Neutron irradiation influence on the silicon voltage limiter parameters

The influence of neutron irradiation on breakdown voltage (Ubd) and limitation voltage (Ulim) is investigated in silicon voltage limiter. The coefficient Kρ is basic radiation parameter, forming dependences Ubd = f (F) and Ulim = f (F), which determines the dependence of basic charge carriers concen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2012
Hauptverfasser: Rakhmatov, A.Z., Tashmetov, M.Yu., Sandler, L.S.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/109026
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Neutron irradiation influence on the silicon voltage limiter parameters / A.Z. Rakhmatov, M.Yu. Tashmetov, L.S. Sandler // Вопросы атомной науки и техники. — 2012. — № 5. — С. 81-87. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-109026
record_format dspace
spelling Rakhmatov, A.Z.
Tashmetov, M.Yu.
Sandler, L.S.
2016-11-18T21:07:15Z
2016-11-18T21:07:15Z
2012
Neutron irradiation influence on the silicon voltage limiter parameters / A.Z. Rakhmatov, M.Yu. Tashmetov, L.S. Sandler // Вопросы атомной науки и техники. — 2012. — № 5. — С. 81-87. — Бібліогр.: 17 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/109026
621.315.592
The influence of neutron irradiation on breakdown voltage (Ubd) and limitation voltage (Ulim) is investigated in silicon voltage limiter. The coefficient Kρ is basic radiation parameter, forming dependences Ubd = f (F) and Ulim = f (F), which determines the dependence of basic charge carriers concentration in silicon from neutron fluencies. The mechanisms, which form the Ulim value after neutron irradiation are determined. On basis of obtained results analysis is proposed the model, which makes it possible to forecast changes in the breakdown voltage and limitation voltage, which occur as a result the neutron irradiation of voltage limiter.
Влияние нейтронного облучения на напряжение пробоя (Uпроб) и напряжение ограничения (Uогр) исследовано в кремниевых ограничителях напряжения. Коэффициент Kρ является основным радиационным параметром, формирующим зависимости Uпрб = f(Ф) и Uогр = f(Ф) и определяющим зависимость концентрации основных носителей заряда в кремнии от флюенса нейтронов. Определены механизмы, формирующие величину Uогр после нейтронного облучения. На основе анализа полученных результатов предложена модель, позволяющая прогнозировать изменения напряжения пробоя и напряжения ограничения, которые происходят в результате нейтронного облучения ограничителя напряжения.
Вплив нейтронного опромінення на напругу пробою (Uпроб) і напругу обмеження (Uобм) досліджено в кремнієвих обмежувачах напруги. Коефіцієнт Kρ є основним радіаційним параметром, що формує залежності Uпрб = f(Ф) і Uогр = f(Ф) і визначає залежність концентрації основних носіїв заряду в кремнії від флюенса нейтронів. Визначені механізми, що формують величину Uобм після нейтронного опромінення. На основі аналізу отриманих результатів запропонована модель, що дозволяє прогнозувати зміни напруги пробою і напруги обмеження, які відбуваються в результаті нейтронного опромінення обмежувача напруг
The authors are grateful to Prof. Karimov M, Dr. Tursunov N. and Mr. Ismatov N. to work results discussion. Work is executed within the framework of F2-FA-0- 11372 grant of Committees on Coordination of Development Sciences and Technology.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Материалы реакторов на тепловых нейтронах
Neutron irradiation influence on the silicon voltage limiter parameters
Влияние нейтронного облучения на параметры кремниевых ограничителей напряжения
Вплив нейтронного опромінення на параметри кремнієвих обмежувачів напруги
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Neutron irradiation influence on the silicon voltage limiter parameters
spellingShingle Neutron irradiation influence on the silicon voltage limiter parameters
Rakhmatov, A.Z.
Tashmetov, M.Yu.
Sandler, L.S.
Материалы реакторов на тепловых нейтронах
title_short Neutron irradiation influence on the silicon voltage limiter parameters
title_full Neutron irradiation influence on the silicon voltage limiter parameters
title_fullStr Neutron irradiation influence on the silicon voltage limiter parameters
title_full_unstemmed Neutron irradiation influence on the silicon voltage limiter parameters
title_sort neutron irradiation influence on the silicon voltage limiter parameters
author Rakhmatov, A.Z.
Tashmetov, M.Yu.
Sandler, L.S.
author_facet Rakhmatov, A.Z.
Tashmetov, M.Yu.
Sandler, L.S.
topic Материалы реакторов на тепловых нейтронах
topic_facet Материалы реакторов на тепловых нейтронах
publishDate 2012
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Влияние нейтронного облучения на параметры кремниевых ограничителей напряжения
Вплив нейтронного опромінення на параметри кремнієвих обмежувачів напруги
description The influence of neutron irradiation on breakdown voltage (Ubd) and limitation voltage (Ulim) is investigated in silicon voltage limiter. The coefficient Kρ is basic radiation parameter, forming dependences Ubd = f (F) and Ulim = f (F), which determines the dependence of basic charge carriers concentration in silicon from neutron fluencies. The mechanisms, which form the Ulim value after neutron irradiation are determined. On basis of obtained results analysis is proposed the model, which makes it possible to forecast changes in the breakdown voltage and limitation voltage, which occur as a result the neutron irradiation of voltage limiter. Влияние нейтронного облучения на напряжение пробоя (Uпроб) и напряжение ограничения (Uогр) исследовано в кремниевых ограничителях напряжения. Коэффициент Kρ является основным радиационным параметром, формирующим зависимости Uпрб = f(Ф) и Uогр = f(Ф) и определяющим зависимость концентрации основных носителей заряда в кремнии от флюенса нейтронов. Определены механизмы, формирующие величину Uогр после нейтронного облучения. На основе анализа полученных результатов предложена модель, позволяющая прогнозировать изменения напряжения пробоя и напряжения ограничения, которые происходят в результате нейтронного облучения ограничителя напряжения. Вплив нейтронного опромінення на напругу пробою (Uпроб) і напругу обмеження (Uобм) досліджено в кремнієвих обмежувачах напруги. Коефіцієнт Kρ є основним радіаційним параметром, що формує залежності Uпрб = f(Ф) і Uогр = f(Ф) і визначає залежність концентрації основних носіїв заряду в кремнії від флюенса нейтронів. Визначені механізми, що формують величину Uобм після нейтронного опромінення. На основі аналізу отриманих результатів запропонована модель, що дозволяє прогнозувати зміни напруги пробою і напруги обмеження, які відбуваються в результаті нейтронного опромінення обмежувача напруг
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/109026
citation_txt Neutron irradiation influence on the silicon voltage limiter parameters / A.Z. Rakhmatov, M.Yu. Tashmetov, L.S. Sandler // Вопросы атомной науки и техники. — 2012. — № 5. — С. 81-87. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT rakhmatovaz neutronirradiationinfluenceonthesiliconvoltagelimiterparameters
AT tashmetovmyu neutronirradiationinfluenceonthesiliconvoltagelimiterparameters
AT sandlerls neutronirradiationinfluenceonthesiliconvoltagelimiterparameters
AT rakhmatovaz vliânieneitronnogooblučeniânaparametrykremnievyhograničiteleinaprâženiâ
AT tashmetovmyu vliânieneitronnogooblučeniânaparametrykremnievyhograničiteleinaprâženiâ
AT sandlerls vliânieneitronnogooblučeniânaparametrykremnievyhograničiteleinaprâženiâ
AT rakhmatovaz vplivneitronnogoopromínennânaparametrikremníêvihobmežuvačívnaprugi
AT tashmetovmyu vplivneitronnogoopromínennânaparametrikremníêvihobmežuvačívnaprugi
AT sandlerls vplivneitronnogoopromínennânaparametrikremníêvihobmežuvačívnaprugi
first_indexed 2025-11-26T01:42:41Z
last_indexed 2025-11-26T01:42:41Z
_version_ 1850604818349948928
fulltext ISSN 1562-6016. ВАНТ. 2012. №5(81) 81 Раздел третий КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ РЕАКТОРОВ НОВЫХ ПОКОЛЕНИЙ, РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ И ТЕРМОЯДЕРНЫХ УСТАНОВОК UDC 621.315.592 NEUTRON IRRADIATION INFLUENCE ON THE SILICON VOLTAGE LIMITER PARAMETERS A.Z. Rakhmatov1, M.Yu. Tashmetov2, L.S. Sandler1 1JSC Photon, 100047, Tashkent; 2Institute of Nuclear Physics of the AS of RUz, 100214, Tashkent, s. Ulugbek The influence of neutron irradiation on breakdown voltage (Ubd) and limitation voltage (Ulim) is investigated in silicon voltage limiter. The coefficient Kρ is basic radiation parameter, forming dependences Ubd = f (F) and Ulim = f (F), which determines the dependence of basic charge carriers concentration in silicon from neutron fluencies. The mechanisms, which form the Ulim value after neutron irradiation are determined. On basis of obtained results analysis is proposed the model, which makes it possible to forecast changes in the breakdown voltage and limitation voltage, which occur as a result the neutron irradiation of voltage limiter. INTRODUCTION In view of continuous enhancement of radio- electronic equipment (REE), increase in the number of carried out functions and decided tasks, the requirements for its reliability and failure-free operation sharply grew. One of the basic factors which decreases reliability and failure-free performance of REE is the influence of unregulated electric pulses such as atmospheric electricity, powerful switching noise, etc. Therefore the guaranteed protection of radio-electronic equipment (or its separate elements) of the influence of such pulses is one of the basic ways of its reliability growth. The overwhelming majority of known protection ways is that at the moment of action of “dangerous” electric pulse the protective element "cut away” the peaks of voltage pulses up to a safe level, and so the excess electrical energy is dissipated on protective element. One of perspective protective elements is the semiconductor voltage limiter (VL); it is the semiconductor diode, where the most important parameter is limiting voltage (Ulim). The voltage is the maximum voltage which provides overpowers protection of the REE [1]. If Ulim > 20 V one can consider that the avalanche breakdown of p-n junction [2] is the basic mechanism forming the Ulim value. In this case one of the parameters characterizing VL should be also avalanche breakdown voltage (Ubd). Ubd is the voltage since which voltage limiting at protected REE (or its element) begins. Limiting voltage (Ulim) and avalanche breakdown voltage are connected by the relation: lim lim ( ) , (1)bd dif serU U I R R= + + where Ilim is the current passing through VL when the overvoltage pulse appears; Rdif and Rser - differential and series resistances of VL, respectively. This current value characterizes of the excess electrical energy dissipated on VL in the “limitation” regime which does not lead of VL parameters to destruction or degradation. VL is in so-called “waiting” mode in the absence of an overvoltage pulse. The reverse voltage (Urev) is fed to VL which equal to working voltage of the protected REE (or its element). Apriori Urev <Ubd, and reverse current (Irev) of VL at this voltage characterizes power losses in VL when working in "waiting" mode. It is evident that the dependence of the VL parameters on the external influencing factors (EIF) (the most important of which are ambient temperatures [2, 3, 4] and radiation) defines its efficiency as an element of electrical circuit under the actual conditions of REE operation. Radiation influence on Ubd and Irev of rectifier diode and stabilitron is described in variety of works (for example [5-8]). At the same time radiation influence on Ulim and connection of this parameter with Ubd are not investigated practically. First of all it concerns neutron radiation which is the strongest factor influencing on semiconductors and semiconductor devices parameters. The present work is dedicated to study of neutron irradiation influence on limiting voltage and its connection with breakdown voltage under radiation influence. INVESTIGATED SAMPLES AND EXPERIMENTAL TECHNIGUE The VL were studied with voltage limitation Ulim = 50 V. The construction of the investigated VL is schematically shown in Fig. 1 (two-layered protection of crystal surface by organic materials is not shown). The schematic construction of the active part of the voltage limiter crystals used in the experiment, some of its geometric dimensions (in millimeters) are presented in Fig. 2. Detail description of crystal making technology basic principles for the VL is given in [2]. The most important physical characteristics of the VL structure and technological regimes fabrication will be given. 82 ISSN 1562-6016. ВАНТ. 2012. №5(81) Fig. 1. VL construction (schematic) They are the following: – the area of p-n junction is ~ 9.3·10-2 cm2; – for crystal VL making n- type silicon with specific resistance of 0.3 Ohm·cm was used; – p+ and n+ layers were created by the boron and phosphorus diffusion, respectively; – diffusion was carried out by the package method [2] at (1250 ± 5) ºC during 1 h. At this diffusion method the distribution of the diffusing admixture is obeyed to the errors addition function [2]. Fig. 2. VL crystal construction (schematic) The calculations carried by formulas [9] and initial data [2, 9] (diffusion coefficients, surface concentrations) showed that: – p-n junction occurrence depth Xj (boron diffusion depth) is ~ (37±1) μm; – concentration gradient of impurity which crea-tes p-n junction at x= Xj is ~ (1.0±0.2)·1020 cm-4; – n-n junction occurrence depth (phosphorus diffusion depth) is ~ 45 μm. Neutron irradiation of samples was carried out at the research reactor. Neutron fluence dosimetry was realized by the sulfuric indicators 32S (E > 3 MeV) followed by reduction (using reactor spectrum) to the neutrons fluence with the E ≥ 100 keV energy. The average neutrons energy was ~ 1.5 MeV and dosimetry error − ± 20 %. Ubd, Ulim, Irev and voltage dependence of barrier capacity (volt-farad characteristics) were measured at VL before and after radiation. Ubd was measured in accordance with the State Standard 18986.2 by the bend of voltage-current characteristic (under sharp decrease of differential resistance and the reverse currents which exceed Irev not less than 10 times over the prebreakdown region). Ulim was measured in accordance with the procedure described in [1] by compensation method with the error not more than 5 %; the current Ilim was 50 A. Irev was measured according to the State Standard 18986.1 under the assigned reverse voltage with the error not exceed 5 %. The barrier capacity from voltage dependence (volt-farad characteristics) at investigated VL was measured by bridge method at the 1 MHz frequency according to the State Standard 18986.4 with the error not more than 5 %. The samples (selection consisted of 20 VL) were irradiated and the mentioned parameters were measured. For reactor time economy and reduction of the reactor startup number the sample selection were divided into 5…6 groups (by 3…4 VL). Each sample group was irradiated into two stages (by two neutron fluxes) followed by measurement of parameters after each irradiation stage. For the analysis of parameters dependence from neutron fluence (Φ) the average values of the parameters were used. The VL experimental parameters values were processed by the least-squares method. Obtained graphic dependences, their analytic equations (y = f (x)), quantity coefficient of approximation (R2) and experimental points are given in all subsequent figures. BASIC RESULTS AND DISCUSSION The ln [Ubd(Φ / Ubd(0)] = f(Φ) and ln [Ulim(Φ) / Ulim(0)] = f (Φ) dependences are presented in Fig. 3. Fig. 3. Neutron fluence dependences of avalanche breakdown voltage and limiting voltage: 1 – ln[Ubd(Φ / Ubd(0)] = f (Φ); 2 – ln[Ulim(Φ)/Ulim(0)] = f (Φ) From the figure one can see that the dependences are straight lines with sufficiently high (R2 ≥ 0.9) reliability of approximation and, therefore, for investigated VL the relations Ubd(Φ) / Ubd(0) and Ulim(Φ) / Ulim(0) exponentially depend on the neutron fluence: 1( ) (0 ) ( ), ( 2 )b d b dU Ф U ехр К Ф= lim lim 2( ) (0) ( ), (3)U Ф U ехр К Ф= where K1 and K2 – coefficients which are determined by slope of lines in Fig. 3 are represented in table1. Table 1 K1, cm2 K2, cm2 6.3·10-17 7.1·10-17 So, K1 and K2 values are near each other and are distinguished less than 10 %. Themselves the values of breakdown voltage change on ~ 12…13 % and of limiting voltage on ~ 20…23 % even at the maximum neutron flux (~ 2·1015 cm-2). In Fig. 4 the ln [Ubd(Φ)/Ubd(0)] = f (Φ) dependence, built according to experimental data, is presented. Fig. 4 shows that the Ubd dependence on neutron fluence Φ is exponential y = 7.1·10-17x R2 = 0.96 ln [U bd (Ф )/ U bd (0 ) ln [U lim (Ф )/ U lim (0 ) Ф, 1015 cm-2 y = 6.3·10-17x R2 = 0.94 ISSN 1562-6016. ВАНТ. 2012. №5(81) 83 nature which is typical [6, 7]. K1 coefficient value in exponent and its independence of specific resistance of silicon which is used for creation of p-n junction, and from the structure is novel (within certain degree): according to [6, 7] this coefficient is K1 = 0.75 Kρ, where Kρ is a constant of the specific resistance change of semiconductor under radiation influence. Fig. 4. The dependence of ln [Ubd(Φ) / Ubd(0)] = f (Φ) It is known [5, 6, 10] that if neutron irradiation weakly influences on carriers mobility the relation occurs: 0 / ,dn dФK nρ = (4) where dn/dΦ – carriers removal rate; n0 – initial concentration of equilibrium basic current carriers. In accordance with [6], for the initial silicon specific resistance of ρ0 ~ 2 Ohm·cm (n0 ~ 2.5·1015 cm-3) dn/dΦ can be within the limits of 1.5…4 cm-1. In this case the coefficient Kρ must be ~ (1.1±0.5)·10-15 cm2 and, therefore, according to [6,7] the coefficient K1 must be ~ (0.8±0.4)·10-15 cm2. But for the investigated VL samples this value is approximately by an order less and is ~ 6.6·10-17 cm2 (Fig. 5). It is the most probable that such discrepancy in the K1 value is related to the fact that in the works [6, 7] the sharp p-n junctions were investigated but in the present work the p-n junctions with the linear distribution of impurity in the base (Fig. 5, curve 1) are examined. The mentioned reason for discrepancy is probable sufficient because the authors [5] showed that for the diffusion p-n junctions Ubd practically does not change under irradiation, and they explained this effect by fact that at the large reverse voltages the quasi Fermi level in the space charge region of p-n junction falls below energy of the deep acceptor levels injected by irradiation. As a result the ionization degree of these deep levels becomes negligible and the properties of the space charge region are determined only by ionized initial donors and acceptors. However in the mentioned work the quantitative data were not given which confirm both the explanation and statement about the Ubd (Φ) weak dependence of diffusion diodes. Therefore the mechanisms will be considered in more detail which form the dependences described by formulas (2) and (3). According to [3, 11, 12], the avalanche breakdown voltage of p-n junction is directly related to the width of space charge region (SCR) of the p-n junction: [ ]~ ( ) ,m bd bdU Uω (5) where ω (Ubd) – VCR width at the reverse voltage equal to Ubd; m – exponent equal to ~ 0.84 [11, 12]. Dependence (5), given in the literature, relates to the p-n junctions which were not being exposed to irradiation. It is very interesting to determine possibility of existence of similar dependence in the p-n junctions which were neutron irradiated. Note that the characteristics of the space charge region can undergo sufficiently noticeable changes as a result of radiation exposure. It is illustrated by Fig. 5: in this figure the typical volt-farad characteristics (VFCh) of the VL before and after irradiation are presented on the log-log scale [13]: 2 2 0 2 ln(( ) / 8 ) , 3d i kT kTU a qn q q εε= (6) where Ud – gradient potential; k – Boltzmann constant; T – absolute temperature; q – electron charge; a – impurity gradient which creates p-n junction; ε – silicon dielectric constant; ni – intrinsic concentration of carriers in silicon. Fig. 5 shows that before irradiation the barrier capacitance of p-n junctions in VL is proportional to ~ U-0.33 (where U – reverse voltage), which is typical for linear p-n junction [13]. Fig. 5. Volt-farad characteristics of VL: 1 – before and 2, 3 – after irradiation with neutron fluence of 7·1014 and 2·1015 cm-2, accordingly But after irradiation exponent has a tendency to decreasing. At increasing reverse voltage the slope angle of the lg [C (Φ)] - lg (U+Ud) dependences after irradiation approximates to the slope angle of these dependences before irradiation. ln[ω(Ф)/ω(0)] = f(Ф) (if Urev ≈ Ubd) dependence is presented in Fig. 6. Fig. 6. Dependence of ω(Ф)/ω(0) ratio on neutron fluence y = 6.3·10-17x R2 = 0.94 ln [U bd (Ф )/ U bd (0 )] y = 6.6·10-17x R2 = 0.91 Ф, 1015 cm- y =-0.33x+3.1 R2 = 1.0 Ф, 1015 cm-2 y=7.1·10-17x R2 = 0.98 ln [ω (Ф )/ω (0 )] 84 ISSN 1562-6016. ВАНТ. 2012. №5(81) It is possible to see that for the studied VL the next relation is carried out with quite large reliability (R2 ≈ 1): ( ) (0 ) ( ),Ф ехр КФω ω= (7) where K – the coefficient equal to 7.1·10-17 cm2 (Urev ≈ Ubd). Dependence (7) is general for the studied type of VL and the obtained graph is described well by formula: -17( ) (0) (7,1·10 ).Ф ехр Фω ω= (8) Using data given in Fig. 4 and 6 it is possible to build the dependence Ubd(Ф)/Ubd (0) = f(ω(Ф)/ω(0)) (if Urev≈ Ubd) which on the log-log scale is given in Fig. 7. It follows from this figure that after irradiation, in spite of a change in the structure of diffusion p-n junction, the avalanche breakdown voltage also obey of the universal dependence (5) with the quite large reliability (R2 = 0.91), and therefore this formula may be used for calculating Ubd after irradiation. It is of certain interest to confirm the experimental dependence (8) by calculations. Fig. 7. Dependence of ratio Ubd(Φ)/Ubd(0) on ratio ω(Ф)/ω(0) At that let us assume that both before irradiation, in entire range of reverse voltages, and after irradiation at the rather high reverse voltages (U ~ Ubd) of the SCR width can be calculated by the known formula for the graded p-n junction [13]: 1 3 012 ( ) ,dU U qa εε ω +⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (9) where a − impurity gradient which creates p-n junction. If to consider that the p-n junction is formed by linear distribution of impurity: N0(x) = ax, then after irradiation, according to [5, 6, 10], this dependence is: 0( , ) ( )exp( ),N x Ф N x K Фρ= − (10) where Кρ – coefficient determined for the linear junction; x – depth of impurity arrangement (depth of the p-n junction position); 0,77 1( ) , ( ) K x k axρ = (11) where k – number which for n- type silicon varies from 387 to 3300 depending on the specific resistance and neutron spectrum [10]. Differentiating (10) by the «х» coordinate we obtain: ( , ) (1 0.77 )exp( ).dN x Ф a K Ф K Ф dx ρ ρ= + − (12) If 0,77КρФ < 1 (it is not difficult to see that this condition is carried out practically for entire range of neutron fluences used in the experiment), then: ( , ) exp( 0.23 ).dN x Ф a K Ф dx ρ= − (13) Using (13) and (7), it is easy to obtain: ( ) exp(0.077 ) (0) Ф K Фρ ω ω = (14) at that Urev≈ Ubd. By comparing (8) and (14) one can see that these exponential dependences are identical and experimental value of the coefficient is Кρ ≈ 0.9·10-15 см2. In this case the question arises: to what initial (before the irradiation) carriers concentration can be related this coefficient value. In our opinion, it should be related to the average carrier concentration that forms of VCR width of in n-region (ωn). In the first approximation the average carriers concentration is equal to ~n(ωn)/2, where ωn is VCR width in the n- region. The results of ω, ωn, n(ωn) and Кρ calculation are presented in table 2. Table 2 Name of calculated value Calculation result for VL with Urev ≈ 50 V Calculation procedure Total width of VCR (ω), cm 2.5·10-4 [14] Width of VCR in n-region (ωn), cm 1.36·10-4 [14] Carriers concentration (ωn), cm-3 8.2·1015 [12] Average concentration of main carriers in ωn, cm-3 4.1·1015 nav = n(ωn)/2 Carriers removal rate, cm-1 3.7 By formula (4) at carriers removal rate of 2.5 cm-1 As can be seen from the calculation results (table 2), the values of the carriers removal rate, obtained from the experimental dependence ω (Ф) (Fig. 6 and formula (8)) and also from its design model expressed by the formula (14), it is very close to the value Кρ given at [5] for the value of the carriers removal rate of 1…4 cm-1. This value lies inside the interval of its possible values. So, formula (14) may be used in practice for calculating the ω(Ф) dependence and its following application for calculation and predicting the dependence Ubd = f(Ф) according to formula (5). Let us consider in more detail the dependence of limiting voltage (Ulv) upon neutron fluence. In accordance with formula (1) the value of this parameter is related by linear dependence with breakdown voltage, lg [U bd (Ф )/ U bd (0 )] lg [ω(Ф)/ω(0)] y=0.85x R2 = 0.91 ISSN 1562-6016. ВАНТ. 2012. №5(81) 85 differential resistance of p-n junction in limitation regime and series resistance of semiconductor structure in this regime. As already mentioned, the limitation regime is characterized by the current of Ilim = 50 А for VL. Аpriori one can state that in this case the p-n junction is located in “deep” breakdown, and in accordance with the Miller formula [9]: 1 lim 1 , C R bd I UM I U − ⎛ ⎞⎛ ⎞ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ (15) where M − coefficient of carriers multiplication; C = 5 for the silicon p-n junction; IR − reverse current of p-n junction if U << Ubd . We will obtain from (15) that: 1 lim lim lim lim . С С bd R dif R U I I R C I I I I − ⎛ ⎞⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠ (16) For the considered regime of limitation and for real values of reverse currents in the waiting regime (IR ≤ 5·10-5 A) we obtain that Rdif ≈ 10-5 Ohm and so in the formula (1) the Rdif value can be neglected. As regards the value of series resistance (Rser) (in formula (1)), it consists of two parts [16]. The first part is resistance the part of SCR in which impact ionization does not occur. This part is named “transit-time region” and, in accordance with [15], its resistance (Rttr) is determined by the relation: 2 0 ( ) , 2 m ttr sat R SV ω ω εε − = (17) where ωm – width of the part of VCR in which impact ionization occurs, S-area of p-n junction; Vsat – saturation rate of carriers in silicon, which, in accordance with [14], is 107 cm/s. The second part is the ohmic resistance of neutral base of VL: ,nb base nb d R S ω ρ − = (18) where ρnb – specific resistance and dnb – width of neutral base. Note that ωm value calculating for the diffusion p-n junctions is realized by various expressions for each concrete case but the results of ωm calculating are single-valued for the sharp p-n junctions [16]. At the same time taking into account that Rdif and, therefore, voltage drop across the ωm section is negligibly little, it follows from formula (1): lim lim ( ) ,bd base ttrU U I R R− = + (19) where Rbase and Rttr are determined by formulas (17) and (18), respectively. According to formulas (17–19), using initial (before irradiation) experimental values of Ulim – Ubd, the values of SCR width ω (for U≈Ubd]) calculated by formula (9), the neutral base width (dnb) and its specific resistance (ρbase), one can calculate the ωm value. Calculation gave ωm≈1.3·10-4 cm. It is interest to note that in [16] for sharp p-n junctions it is obtained ωm≈ 0.5·10-4; at that the p-n junctions have been prepared using silicon with the same initial specific resistance (~0.3 Ohm·cm) that the investigated VL. The fact that the length of avalanche multiplication region in the smooth p-n junctions is larger than in the sharp ones is completely regular, and it, in our opinion, confirms reliability of the obtained values of ωm for the VL structures under study. Subsequently we will consider that the ωm value does not depend upon irradiation. In this case Rttr (17) depends on irradiation only because during irradiation, in accordance with formula (14), value ω changes. In the table 3 the results of the voltage drop calculation at the transit-time part of SCR in dependence on neutron flux (Φ) at the current Ilim are presented. Table 3 Neutron flux (Φ), сm-2 Voltage drop at the transit-time part (Uttr),V 0 0.7 1.0·1014 0.72 3.5·1014 – 7.3·1014 0.85 1.3·1015 0,93 1.6·1015 – 2.0·1015 1.1 2.5·1015 1.2 Using calculation data given in table 3 and experimental dependences Ubd(Ф) and Ulim(Ф) (Fig. 3) it is possible to find the dependence of voltage drop at neutral base (Ubase) on neutron fluence: lim lim ( ) ( ) ( ) ( ) ( ). base base bd ttr U Ф I R Ф U Ф U Ф U Ф = = = − − (20) The dependence ln[Ubase(Ф)/Ubase(0)] on neutron fluence (Ф) is presented in Fig. 8. The similar method of the dependence representation permits to exclude the poorly controlled values of dnb and ω and to bring them to the dependence ρbase(Ф)/ρbase(0) by (18). Fig. 8 shows that for the investigated VL the relation Ubase(Ф)/Ubase(0) and consequently the relation ρbase(Ф)/ρbase(0) exponentially depend on neutron flux. ln [U ba se (Ф )/ U ba se (0 )] y=3.8·10-16x R2 = 0.96 Ф, 1015 cm-2 86 ISSN 1562-6016. ВАНТ. 2012. №5(81) Fig. 8. Dependence Ubase(Ф)/Ubase(0) on neutron fluence At that, for the VL Kρ = 3.8·10-16 cm2. This value of the coefficient Kρ corresponds to the carriers removal rate under neutron irradiation (4) which is 7.6 cm-1 for n-type silicon used when making VL with ρbase ≈ 0.3 Ohm·cm. This carriers removal rate value is sufficiently near literature data [17]: dn/dФ ≈ 9 cm-1 for silicon with ρ ≈ 0.3 Ohm·cm, and it permits to consider that the proposed calculation procedure can be used for predicting of the radiation resistance Ulim – the most important parameter of VL. It is reasonable that for the similar prediction it is necessary the knowledge of the structure of p-n junction of VL, the electro physical properties of silicon on which it is prepared and also the Kρ value of used silicon (or the carriers removal rate under irradiation). CONCLUSIONS As a result of study of neutron irradiation influence on the breakdown voltage (Ubd) and the limiting voltage (Ulim) of the silicon voltage limiters the following is established: – the experimental dependences Ubd = f(Ф) and Ulim = f(Ф) for VL with the 50 V limiting voltage before irradiation are obtained; – it is shown that the relation Ubd(Ф)/Ubd(0) practically does not depend on the breakdown voltage value of VL before irradiation; – it is shown that in the relation Ubd(Ф)/Ubd(0) ≈ [ω (Ф) / ω (0)]m (if Urev ~ Ubd) the exponent “m” does not change after irradiation and is equal to ~ 0.84; – it is shown that the coefficient Kρ is the basic radiation parameter which forms the dependences Ubd = f(Ф) and Ulim = f(Ф) which determines the dependence of the concentration of basic charge carriers in silicon on neutron fluence; – mechanisms which form the Ulim value after irradiation are determined; – the model is suggested and is calculated which takes into account “smoothness” of the investigated p-n junctions and which makes it possible to predict changes in the breakdown voltage and limiting voltage which occur as a result of neutron irradiation of VL. The authors are grateful to Prof. Karimov M, Dr. Tursunov N. and Mr. Ismatov N. to work results discussion. Work is executed within the framework of F2-FA-0- 11372 grant of Committees on Coordination of Development Sciences and Technology. REFERENCES 1. Certificate СМО.012.018 for a method of limiting voltage measurement. Novosibirsk, 1989, р. 19. 2. A.Z. Rahmatov. Development of physics-technical bases of obtaining the silicon voltage limiters: Authors abstract of dissertation on competition of a scientific degree of a Cand. Tech. Sci. Tashkent, 2008, р. 31 (in Russian). 3. N.V. Grekhov, Yu.N. Seryozhkin. Avalanche breakdown of p-n junction in semiconductors // Energy. 1980, р. 57-60 (in Russian). 4. P.V. Akimov, N.V. Grekhov, Yu.N. Seryozhkin. Temperature dependence of avalanche breakdown voltage of diods // Fizika i tehnika poluprovodnikov. (Russian Journal of Physics and Techniques of Semiconductors). 1975, v. 9, р. 69-71. 5. V.M. Kulakov, E.A. Ladygin, V.I. Shahovtsov, E.N. Vologdin, Yu.N. Andreev. Penetrating radiation action on production of electronic techniques // Sovetskoe radio. 1980, р. 126 (in Russian). 6. F.P. Korshunov, G.V. Gatal`sky, G.M. Ivanov. Radiation effects in semiconductor devices // Nauka i tehnika. 1978, p. 68-71 (in Russian). 7. L.I. Kuzovkina, V.I. Dedosov, E.V. Lapshina, G.V. Melnik, N.A. Spiridonova. Radiation influence to semiconductor // Fizika i tehnika poluprovodnikov. (Russian Journal of Physics and Techniques of Semiconductors). 1975, v. 9, №11, p. 1168-1170 (in Russian). 8. A.Z. Rahmatov, M.Yu. Tashmetov, L.S. Sandler. Influence of penetrating radiation on parameters of silicon planar high-frequency high-voltage rectifier diode // Voprosy atomnoy nauki i tehniki. 2011, №4, p. 26-30 (in Russian). 9. E.Z. Mazel, F.P. Press. Planar technology of silicon devices. M.: “Energy”, 1974, p. 109-111 (in Russian). 10. P. Buechler. Proced. IEEE. Silicon semiconductor. 1968, v. 56, №10, p. 111-112. 11. A. Bliher. Physics of power bipolar and field transistors. Leningrad: “Energoatomizdat”, 1984, p. 33 (in Russian). 12. R.M. Warner, B.G. Grund. Semiconductor- Device Electronics. Holt, Reinhart and Winston, United Kingdom, 1991, p. 103. 13. Zi S. Physics of semiconductor devices. Book 1. M.: “Mir”, 1984, p. 89 (in Russian). 14. H. Lawrence, R.M. Warner. Diffused junction depletion layer calculations // Bell System Techn. J. 1960, v. 39, №2, p. 389-403. 15. L. Rossado. Physical electronics and microelectronics. M.: “Vysshaya Shkola”, 1991, p. 321-323 (in Russian). 16. Zi S. Physics of semiconductor devices. Book 2. M.: “Mir”, 1984, p. 161-165 (in Russian). 17. R.J. Gutman, J.M. Borrego, M. Gandxi. Irradiation influence on properties of over high- frequency diodes // ТIIER. 1974, v. 62, №19, p. 88-98. Статья поступила в редакцию 28.05.2012 г. ISSN 1562-6016. ВАНТ. 2012. №5(81) 87 ВЛИЯНИЕ НЕЙТРОННОГО ОБЛУЧЕНИЯ НА ПАРАМЕТРЫ КРЕМНИЕВЫХ ОГРАНИЧИТЕЛЕЙ НАПРЯЖЕНИЯ А.З. Рахматов, М.Ю. Ташметов, Л.С. Сандлер Влияние нейтронного облучения на напряжение пробоя (Uпроб) и напряжение ограничения (Uогр) исследовано в кремниевых ограничителях напряжения. Коэффициент Kρ является основным радиационным параметром, формирующим зависимости Uпрб = f(Ф) и Uогр = f(Ф) и определяющим зависимость концентрации основных носителей заряда в кремнии от флюенса нейтронов. Определены механизмы, формирующие величину Uогр после нейтронного облучения. На основе анализа полученных результатов предложена модель, позволяющая прогнозировать изменения напряжения пробоя и напряжения ограничения, которые происходят в результате нейтронного облучения ограничителя напряжения. ВПЛИВ НЕЙТРОННОГО ОПРОМІНЕННЯ НА ПАРАМЕТРИ КРЕМНІЄВИХ ОБМЕЖУВАЧІВ НАПРУГИ А.З. Рахматов, М.Ю. Ташметов, Л.С. Сандлер Вплив нейтронного опромінення на напругу пробою (Uпроб) і напругу обмеження (Uобм) досліджено в кремнієвих обмежувачах напруги. Коефіцієнт Kρ є основним радіаційним параметром, що формує залежності Uпрб = f(Ф) і Uогр = f(Ф) і визначає залежність концентрації основних носіїв заряду в кремнії від флюенса нейтронів. Визначені механізми, що формують величину Uобм після нейтронного опромінення. На основі аналізу отриманих результатів запропонована модель, що дозволяє прогнозувати зміни напруги пробою і напруги обмеження, які відбуваються в результаті нейтронного опромінення обмежувача напруги.