Development of the BINP AMS complex at CCU SB RAS
The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. Созданный в ИЯФ ускор...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2012 |
| Автори: | , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/108744 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-108744 |
|---|---|
| record_format |
dspace |
| spelling |
Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. 2016-11-15T11:40:02Z 2016-11-15T11:40:02Z 2012 Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 29.30.Aj https://nasplib.isofts.kiev.ua/handle/123456789/108744 The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу ¹⁴С. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению концентрации радиоуглерода в тестовых образцах. Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу ¹⁴С. Представлено поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Применение ускоренных пучков: детекторы и детектирование ядерных излучений Development of the BINP AMS complex at CCU SB RAS Развитие комплекса УМС ИЯФ в ЦКП СО РАН Розвиток комплексу УМЗ ІЯФ в ЦКП СО РАН Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Development of the BINP AMS complex at CCU SB RAS |
| spellingShingle |
Development of the BINP AMS complex at CCU SB RAS Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| title_short |
Development of the BINP AMS complex at CCU SB RAS |
| title_full |
Development of the BINP AMS complex at CCU SB RAS |
| title_fullStr |
Development of the BINP AMS complex at CCU SB RAS |
| title_full_unstemmed |
Development of the BINP AMS complex at CCU SB RAS |
| title_sort |
development of the binp ams complex at ccu sb ras |
| author |
Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. |
| author_facet |
Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. |
| topic |
Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| topic_facet |
Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| publishDate |
2012 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Развитие комплекса УМС ИЯФ в ЦКП СО РАН Розвиток комплексу УМЗ ІЯФ в ЦКП СО РАН |
| description |
The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for sample dating by the ¹⁴С isotope. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented.
Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу ¹⁴С. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению концентрации радиоуглерода в тестовых образцах.
Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу ¹⁴С. Представлено поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/108744 |
| citation_txt |
Development of the BINP AMS complex at CCU SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2012. — № 3. — С. 188-190. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT rastigeevsa developmentofthebinpamscomplexatccusbras AT frolovar developmentofthebinpamscomplexatccusbras AT goncharovad developmentofthebinpamscomplexatccusbras AT klyuevvf developmentofthebinpamscomplexatccusbras AT konstantinoves developmentofthebinpamscomplexatccusbras AT kutnykovala developmentofthebinpamscomplexatccusbras AT parkhomchukvv developmentofthebinpamscomplexatccusbras AT petrozhitskiiav developmentofthebinpamscomplexatccusbras AT rastigeevsa razvitiekompleksaumsiâfvckpsoran AT frolovar razvitiekompleksaumsiâfvckpsoran AT goncharovad razvitiekompleksaumsiâfvckpsoran AT klyuevvf razvitiekompleksaumsiâfvckpsoran AT konstantinoves razvitiekompleksaumsiâfvckpsoran AT kutnykovala razvitiekompleksaumsiâfvckpsoran AT parkhomchukvv razvitiekompleksaumsiâfvckpsoran AT petrozhitskiiav razvitiekompleksaumsiâfvckpsoran AT rastigeevsa rozvitokkompleksuumzíâfvckpsoran AT frolovar rozvitokkompleksuumzíâfvckpsoran AT goncharovad rozvitokkompleksuumzíâfvckpsoran AT klyuevvf rozvitokkompleksuumzíâfvckpsoran AT konstantinoves rozvitokkompleksuumzíâfvckpsoran AT kutnykovala rozvitokkompleksuumzíâfvckpsoran AT parkhomchukvv rozvitokkompleksuumzíâfvckpsoran AT petrozhitskiiav rozvitokkompleksuumzíâfvckpsoran |
| first_indexed |
2025-11-25T12:13:22Z |
| last_indexed |
2025-11-25T12:13:22Z |
| _version_ |
1850512015956639744 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2012. №3(79) 188
ПРИМЕНЕНИЕ УСКОРЕННЫХ ПУЧКОВ: ДЕТЕКТОРЫ
И ДЕТЕКТИРОВАНИЕ ЯДЕРНЫХ ИЗЛУЧЕНИЙ
DEVELOPMENT OF THE BINP AMS COMPLEX AT CCU SB RAS
S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov,
L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii
BINP, Novosibirsk, Russia
E-mail: S.A.Rastigeev@inp.nsk.su
The accelerator mass spectrometer created at BINP is installed at CCU “Geochronology of the cenazoic era” for
sample dating by the 14С isotope. Present status of AMS complex and the results of experiments for radiocarbon
concentration measurements in test samples are presented.
PACS: 29.30.Aj
1. INTRODUCTION
The accelerator mass spectrometry is an ultra-
sensitive method of isotopic analysis for archaeology,
geology, biomedical science and other fields. The AMS
is mainly dedicated for radiocarbon dating of samples
by measurements of the ratio between carbon isotopes.
The ratio between isotopes 14C and 12C in modern sam-
ples is about 10-12. The radiocarbon concentration in
“dead” samples is reduced by half every 5730 years, and
can be less than 10-15. The radiocarbon concentration is
measured by direct counting of 14C ions, and only 1 mg
or less of carbon sample is required for this method.
The BINP AMS system consists of the ion source,
low energy channel, tandem accelerator and high-
energy channel [1]. The ion source is used for produc-
tion of the negative ions by bombarding the carbon tar-
get with positive cesium ions. The low energy beam line
is used for initial isotopes selection. The folded type
vertical tandem accelerator is applied for rejection of the
molecular ions and of course for obtaining necessary
beam energy for rare isotopes detector. The high-energy
beam line is used for the subsequent ions selection and
for radioisotopes detection.
The negative ion beam, horizontally extracted from
the source, passes through the 90° injection magnet.
Then the ions are vertically accelerated to the positively
charged high voltage terminal and stripped to plus
charge state in magnesium vapors stripper. Then they
pass through the 180° electrostatic bend and then again
are accelerated vertically into the high energy accelerat-
ing tube to the ground potential. The extracted radioiso-
tope ions are horizontally put to the final detector [2]
through high-energy channel with 90° magnet.
The most distinguishing feature of our AMS ma-
chine is the use of additional electrostatic separator of
ion beam, located inside the terminal. Interfering iso-
baric molecules are destroyed by collisions in the strip-
per into the terminal and are selected immediately after
the stripping process. It is important to decrease the
background from molecular fragments before the sec-
ond stage of acceleration [3], because the energy of
fragments is always less then the ion energy (at this
moment). The next important distinguishing feature is
magnesium vapours stripper [4] instead of the gas strip-
per. The gas flow into the accelerator tubes leads to big
energy spread in the beam thus limiting the sensitivity
and accuracy of spectrometer. The molecular destruc-
tion and ion recharging by magnesium are localized into
the hot tube of the stripper.
2. PRESENT STATUS
The BINP AMS facility is in operation for radiocar-
bon concentration measurements at CCU in Novosi-
birsk. The accelerator is placed into underground room
with radiation shielding. The inner size of the room is
6 6 7.5× × meters.
The 1 MV terminal voltage was achieved by using
low cost air-gas mixture. The tank was pumped to the
0.8 atm air pressure, and then the tank pressure was in-
creased to 1.6 atm by four nitrogen gas-cylinder. The
4 kg of SF6 gas was added (+0.02 atm) to increase the
electrical strength of the mixture. The 1 MV has been
achieved without breakdowns.
The new modification of the magnesium vapors
stripper was used last year without replacement of mag-
nesium. All hot parts of striper are located in vacuum
for prevention of corrosion of striper surface by the tank
gas mixture. The power consumption by stripper is
about 50 W.
The electrical power, required in the terminal equip-
ment, is generated by the 500 W gaseous turbine. The
turbine is fed by compressed air follows from compres-
sor, which is placed at ground potential. For prevention of
water condensation on the cool surface of the gas turbine
feeding dielectric tube (inside of the accelerator tank), the
lower part of the tube (outside of the tank) was heated.
The multi-cathode (for 23 samples) sputter ion
source is used for synchronous analysis of the samples
and for comparison of the tested samples with the refer-
ence one. The negative ions are produced by bombard-
ing the graphite target with positive cesium ions. The
cesium oven was improved for a more rapid replace-
ment of cesium.
The time-of-flight detector (ToF) is used for ion
identification. At present, the ToF channel width is
70 ps. The moment of time for ion detection can be reg-
istered with 16 μs channel width. This data is used for
calculation of number of detected ions per unit time,
allowing to filter the background ions from electrical
breakdowns at ion source.
The process of isotope measuring and sample chang-
ing (wheel rotation) is fully automated. The measure-
ments and running conditions are on-line displayed and
stored in the database files.
ISSN 1562-6016. ВАНТ. 2012. №3(79) 189
Now, the BINP AMS complex was routine used for
radiocarbon measurements in archaeological samples,
produced by CCU “Geochronology of the cenazoic era”.
The sample preparation group produced about 1 sample
per day. The measured radiocarbon concentration in
“dead” samples prepared from graphite was about sev-
eral percent relative to the modern sample. It is due to
contamination by background carbon during sample
preparation procedure. Now, the reproducibility of sam-
ple preparation is not good enough for AMS testing by
commonly used standard such as OxII. For testing of the
reproducibility of AMS measurements and ion back-
ground, we used samples that do not require sample
preparation procedures. It is graphite MPG (as “dead”
sample) and carbon fabric (as modern sample).The ex-
perimental results from such test are presented below.
3. EXPERIMENTAL RESULTS
During the experiments, the injection energy of ra-
diocarbon beam was 25 keV. The 12C beam current was
about 10 uA. The terminal voltage was 1 MV. The 180°
electrostatic bend was set to transmit the ions with
charge state 3+. The ions in charge state 3+ will be used
for isotope analysis because the molecules in charge
state 3+ are unstable. The magnesium vapors stripper
was heated for obtaining the equilibrium charge state
distribution, but not more. The ion energies at the exit of
AMS facility are 4025 keV. The ions transmission of
AMS system at this energy is about 10 % (includes the
stripping yield for 3+ charge state). The vacuum in the
beam line was about 10-6 Torr. The 12C ions are meas-
ured in shielded Faraday cups with secondary electron
suppression. The 14C ions are counted by ToF telescope.
Each channel ToF telescope is 70 ps.
11 12 13 14 15 16 17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
modern
sample
"dead"
sample
14M
re
f.
un
its
mass
14C
Fig.1. Mass spectrums of the injected (upper curve)
and accelerated (lower curves) beams
The typical mass spectrum of the carbon target be-
fore acceleration is shown in Fig.1 (upper curve). The
plot is obtained by varying the injection magnet field.
The intensity of the mass-14 peak is more than 10–4 per
12C isotope. It is mainly the 12CH2 and 13CH molecular
currents. The intensities of the molecular beams are
changed in time. It depends on vacuum conditions in ion
source and sample quality. The ToF spectrums at the
exit of AMS for graphite MPG and carbon fabric are
also shown in Fig.1 (lower curves). The mass is calcu-
lated from ToF channels with assumption that energy is
constant. The AMS system is tuned for radiocarbon
transmission. The molecular background of the mass-14
is suppressed by the destruction process in the magne-
sium target and then filtered by tandem 180° bend. The
small mass-13 peak is also visible in the spectrum, but
the mass separation is good enough for radiocarbon
measurements. The carbon fabric is made of organic
materials. The radiocarbon isotope ratio of the modern
organic matter is about 10-12 (14C/12C). The intensity of
the radiocarbon in graphite MPG is about 500 times
lower than in carbon fabric. It is seen that the 14C peak
value in graphite MPG significantly exceeds the sensi-
tivity limit of BINP AMS facility. We plan to test other
brands of graphite for direct determination of present-
day sensitivity limit.
16
20
24
28
32
150
200
250
300
350
0 20 40 60 80 100 120 140
0.6
0.8
1.0
1.2
1.4
a)
13
C
3+
c
ur
re
nt
(
nA
)
b)
14
C
3+
c
ou
nt
s p
er
1
00
se
c
c)
14
C
c
on
ce
nt
ra
tio
n
sequence of measurements
Fig.2. The 13C3+ current (Fig.3,a), 14C3+ counts
(Fig.3,b), and radiocarbon concentration (Fig.3,c)
for 10 carbon fabric samples
For radiocarbon concentration analysis, the number
of 14C3+ counts was normalized to the 13C3+ current.
During the experiments, the 13C3+ ion current was meas-
ured one time of each 100 s interval of radiocarbon
ISSN 1562-6016. ВАНТ. 2012. №3(79) 190
counting. During switching between the isotopes, the
ions injection energy, low energy electrostatic correc-
tors and the high energy magnet settings are changed.
The 13C ions current and 14C ions number are measured
twice for each sample, and then the sample is changed
by rotating the wheel with samples of the ion source.
Fig.2 shows the 13C3+ current (see Fig.2,a), 14C3+
counts (see Fig.2,b), and measured radiocarbon concen-
tration (see Fig.2,c) for 10 carbon fabric samples are
measured alternately. This corresponds to a double
measurement of 10 samples within 7 sample wheel
revolutions. The measurement time was 5.7 hours. The
samples were degased at 350°C for 3 hours to reduce
surface contamination. As seen from the Fig.2,a, current
is not much change from sample to sample and with
time. The number of counts is changed at Fig.2,b due to
statistical fluctuations. The statistical uncertainty of
radiocarbon concentration is shown at Fig.2,c by error
bars. The mean statistical uncertainty of each measure-
ment is about 6%.
4 6 8 10 12 14
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
14
C
c
on
ce
nt
ra
tio
n
sample position
Fig.3. Radiocarbon concentration in ten modern
samples (carbon fabric)
The radiocarbon concentrations in 10 samples
computed from data in Fig.2 are presented at Fig.3. The
value 1 on the vertical axis corresponds to the mean
concentration value of all measurements. The statistical
uncertainty of radiocarbon registration is about 1.5 %
(shown by error bars).
The same data as at Fig.3, but after an additional set
of statistics are presented at Fig.4. It is seen, that the
scatter in the data decreases with the decrease of statis-
tical error. The final results of all ten samples are in
agreement with average value within the 1 % ranges.
4 6 8 10 12 14
0.98
0.99
1.00
1.01
1.02
14
C
c
on
ce
nt
ra
tio
n
sample position
Fig.4. Radiocarbon concentration in ten modern
samples (carbon fabric) after an additional set
of statistics
SUMMARY
The accelerator complex has demonstrated the sus-
tained performance on 1MV running. The reproducibil-
ity of radiocarbon concentration measurements is about
1 %. The measured radiocarbon concentration in “dead”
sample is about 0.2 % of the modern sample concentra-
tion.
REFERENCES
1. N.I. Alinovskii, et al. Accelerator mass spectrometer
for the Siberian Branch of the Russian Academy of
Sciences // Technical Physics. 2009, v.54, №9,
p.1350.
2. N.I. Alinovskii, et al. A time-of-flight detector of
low-energy ions for an accelerating mass-
spectrometer // Experimental Techniques. 2009,
v.52, №2, p.234.
3. V.V. Parkhomchuk and S.A. Rastigeev. Analysis of
the ion background in an acceleration mass spec-
trometer of the Siberian Division of the Russian
Academy of Sciences // Technical Physics. 2009,
v.54, №10, p.1529.
4. V.F. Klyuev, V.V. Parkhomchuk, S.A. Rastigeev.
A magnesium vapor charge-exchange target for an
accelerator mass spectrometer // Instruments and
Experimental Techniques. 2009, v.52, №2, p.245.
Статья поступила в редакцию 23.09.2011 г.
РАЗВИТИЕ КОМПЛЕКСА УМС ИЯФ В ЦКП СО РАН
С.А. Растигеев, А.Р. Фролов, А.Д. Гончаров, В.Ф. Клюев, Е.С. Константинов,
Л.А. Кутнякова, В.В. Пархомчук, А.В. Петрожицкий
Созданный в ИЯФ ускорительный масс-спектрометр установлен в ЦКП «Геохронология кайнозоя» для
датирования образцов по изотопу 14С. Представлены текущее состояние комплекса УМС и результаты экс-
периментов по измерению концентрации радиоуглерода в тестовых образцах.
РОЗВИТОК КОМПЛЕКСУ УМЗ ІЯФ В ЦКП СО РАН
С.А. Растігєєв, А.Р. Фролов, А.Д Гончаров, В.Ф. Клюєв, Є.С. Константинов,
Л.А. Кутнякова, В.В. Пархомчук, А.В. Петрожицький
Створений у ІЯФ прискорювальний мас-спектрометр встановлено в ЦКП «Геохронологія кайнозою» для
датування зразків по ізотопу 14С. Представлено поточний стан комплексу УМЗ і результати експериментів з
вимірювання концентрації радіовуглецю в тестових зразках.
|