Comparison of product irradiation technology on industrial Х-ray radiation facility
The comparison of various technologies of product irradiation with X-rays (bremsstrahlung) that is generated by industrial high-power electron beam accelerators is presented in the report. Computer modeling method was used for calculation the 3 dimensional absorbed dose distributions in the product...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2012 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/108939 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Comparison of product irradiation technology on industrial Х-ray radiation facility / V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov, G. Sarukhanian // Вопросы атомной науки и техники. — 2012. — № 4. — С. 216-220. — Бібліогр.: 7 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-108939 |
|---|---|
| record_format |
dspace |
| spelling |
Lazurik, V.T. Lazurik, V.M. Popov, G. Rogov, Yu. Sarukhanian, G. 2016-11-18T15:16:06Z 2016-11-18T15:16:06Z 2012 Comparison of product irradiation technology on industrial Х-ray radiation facility / V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov, G. Sarukhanian // Вопросы атомной науки и техники. — 2012. — № 4. — С. 216-220. — Бібліогр.: 7 назв. — рос. 1562-6016 PACS: 61.80.Сb https://nasplib.isofts.kiev.ua/handle/123456789/108939 The comparison of various technologies of product irradiation with X-rays (bremsstrahlung) that is generated by industrial high-power electron beam accelerators is presented in the report. Computer modeling method was used for calculation the 3 dimensional absorbed dose distributions in the product containers on moving conveyor irradiated with scanned X-ray beams. The comparison of dose uniformity ratio in the irradiated product was performed for various technologies of product irradiation with X-ray. The variants of product containers movement in front of Xray converter in the range from 2 to 8 passes at different levels were considered. Приводится сравнение различных технологий облучения продукции тормозным излучением (ТИ), которое генерируется на промышленных ускорителях электронов большой мощности. Методом компьютерного моделирования рассчитывается 3-х мерное распределение поглощенной дозы в продукции, расположенной в контейнерах на движущемся конвейере, и облучаемой сканирующими пучками ТИ. Для различных технологий облучения продукции ТИ проведено сравнение неоднородности поглощенной дозы в облучаемой продукции. Рассматривались варианты перемещения продукции в контейнерах параллельно плоскости конвертера ТИ от двух до восьми проходов на разных уровнях. Наводиться порівняння різних технологій опромінення продукції гальмівним випромінюванням (ГВ), яке генерується на промислових прискорювачах електронів великої потужності. Методом комп'ютерного моделювання розраховується 3-вимірний розподіл поглиненої дози в продукції, розташованій в контейнерах на конвеєрі, що рухається, і опромінюваної скануючими пучками ГВ. Для різних технологій опромінення продукції ГВ проведено порівняння неоднорідності поглиненої дози в опромінюваній продукції. Розглядалися варіанти переміщення продукції в контейнерах паралельно площини конвертера ГВ від двох до восьми проходів на різних рівнях. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Применение ускоренных пучков: детекторы и детектирование ядерных излучений Comparison of product irradiation technology on industrial Х-ray radiation facility Сравнение технологии облучения продукции в промышленных установках тормозного излучения Порівняння технології опромінення продукції в промислових установках гальмівного випромінювання Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Comparison of product irradiation technology on industrial Х-ray radiation facility |
| spellingShingle |
Comparison of product irradiation technology on industrial Х-ray radiation facility Lazurik, V.T. Lazurik, V.M. Popov, G. Rogov, Yu. Sarukhanian, G. Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| title_short |
Comparison of product irradiation technology on industrial Х-ray radiation facility |
| title_full |
Comparison of product irradiation technology on industrial Х-ray radiation facility |
| title_fullStr |
Comparison of product irradiation technology on industrial Х-ray radiation facility |
| title_full_unstemmed |
Comparison of product irradiation technology on industrial Х-ray radiation facility |
| title_sort |
comparison of product irradiation technology on industrial х-ray radiation facility |
| author |
Lazurik, V.T. Lazurik, V.M. Popov, G. Rogov, Yu. Sarukhanian, G. |
| author_facet |
Lazurik, V.T. Lazurik, V.M. Popov, G. Rogov, Yu. Sarukhanian, G. |
| topic |
Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| topic_facet |
Применение ускоренных пучков: детекторы и детектирование ядерных излучений |
| publishDate |
2012 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Сравнение технологии облучения продукции в промышленных установках тормозного излучения Порівняння технології опромінення продукції в промислових установках гальмівного випромінювання |
| description |
The comparison of various technologies of product irradiation with X-rays (bremsstrahlung) that is generated by industrial high-power electron beam accelerators is presented in the report. Computer modeling method was used for calculation the 3 dimensional absorbed dose distributions in the product containers on moving conveyor irradiated with scanned X-ray beams. The comparison of dose uniformity ratio in the irradiated product was performed for various technologies of product irradiation with X-ray. The variants of product containers movement in front of Xray converter in the range from 2 to 8 passes at different levels were considered.
Приводится сравнение различных технологий облучения продукции тормозным излучением (ТИ), которое генерируется на промышленных ускорителях электронов большой мощности. Методом компьютерного моделирования рассчитывается 3-х мерное распределение поглощенной дозы в продукции, расположенной в контейнерах на движущемся конвейере, и облучаемой сканирующими пучками ТИ. Для различных технологий облучения продукции ТИ проведено сравнение неоднородности поглощенной дозы в облучаемой продукции. Рассматривались варианты перемещения продукции в контейнерах параллельно плоскости конвертера ТИ от двух до восьми проходов на разных уровнях.
Наводиться порівняння різних технологій опромінення продукції гальмівним випромінюванням (ГВ), яке генерується на промислових прискорювачах електронів великої потужності. Методом комп'ютерного моделювання розраховується 3-вимірний розподіл поглиненої дози в продукції, розташованій в контейнерах на конвеєрі, що рухається, і опромінюваної скануючими пучками ГВ. Для різних технологій опромінення продукції ГВ проведено порівняння неоднорідності поглиненої дози в опромінюваній продукції. Розглядалися варіанти переміщення продукції в контейнерах паралельно площини конвертера ГВ від двох до восьми проходів на різних рівнях.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/108939 |
| citation_txt |
Comparison of product irradiation technology on industrial Х-ray radiation facility / V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov, G. Sarukhanian // Вопросы атомной науки и техники. — 2012. — № 4. — С. 216-220. — Бібліогр.: 7 назв. — рос. |
| work_keys_str_mv |
AT lazurikvt comparisonofproductirradiationtechnologyonindustrialhrayradiationfacility AT lazurikvm comparisonofproductirradiationtechnologyonindustrialhrayradiationfacility AT popovg comparisonofproductirradiationtechnologyonindustrialhrayradiationfacility AT rogovyu comparisonofproductirradiationtechnologyonindustrialhrayradiationfacility AT sarukhaniang comparisonofproductirradiationtechnologyonindustrialhrayradiationfacility AT lazurikvt sravnenietehnologiioblučeniâprodukciivpromyšlennyhustanovkahtormoznogoizlučeniâ AT lazurikvm sravnenietehnologiioblučeniâprodukciivpromyšlennyhustanovkahtormoznogoizlučeniâ AT popovg sravnenietehnologiioblučeniâprodukciivpromyšlennyhustanovkahtormoznogoizlučeniâ AT rogovyu sravnenietehnologiioblučeniâprodukciivpromyšlennyhustanovkahtormoznogoizlučeniâ AT sarukhaniang sravnenietehnologiioblučeniâprodukciivpromyšlennyhustanovkahtormoznogoizlučeniâ AT lazurikvt porívnânnâtehnologííopromínennâprodukcíívpromislovihustanovkahgalʹmívnogovipromínûvannâ AT lazurikvm porívnânnâtehnologííopromínennâprodukcíívpromislovihustanovkahgalʹmívnogovipromínûvannâ AT popovg porívnânnâtehnologííopromínennâprodukcíívpromislovihustanovkahgalʹmívnogovipromínûvannâ AT rogovyu porívnânnâtehnologííopromínennâprodukcíívpromislovihustanovkahgalʹmívnogovipromínûvannâ AT sarukhaniang porívnânnâtehnologííopromínennâprodukcíívpromislovihustanovkahgalʹmívnogovipromínûvannâ |
| first_indexed |
2025-11-25T21:20:29Z |
| last_indexed |
2025-11-25T21:20:29Z |
| _version_ |
1850556184235343872 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2012. №4(80) 216
COMPARISON OF PRODUCT IRRADIATION TECHNOLOGY
ON INDUSTRIAL X-RAY RADIATION FACILITY
V.T. Lazurik2, V.M. Lazurik2, G. Popov2, Yu. Rogov2, G. Sarukhanian1
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2V.N. Karazin Kharkov National University, Kharkov, Ukraine
E-mail: gsar000@mail.ru
The comparison of various technologies of product irradiation with X-rays (bremsstrahlung) that is generated by
industrial high-power electron beam accelerators is presented in the report. Computer modeling method was used for
calculation the 3 dimensional absorbed dose distributions in the product containers on moving conveyor irradiated
with scanned X-ray beams. The comparison of dose uniformity ratio in the irradiated product was performed for
various technologies of product irradiation with X-ray. The variants of product containers movement in front of X-
ray converter in the range from 2 to 8 passes at different levels were considered.
PACS: 61.80.Сb
INTRODUCTION
Today, the intensive increase of integration the ra-
diation technologies in various industry branches
worldwide is observed. Sterilization of medical devices
and pharmaceuticals, polymer cross-linking of tubes,
cables, packaging materials, tire component curing, ir-
radiation of selected food items (spices, seafood) are
established technologies. An implementation of radia-
tion technologies in various fields of industry is accom-
panied by magnification of amount of industrial radia-
tion facilities, expansion of assortment of products
treated by ionizing radiation, and development of new
methods of product irradiation.
Main types of radiation sources of ionizing energy for
industrial radiation processing are accelerated electrons,
X-rays (bremsstrahlung) emitted when high-energy elec-
trons are stopped by a heavy metal targets and gamma
rays from radioactive nuclide Cobalt-60. The preferred
type of radiation source is usually determined by practical
process requirements, such as the minimum and maxi-
mum absorbed doses (Dmin, Dmax), dose uniformity
(DUR= Dman/Dmix) and dose rate, material thickness, den-
sity and shape, production rates, capital and operating
costs, and ease of use. The use of electron accelerators for
generation of X-ray beams represents major commercial
interest in the field of radiation technologies.
High-energy ~ 10 MeV, high-power electron beams
(EB) can process thin materials at high speeds, but their
penetration is limited to a 10 cm in a product with den-
sity about 1 g/cm3. Gamma rays emitted by cobalt-60
sources are mainly used to irradiate larger packages of
medical devices and foods at slower processing rates.
High-energy X-rays generated by electrons with kinetic
energies greater than 3.0 MeV are more penetrating than
such gamma rays. In contrast to gamma rays, which are
emitted in all directions from a cobalt-60 source, high-
energy X-rays are concentrated in the direction of the
incident electron beam, and their angular dispersion
decreases as the electron energy increases. Recent in-
creases in the available X-ray power and in the price of
Co-60 sources have made X-rays a viable alternative to
gamma-rays for radiation processing [1,2].
Success of application of X-ray beams in radiation
processing depends largely on development of theoreti-
cal notions, semi-empirical models and computer codes
for simulation of irradiation processes based on X-ray
radiation facility [3, 4]. The results of the computer
simulation using Monte Carlo (MC) method of the ab-
sorbed dose mapping in the products irradiated with X-
ray are discussed in the report.
1. GEOMETRICAL MODELS OF X-RAY
FACILITY
Today there are industrial radiation facilities with
high-power X-ray capability in Europe, Japan and North
America. In all these facilities the method of product
irradiation is based on principle that size of X-ray con-
verter in scan direction overlap the size of irradiated
packing box with product [1,2].
State-of-the-art pallet-X-ray facility for sterilization
of medical devises based on the Rhodotron, IBA’s high-
power, high-energy accelerator was built by LEONI
Studer Hard AG, Switzerland [2, 5]. In this facility the
method of product irradiation is based on principle that
size of irradiated packing boxes with product in scan
direction overlaps the size of X-ray converter.
Schematic representation of the EB facilities with X-
ray converter, cooling system, moving conveyer and the
packing box with product related to 3 methods of prod-
uct irradiation with X-ray are shown in Figs.1,a,b and c.
X-ray radiation facility with product is oriented horizon-
tally. X-ray converter consists of a tungsten front plate,
a cooling channel with water and a stainless steel back
plate. Boxes with product were placed on the wooden
pallets and on the conveyor platforms.
In the method 1 the size of X-ray converter in scan
direction overlaps the size of packing box with product,
see Fig.1,a. In this method the product was irradiated
with X-ray from two opposite sides by two passes in
front of X-ray converter to obtain the acceptable value
of X-ray absorbed dose uniformity in the product.
In the method 2 the size of two packing boxes with
product overlaps the size of X-ray converter, see
Fig.1,b. It is reached due to disposition of two packing
boxes with product and with two pallets vertically under
each other in EB scan direction. The pallets with product
are located on two horizontal conveyer lines. Two packing
boxes 1 and 2 with product and with pallets will be des-
ignated as the stack of two pallets – bottom pallet (Pal-
let 1) and top pallet (Pallet 2). In this method the stack
was irradiated with X-ray from two opposite sides by
four passes in front of X-ray converter.
ISSN 1562-6016. ВАНТ. 2012. №4(80) 217
Fig.1. Geometrical arrangement of X-ray radiation
facility based on the horizontally oriented EB
accelerator with X-ray converter, cooling system,
moving conveyer with product located on pallets.
Non-divergent scanned EB.
a − Size of X-ray converter in scan direction
overlaps the packing box with product.
b − Size of two packing boxes with product overlaps
the size of X-ray converter. The pallet 1 with product
located on the bottom conveyer, the pallet 2 with
product located on the top conveyer.
c − Stack 1comprise pallet with product 1 and pallet
with product 2, stack 2 − pallet with product 3
and pallet with product 4
Stack of two pallets is rotated on their vertical axis
between each pass. The top and bottom pallets of a
stack are swapped after two passes. A full dose deliv-
ered to the product is divided on some “dose incre-
ment”. A “dose increment” is accomplished by 4 passes
of the pallet through the X-ray field: front-top, back-top,
front-bottom, back-bottom.
Geometrical model of the irradiated product in the
method 3 is modification of the model in method 2, see
Fig.1,c. Two stacks with two pallets and product are
irradiated simultaneously with X-ray. Stack 1 comprise
pallet with product 1 and pallet with product 2, stack 2 −
pallet with product 3 and pallet with product 4.
The irradiation sequence of 4 pallets with product is
as follows: 1. Stack 1 with pallets 1, 2 and Stack 2 with
pallets 3, 4 are rotated on their vertical axis between
each pass in front of X-ray converter. 2. The top and
bottom pallets of stacks are swapped after two passes. 3.
The stack 1 and stack 2 are swapped after four passes. 4.
The operations in points 1 and 2 are repeated.
As a result the product in each pallet was irradiated
with X-ray from two opposite sides by eight passes in
front of X-ray converter.
Such multipass method of product irradiation is of-
ten use in an industrial cobalt-60 gamma ray facility [7].
2. SIMULATION OF COMPLICATED
METHODS OF PRODUCT IRRADIATION
WITH X-RAY
In practice on radiation facility with big power irra-
diators the multipass, multilevel and multisided methods
irradiation of product are used for improvement of qual-
ity and dose uniformity in product irradiated with EB,
X-ray and gamma ray. The comparative analysis of the
absorbed dose mapping in the products irradiated with
X-ray was performed using the programs ModeStXR
and RT-Builder developed by authors. The software
ModeStXR was designed on the base of the RT-Office
modules specially for MC simulation of industrial radia-
tion processes and calculation of the absorbed dose dis-
tribution within products irradiated with stationary or
scanned X-ray beams on radiation facility that is based
on the pulsed or continuous type of electron accelerators
in the energy range from 0.1 to 50 MeV [5]. Irradiated
product is represented in form of stack of plates located
in containers. Simulation of X-ray dose mapping in
multi-layer targets was performed with MC method in a
3-dimensional (3D) geometrical model.
A source of electron beam, a scanner, the X-ray
converter with cooling system, a conveyor line, an irra-
diated product and a package are considered in uniform
self-consistent geometrical and physical models. The
features of realization of a physical and mathematical
models for X-ray processing in the software ModeStXR
are as follows:
• The use of a forced method for process of produc-
ing X-ray on each step of design of electron track in a
construction of the X-ray converter.
• The automatic choice of self-consistent parameters
is used for simulation of an electron-photon shower.
The choice is based on determination a minimum ma-
chine time for obtaining given accuracy. These parame-
ters are the following: cutoff energy for modeling of an
electron track, threshold energy of catastrophic electron-
electron collisions, cutoff energy for modeling of a pho-
ton track, threshold angle of grouping electron collisions
for modeling of scattering.
• The use of both a simple estimation (collision
method) and the special estimation (method of crossing
area) for the dose calculation.
These features allow to reduce the running time of
MC simulation for receiving of the end results in about
hundreds time. At simulation the X-ray dose mapping
а
b
c
ISSN 1562-6016. ВАНТ. 2012. №4(80) 218
the program ModeStXR takes into account in detail a
construction of the radiation facility and requirements to
regimes of irradiation in each specific radiation-
technological process.
The software ModeStXR calculates the dose values
into one pass X-ray irradiated product. In the compli-
cated variant of products irradiation which is realized in
the X-ray processing, the special program RT-Builder
summarizes the absorbed doses distributions calculated
with software ModeStXR in the 3D product for
one/two/four pass/side/level irradiations.
3. RESULTS AND DISCUSSIONS
The computer simulation using Monte Carlo (MC)
method of the dose mapping into irradiated product with
X-ray for two methods of product irradiation was per-
formed. High-energy X-rays are ideal for sterilizing
large packages and pallet loads of medical devices. The
product density range (0.1…0.5) g/cm3 is typical for the
irradiation process of medical devices sterilization. The
product was located in a typical European pallet of
100×120×180 cm with 15 cm wood frame.
X-ray beam was generated by scanned electron beam
with electron energy 7 MeV in the tungsten converter.
Optimal converter construction includes the tungsten
target plate with thickness 1.1 mm, the cooling water
channel – 1.3 mm, and the stainless steel backing plate –
1.0 mm. The efficiency for converting EB power to X-
ray power in the forward direction is approximately
12.9 %. This relatively low efficiency can be compen-
sated by using high-power EBs to produce X-ray dose
rates sufficient for industrial radiation processing.
Irradiation regimes of the polyethylene target with
density in the range (0.1…0.5) g/cm3 were as follows:
EB energy – 7 MeV; EB current – 100 mA; target thick-
ness – 100 cm (axis X); target width in direction of X-
ray scanning – 180 cm (axis Y); target length in direc-
tion of conveyer travel – 120 cm (axis Z); X-ray scan
width (Wscan) – in the range (160…230) cm; non-
diverging X-ray scanning regime; size of wooden pal-
lets in scan direction – 15 cm; conveyer speed – 1 cm/s.
Figs.2,a,b represent the absorbed dose profiles in the
pallet with polyethylene product irradiated with scanned
X-ray beam by 2 passes from opposite sides through the
X-ray field. (See Fig.1,a) Product size is 100 cm (axis
X), 180 cm (axis Y), 120 cm (axis Z). Product density is
0.15 g/cm3. In all volume of irradiated product the dose
uniformity ratio is about DUR=1.7.
Figs.3,a,b represent the absorbed dose profiles in the
pallet with polyethylene product of density 0.15 g/cm3
irradiated with scanned X-ray beam. The pallet irradi-
ated by 4 passes through the X-ray field in accordance
with geometrical model in Fig.1,b. Fig.3,a shows the
dependence in the X-ray dose uniformity from value of
X-ray scan width Wscan in vertical direction. For the
scan width Wscan =200 cm the optimal value of dose
uniformity ratio DUR = Dmax/Dmin is 1.06. The same
tendency is observed for the dose profile in the center of
incident surface (Y, Z) along scan direction. For hori-
zontal X-ray absorbed dose profiles in the cross section
(X,Y) in the product center Z=60 cm the dose uniform-
ity DUR is 1.18, see Fig.3,b.
Fig.2. Vertical and horizontal X-ray absorbed dose
profiles in the pallet with polyethylene product, irradia-
tion by 2 passes through the X-ray field.
a – Vertical X-ray absorbed dose profiles in the product
in scan direction: Curve 1 – product center (X=50 cm).
Curve 2 – product surface (X=0 cm). b – Horizontal
X-ray absorbed dose profiles in the cross section (X, Y),
Z=60 cm. Curve1, Y=90 cm. Curve 2, Y=0 cm.
Scan width Wscan =184 cm
Fig.3. Vertical and horizontal X-ray absorbed dose
profiles in the pallet with polyethylene product, irradia-
tion by 4 passes through the X-ray field. a – X-ray
vertical absorbed dose profiles in the center (X=50 cm)
of polyethylene product for various values of scanning
width Wscan in the range of (160…230)cm.
1 – Wscan =190 cm. 2 – Wscan =200 cm.
3 – Wscan =210 cm. 4 – Wscan =230 cm; b – X-ray hori-
zontal absorbed dose profiles in the cross section (X, Y),
Z=60 cm. Curve1, Y=90 cm. Curve 2, Y=0 cm.
Scan width Wscan = 200 cm
In all volume of irradiated product at scan width
Wscan =200 cm the dose uniformity did not exceed the
value DUR=1.2. That is less in comparison with 2
passes irradiated product, where DUR=1.7.
а
b
b
a
ISSN 1562-6016. ВАНТ. 2012. №4(80) 219
Fig.4. Vertical and horizontal X-ray absorbed dose
profiles in the pallet with polyethylene product
of density 0.15 g/cm3, irradiation by 8 passes through
the X-ray field. a – Vertical X-ray absorbed dose pro-
files in the product in scan direction: Curve 1 – product
center (X=50 cm). Curve 2 – product surface (X=0 cm).
b – Horizontal X-ray absorbed dose profiles in the
cross section (X, Y), Z=60 cm. Curve1, Y=90 cm.
Curve 2, Y=0 cm
Figs.4,a,b represent the absorbed dose profiles in the
pallet with polyethylene product of density 0.15 g/cm3
irradiated with scanned X-ray beam. The pallet irradi-
ated by 8 passes through the X-ray field in accordance
with geometrical model in Fig.1,c. Figs.4,a,b have
shown that vertical and horizontal X-ray absorbed dose
profiles are similar to dose profiles on the Figs.3,a,b. In
all volume of irradiated product the dose uniformity did
not exceed the value DUR=1.15. This value is nearly
the same as for case of four pass irradiated product.
Dependence of dose uniformity ratio in the product
irradiated with X-ray as function of the product density
in the range of (0.1…0.4) g/cm3 is shown in Fig.5.
Curve 1 relates to product irradiated by 2 passes, Curve
2-4 passes, Curve 3-8 passes through the X-ray field
from opposite sides.
Fig.5. Dependence DUR as function of product density
Fig.5 shows the strong dependence of the DUR val-
ues as function of product density in the range of
(0.1…0.4) g/cm3. As it is seen from Figs.2,3,4 and 5,
the value of DUR is greater in product irradiated with
scanned X-ray by two passes from opposite sides in
comparison with method of product irradiation by 4 and
8 passes through the X-ray field. It limits of practical
use the method of product irradiation with scanned X-
ray beam by two passes only in products with small
densities where DUR < 2.
The computer simulation of the dose mapping into
X-ray irradiated product which consists of two pallets
containing different products with different densities
0.1 and 0.3 g/cm³ was performed for two cases: 1) two
pallets were located on two horizontal layers under each
other; 2) two pallets were located on one horizontal
layer with 10 cm lateral air gap between products.
Analysis of simulation results have shown that methods
of product irradiation by 4 and 8 passes allow to irradi-
ate simultaneously the pallets containing various prod-
ucts with different densities and the value of DUR does
not change more than 5 %, which is acceptable for the
X-ray processing.
CONCLUSIONS
The MC computer simulations of the absorbed dose
mapping in the products irradiated with X-ray of various
methods such as 2, 4 and 8 product passes in front of X-
ray irradiator were performed. The following features in
the X-ray the absorbed dose mapping were observed:
• the dependence in the X-ray dose uniformity from value
of X-ray scan width Wscan in the vertical direction;
• the minimum value of dose uniformity ratio for op-
timal value of X-ray scan width Wscan;
• the strong dependence of the DUR values as function
of product density in the range of (0.1…0.4) g/cm3;
• the value of DUR is greater in product irradiated
with scanned X-ray by two passes from opposite
sides in comparison with methods of product irradia-
tion by 4 and 8 passes through the X-ray field;
• the methods of product irradiation by 4 and 8 passes
allow to irradiate simultaneously the pallets contain-
ing different products with different densities and
the value of DUR does not change more than 5%,
which is acceptable for the X-ray processing.
The program ModeStXR can be used as predictive tool:
• for optimization X-ray irradiator construction on
stage of design the X-ray radiation facility;
• for X-ray dose mapping and various methods of
product irradiation;
• on stage of commissioning of new X-ray radiation
facility based on EB accelerator;
• on stage of optimization of radiation facility parame-
ters and regimes irradiation in the specific X-ray
processing;
• at interpretation of predictions for processing results
of dosimetric data;
• at performance of actions and procedures prescribed
with X-ray dosimetric standards and the standards
for process of radiation sterilization;
• for advanced training and educating of the qualified
specialists and students in the fields of the transport
a
b
ISSN 1562-6016. ВАНТ. 2012. №4(80) 220
of ionizing radiation through heterogeneous objects,
in the industrial EB, X-ray radiation technologies
and in the computational EB and X-ray dosimetry.
REFERENCES
1. J. Meissner, M. Abs, M. Cleland, A. Herer,
Y. Jongen, F. Kuntz, A. Strasser. X-ray treatment
at 5 MeV and above // Radiation Physics and
Chemistry. 2000, v.57, р.647-651.
2. Ion Beam Applications Company. Belgium. Pro-
ducer of the Rhodotron EB and X-ray facility.
http:www.iba.com.
3. V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov.
Simulation Tool for Scanning X-Ray Beams Irra-
diator // Proceedings of the Particle Accelerator
Conference (PAC-2003), Portland. OR.USA, 2003,
р.1080-1082.
4. V.T. Lazurik, S.A. Pismenesky, G.F. Popov,
D.V. Rudychev, V.G. Rudychev. An increase of
utilization efficiency of X-ray beam // Radiation
Physics and Chemistry. 2007, v.76, №11, p.1787-
1791.
5. LEONI Studer Hard AG Company, Switzerland.
Owner of the world’s first x-ray sterilization plant
that uses IBA’s new Rhodotron TT-1000 system.
http:www.leoni-studerhard.com
6. V.T. Lazurik, V.M. Lazurik, G. Popov, Yu. Rogov.
Modeling of processes of an irradiation for indus-
trial radiation technologies // Journal of Kharkiv
University. Mathematical modeling. Information
technologies series. 2011, №960, iss.16, p.177-
194.
7. Nordian. Canadian Irradiation Center. Producer of
gamma irradiators. http://www.mdsnordion.com
Статья поступила в редакцию 23.09.2011 г.
СРАВНЕНИЕ ТЕХНОЛОГИИ ОБЛУЧЕНИЯ ПРОДУКЦИИ В ПРОМЫШЛЕННЫХ УСТАНОВКАХ
ТОРМОЗНОГО ИЗЛУЧЕНИЯ
В.Т. Лазурик, В.М. Лазурик, Г.Ф. Попов, Ю.В. Рогов, Г.Э. Саруханян
Приводится сравнение различных технологий облучения продукции тормозным излучением (ТИ), кото-
рое генерируется на промышленных ускорителях электронов большой мощности. Методом компьютерного
моделирования рассчитывается 3-х мерное распределение поглощенной дозы в продукции, расположенной в
контейнерах на движущемся конвейере, и облучаемой сканирующими пучками ТИ. Для различных техноло-
гий облучения продукции ТИ проведено сравнение неоднородности поглощенной дозы в облучаемой про-
дукции. Рассматривались варианты перемещения продукции в контейнерах параллельно плоскости конвер-
тера ТИ от двух до восьми проходов на разных уровнях.
ПОРІВНЯННЯ ТЕХНОЛОГІЇ ОПРОМІНЕННЯ ПРОДУКЦІЇ В ПРОМИСЛОВИХ УСТАНОВКАХ
ГАЛЬМІВНОГО ВИПРОМІНЮВАННЯ
В.Т. Лазурик, В.М. Лазурик, Г.Ф. Попов, Ю.В. Рогов, Г.Е.Саруханян
Наводиться порівняння різних технологій опромінення продукції гальмівним випромінюванням (ГВ), яке
генерується на промислових прискорювачах електронів великої потужності. Методом комп'ютерного моде-
лювання розраховується 3-вимірний розподіл поглиненої дози в продукції, розташованій в контейнерах на
конвеєрі, що рухається, і опромінюваної скануючими пучками ГВ. Для різних технологій опромінення про-
дукції ГВ проведено порівняння неоднорідності поглиненої дози в опромінюваній продукції. Розглядалися
варіанти переміщення продукції в контейнерах паралельно площини конвертера ГВ від двох до восьми про-
ходів на різних рівнях.
|