the tank) was heated. The multi-cathode (for 23 samples) sputter ion source is used for synchronous analysis of the samples and for comparison of the tested samples with the refer- ence one. The negative ions are produced by bombard- ing the graphite target with positive cesium ions. The cesium oven was improved for a more rapid replace- ment of cesium. The time-of-flight detector (ToF) is used for ion identification. At present, the ToF channel width is 70 ps. The moment of time for ion detection can be reg- istered with 16 μs channel width. This data is used for calculation of number of detected ions per unit time, allowing to filter the background ions from electrical breakdowns at ion source. The process of isotope measuring and sample chang- ing (wheel rotation) is fully automated. The measure- ments and running conditions are on-line displayed and stored in the database files. ISSN 1562-6016. ВАНТ. 2012. №3(79) 189 Now, the BINP AMS complex was routine used for radiocarbon measurements in archaeological samples, produced by CCU “Geochronology of the cenazoic era”. The sample preparation group produced about 1 sample per day. The measured radiocarbon concentration in “dead” samples prepared from graphite was about sev- eral percent relative to the modern sample. It is due to contamination by background carbon during sample preparation procedure. Now, the reproducibility of sam- ple preparation is not good enough for AMS testing by commonly used standard such as OxII. For testing of the reproducibility of AMS measurements and ion back- ground, we used samples that do not require sample preparation procedures. It is graphite MPG (as “dead” sample) and carbon fabric (as modern sample).The ex- perimental results from such test are presented below. 3. EXPERIMENTAL RESULTS During the experiments, the injection energy of ra- diocarbon beam was 25 keV. The 12C beam current was about 10 uA. The terminal voltage was 1 MV. The 180° electrostatic bend was set to transmit the ions with charge state 3+. The ions in charge state 3+ will be used for isotope analysis because the molecules in charge state 3+ are unstable. The magnesium vapors stripper was heated for obtaining the equilibrium charge state distribution, but not more. The ion energies at the exit of AMS facility are 4025 keV. The ions transmission of AMS system at this energy is about 10 % (includes the stripping yield for 3+ charge state). The vacuum in the beam line was about 10-6 Torr. The 12C ions are meas- ured in shielded Faraday cups with secondary electron suppression. The 14C ions are counted by ToF telescope. Each channel ToF telescope is 70 ps. 11 12 13 14 15 16 17 10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 modern sample "dead" sample 14M re f. un its mass 14C Fig.1. Mass spectrums of the injected (upper curve) and accelerated (lower curves) beams The typical mass spectrum of the carbon target be- fore acceleration is shown in Fig.1 (upper curve). The plot is obtained by varying the injection magnet field. The intensity of the mass-14 peak is more than 10–4 per 12C isotope. It is mainly the 12CH2 and 13CH molecular currents. The intensities of the molecular beams are changed in time. It depends on vacuum conditions in ion source and sample quality. The ToF spectrums at the exit of AMS for graphite MPG and carbon fabric are also shown in Fig.1 (lower curves). The mass is calcu- lated from ToF channels with assumption that energy is constant. The AMS system is tuned for radiocarbon transmission. The molecular background of the mass-14 is suppressed by the destruction process in the magne- sium target and then filtered by tandem 180° bend. The small mass-13 peak is also visible in the spectrum, but the mass separation is good enough for radiocarbon measurements. The carbon fabric is made of organic materials. The radiocarbon isotope ratio of the modern organic matter is about 10-12 (14C/12C). The intensity of the radiocarbon in graphite MPG is about 500 times lower than in carbon fabric. It is seen that the 14C peak value in graphite MPG significantly exceeds the sensi- tivity limit of BINP AMS facility. We plan to test other brands of graphite for direct determination of present- day sensitivity limit. 16 20 24 28 32 150 200 250 300 350 0 20 40 60 80 100 120 140 0.6 0.8 1.0 1.2 1.4 a) 13 C 3+ c ur re nt ( nA ) b) 14 C 3+ c ou nt s p er 1 00 se c c) 14 C c on ce nt ra tio n sequence of measurements Fig.2. The 13C3+ current (Fig.3,a), 14C3+ counts (Fig.3,b), and radiocarbon concentration (Fig.3,c) for 10 carbon fabric samples For radiocarbon concentration analysis, the number of 14C3+ counts was normalized to the 13C3+ current. During the experiments, the 13C3+ ion current was meas- ured one time of each 100 s interval of radiocarbon ISSN 1562-6016. ВАНТ. 2012. №3(79) 190 counting. During switching between the isotopes, the ions injection energy, low energy electrostatic correc- tors and the high energy magnet settings are changed. The 13C ions current and 14C ions number are measured twice for each sample, and then the sample is changed by rotating the wheel with samples of the ion source. Fig.2 shows the 13C3+ current (see Fig.2,a), 14C3+ counts (see Fig.2,b), and measured radiocarbon concen- tration (see Fig.2,c) for 10 carbon fabric samples are measured alternately. This corresponds to a double measurement of 10 samples within 7 sample wheel revolutions. The measurement time was 5.7 hours. The samples were degased at 350°C for 3 hours to reduce surface contamination. As seen from the Fig.2,a, current is not much change from sample to sample and with time. The number of counts is changed at Fig.2,b due to statistical fluctuations. The statistical uncertainty of radiocarbon concentration is shown at Fig.2,c by error bars. The mean statistical uncertainty of each measure- ment is about 6%. 4 6 8 10 12 14 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 14 C c on ce nt ra tio n sample position Fig.3. Radiocarbon concentration in ten modern samples (carbon fabric) The radiocarbon concentrations in 10 samples computed from data in Fig.2 are presented at Fig.3. The value 1 on the vertical axis corresponds to the mean concentration value of all measurements. The statistical uncertainty of radiocarbon registration is about 1.5 % (shown by error bars). The same data as at Fig.3, but after an additional set of statistics are presented at Fig.4. It is seen, that the scatter in the data decreases with the decrease of statis- tical error. The final results of all ten samples are in agreement with average value within the 1 % ranges. 4 6 8 10 12 14 0.98 0.99 1.00 1.01 1.02 14 C c on ce nt ra tio n sample position Fig.4. Radiocarbon concentration in ten modern samples (carbon fabric) after an additional set of statistics SUMMARY The accelerator complex has demonstrated the sus- tained performance on 1MV running. The reproducibil- ity of radiocarbon concentration measurements is about 1 %. The measured radiocarbon concentration in “dead” sample is about 0.2 % of the modern sample concentra- tion. REFERENCES 1. N.I. Alinovskii, et al. Accelerator mass spectrometer for the Siberian Branch of the Russian Academy of Sciences // Technical Physics. 2009, v.54, №9, p.1350. 2. N.I. Alinovskii, et al. A time-of-flight detector of low-energy ions for an accelerating mass- spectrometer // Experimental Techniques. 2009, v.52, №2, p.234. 3. V.V. Parkhomchuk and S.A. Rastigeev. Analysis of the ion background in an acceleration mass spec- trometer of the Siberian Division of the Russian Academy of Sciences // Technical Physics. 2009, v.54, №10, p.1529. 4. V.F. Klyuev, V.V. Parkhomchuk, S.A. Rastigeev. A magnesium vapor charge-exchange target for an accelerator mass spectrometer // Instruments and Experimental Techniques. 2009, v.52, №2, p.245. Статья поступила в редакцию 23.09.2011 г. РАЗВИТИЕ КОМПЛЕКСА УМС ИЯФ В ЦКП СО РАН С.А. Растигеев, А.Р. Фролов, А.Д. Гончаров, В.Ф. Клюев, Е.С. Константинов, Л.А. Кутнякова, В.В. Пархомчук, А.В. Петрожицкий Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу 14С. Представлены текущее состояние комплекса УМС и результаты экс- периментов по измерению концентрации радиоуглерода в тестовых образцах. РОЗВИТОК КОМПЛЕКСУ УМЗ ІЯФ В ЦКП СО РАН С.А. Растігєєв, А.Р. Фролов, А.Д Гончаров, В.Ф. Клюєв, Є.С. Константинов, Л.А. Кутнякова, В.В. Пархомчук, А.В. Петрожицький Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу 14С. Представлено поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках.