The dynamics of inductively accelerated electrons in the U-3M torsatron

Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Tarasov, M.I., Tarasov, I.K., Sitnikov, D.A., Pashnev, V.K., Goncharov, I.G., Listopad, V.M., Lymar, N.V., Shtan’, A.F., Solodovchenko, S.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/109092
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-109092
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1090922025-02-09T14:08:09Z The dynamics of inductively accelerated electrons in the U-3M torsatron Динамика индукционно-ускоренных электронов в торсатроне У-3М Динаміка індукційно-прискорених електронів у торсатроні У-3М Tarasov, M.I. Tarasov, I.K. Sitnikov, D.A. Pashnev, V.K. Goncharov, I.G. Listopad, V.M. Lymar, N.V. Shtan’, A.F. Solodovchenko, S.I. Магнитное удержание Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried out. Получены дополнительные экспериментальные данные о динамике потока убегающих электронов в торсатроне Ураган-3М. Произведены измерения синхротронного и СВЧ-излучения потока, получены результаты измерений тока потока и напряжения на обходе стелларатора. Кроме того, проведены эксперименты по стимуляции потока убегающих электронов. Отримано додаткові експериментальні дані щодо динаміки потоку утікаючих електронів у торсатроні Ураган-3М. Проведено вимірювання синхротронного та НВЧ-випромінювання потоку, отримано дані вимірювань струму потоку та напруги на обході стеларатора. Проведено експерименти зі стимуляції потоку утікаючих електронів. 2012 Article The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.59.Rz, 52.70.Nc, 52.70 La https://nasplib.isofts.kiev.ua/handle/123456789/109092 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Tarasov, M.I.
Tarasov, I.K.
Sitnikov, D.A.
Pashnev, V.K.
Goncharov, I.G.
Listopad, V.M.
Lymar, N.V.
Shtan’, A.F.
Solodovchenko, S.I.
The dynamics of inductively accelerated electrons in the U-3M torsatron
Вопросы атомной науки и техники
description Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried out.
format Article
author Tarasov, M.I.
Tarasov, I.K.
Sitnikov, D.A.
Pashnev, V.K.
Goncharov, I.G.
Listopad, V.M.
Lymar, N.V.
Shtan’, A.F.
Solodovchenko, S.I.
author_facet Tarasov, M.I.
Tarasov, I.K.
Sitnikov, D.A.
Pashnev, V.K.
Goncharov, I.G.
Listopad, V.M.
Lymar, N.V.
Shtan’, A.F.
Solodovchenko, S.I.
author_sort Tarasov, M.I.
title The dynamics of inductively accelerated electrons in the U-3M torsatron
title_short The dynamics of inductively accelerated electrons in the U-3M torsatron
title_full The dynamics of inductively accelerated electrons in the U-3M torsatron
title_fullStr The dynamics of inductively accelerated electrons in the U-3M torsatron
title_full_unstemmed The dynamics of inductively accelerated electrons in the U-3M torsatron
title_sort dynamics of inductively accelerated electrons in the u-3m torsatron
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Магнитное удержание
url https://nasplib.isofts.kiev.ua/handle/123456789/109092
citation_txt The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT tarasovmi thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT tarasovik thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT sitnikovda thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT pashnevvk thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT goncharovig thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT listopadvm thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT lymarnv thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT shtanaf thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT solodovchenkosi thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT tarasovmi dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT tarasovik dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT sitnikovda dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT pashnevvk dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT goncharovig dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT listopadvm dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT lymarnv dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT shtanaf dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT solodovchenkosi dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m
AT tarasovmi dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT tarasovik dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT sitnikovda dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT pashnevvk dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT goncharovig dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT listopadvm dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT lymarnv dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT shtanaf dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT solodovchenkosi dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m
AT tarasovmi dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT tarasovik dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT sitnikovda dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT pashnevvk dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT goncharovig dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT listopadvm dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT lymarnv dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT shtanaf dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
AT solodovchenkosi dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron
first_indexed 2025-11-26T15:16:46Z
last_indexed 2025-11-26T15:16:46Z
_version_ 1849866542640005120
fulltext ISSN 1562-6016. ВАНТ. 2012. №6(82) 25 THE DYNAMICS OF INDUCTIVELY ACCELERATED ELECTRONS IN THE U-3M TORSATRON M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: itarasov@ipp.kharkov.ua Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried out. PACS: 52.59.Rz, 52.70.Nc, 52.70 La INTRODUCTION The effect of runaway electrons generation was intensively studied in tokamak devices [1-2]. Unfortunately in stellarators the consequences of formation of runaway particles flow was not considered in a proper way. In this work we continue our previous studies of runaway electron flow parameters [3] in the Uragan-3M torsatron together with the particles ejection to the system edge. We investigate the conditions of the flow formation and propagation using a number of traditional diagnostic methods. In particular the results of the flow current measurements are presented together with the flow radiation which was studied at different frequency ranges. The clearest evidences of the flow presence are the generation of hard X-Ray radiation, synchrotron radiation output and the generation of strong signal in the infrared spectrum range. To study the conditions of runaway electrons generation in the U-3M torsatron the experiments with additional ionization were carried out. The amount of charged particles in the U-3M torsatron during the magnetic field rise was increased by introducing additional UHF- power into the confinement volume at the magnetic field pulse front. 1. EXPERIMENTAL SETUP The experiments were carried out at the “Uragan- 3M” torsatron. The major and minor device radii are R = 1 m, r0 = 0.12 m. Magnetic field strength B0 ≤ 1 T. The parameters of helical coils were l = 3 and m = 9. The experimental measurements were carried out by a number of diagnostic methods which includes optical spectroscopy, microwave reflectometry and interferometry, Langmuir probes, ECE (Radiometry), X-ray diagnostics, CX neutral energy analyzer, magnetic field diagnostics, bolometry, pyrometric detector, toroidal loop. 2. EXPERIMENTAL RESULTS A synchrotron radiation output was observed during the RF – power introduction into the main confinement volume. The amplitude of the signal increased with the radiation frequency (Fig. 1). Fig. 1. The dynamics of level of synchrotron radiation observed during the RF-heating pulse The measurements of radiation output in the submillimeter and infrared spectral ranges were carried out by the LiNbO3 pyrometric detectors placed at the plasma edge. The results have shown a strong noise level during the whole magnetic field pulse (Fig. 2). On this ‘noisy’ background a number of spikes corresponded to the RF- heating pulse and the magnetic field pulse fronts were observed. Fig. 2. Submillimeter and infrared radiation (f = 10…1000 GHz) during the whole magnetic field pulse The energy of accelerated particles was approximately evaluated from the spectrum of the X-Ray radiation output which occurs after the flow particles interaction with metallic elements of the U-3M torsatron confining magnetic field coils. Usually the inductively accelerated particles leave U-3M confinement volume after passing deceleration stage at the back front of the magnetic field pulse. So the energies of the particles become significantly lower. t, s , GHz 26 ISSN 1562-6016. ВАНТ. 2012. №6(82) But if the studied cross-section contains a limiter the particles interact with the metal surface much earlier. Thus the X-Ray output energies in this cross-section are much higher (Fig. 3). Fig. 3. Hard X-Ray radiation spectrum from the U-3M cross-section with (right) and without (left) limiter To study the process of the accelerated particles flow creation we monitored signals in the Rogovski coil circuit. The experimental measurements have shown that the flow is formed on the magnetic field pulse fronts (Fig. 4). The flow direction changed depending on sign of temporal derivative of the magnetic field strength and the current of runaway electrons varied in the range of 100 to 200 A. Fig. 4. Langmuir probe and Rogovski coil current signals during the magnetic field pulse The measurements carried out by a peripherial Langmuir probe demonstrate that the flow formation correlates in time with ejection of electrons to the confinement volume edge. The mechanism of particle acceleration is based on variation of magnetic field amplitude at the magnetic field pulse fronts. The intensity of toroidal magnetic field component varies together with the intensity of poloidal and vertical components. Time variation of the vertical component of magnetic field creates a loop voltage which accelerates charged particles in the U-3M confinement volume. The particles velocity increment is proportional to the loop voltage magnitude. Fig. 5. The signal from toroidal loop during the magnetic field pulse Therefore the loop voltage measurements are of great interest. In our case to provide such measurements a toroidal loop was used. The experimental results showed that the average loop voltage for the magnetic field pulse equals to 7.2 kOe is ~0.25 V (Fig. 5). Fig. 6. The signals from Langmuir probe, magnetic probe and X-Ray detector with (b) and without (a) the runaway flow stimulation by the additional ionization The flow of runaway electrons was stimulated by the additional UHF-ionization which occurred at the magnetic field pulse front. The UHF-generator introduced ~0.5 kW at frequency 2.45 GHz to create plasma when the magnetic field passes the resonance value (0.86 kOe). Noticeable changes in the flow characteristics were observed through the measurements of current to the peripherial Langmuir probe together with the X-Ray output at the back front of the magnetic field pulse (Fig. 6). The flow of inductively accelerated particles interacts with the RF-plasma and affects the dynamics of such parameters as plasma electrons density, plasma temperature and plasma current (Fig. 7). t, s t, s t, s a b ISSN 1562-6016. ВАНТ. 2012. №6(82) 27 Fig. 7. The results of interaction of the flow particles with plasma of the U-3M torsatron with and without the runaway particles stimulation CONCLUSIONS The presence of hyperthermal particles flow in the U-3M torsatron confinement volume was proved by a number of experimental measurements. A synchrotron radiation (5…44 GHz) output was observed during the RF-heating pulse. Microwave and infrared frequency range (10…1000 GHz) radiation was registrated during the whole magnetic field pulse. The X-Ray radiation energy reaches ~2 MeV what proves the suggestion about formation of a high energetic particles flow due to pulse character of the confining magnetic field. The Rogovski coil measurements registered the flow current IFLOW = 100…200 A. The accelerating mechanism was revealed after obtaining the results of measurements via toroidal loop which detected a loop voltage of 0.25 V at the magnetic field pulse fronts. REFERENCES 1. V.V. Alikaev, Yu.I. Arseniev, G.A. Bobrovskiy, А.А. Kondratiev, K.А. Razumova // Jornal of Technical Physics. 1975, v. XLV, №3, p. 515-522. 2. H. Dreicer. Electron and ion runaway in a fully ionized gas // Phys. Rev. 1960, v. 117, №2, p. 329-342. 3. M.I. Tarasov, I.K. Tarasov, V.K. Pashnev, D.A. Sitnikov, V.V. Olshansky, K.N. Stepanov, E.D. Volkov // International Conference and School on Plasma Physics and Controlled Fusion and 4-th Alushta International Workshop on the Role of Electric Fields in Plasma Confinement in Stellarators and Tokamaks, Alushta (Crimea), Ukraine, September 13-18, 2010: Book of Abstracts, p. 53. Article received 10.10.12 ДИНАМИКА ИНДУКЦИОННО-УСКОРЕННЫХ ЭЛЕКТРОНОВ В ТОРСАТРОНЕ У-3М М.И. Тарасов, И.К. Тарасов, Д.А. Ситников, В.К. Пашнев, И.Г. Гончаров, В.М. Листопад, Н.В. Лымарь, А.Ф. Штань, С.И. Солодовченко Получены дополнительные экспериментальные данные о динамике потока убегающих электронов в торсатроне Ураган-3М. Произведены измерения синхротронного и СВЧ-излучения потока, получены результаты измерений тока потока и напряжения на обходе стелларатора. Кроме того, проведены эксперименты по стимуляции потока убегающих электронов. ДИНАМІКА ІНДУКЦІЙНО-ПРИСКОРЕНИХ ЕЛЕКТРОНІВ У ТОРСАТРОНІ У-3М М.І. Тарасов, І.К. Тарасов, Д.А. Ситников, В.К. Пашнєв, І.Г. Гончаров, В.М. Листопад, М.В. Лимар, А.Ф. Штань, С.І. Солодовченко Отримано додаткові експериментальні дані щодо динаміки потоку утікаючих електронів у торсатроні Ураган-3М. Проведено вимірювання синхротронного та НВЧ-випромінювання потоку, отримано дані вимірювань струму потоку та напруги на обході стеларатора. Проведено експерименти зі стимуляції потоку утікаючих електронів. standart U-3M perfomance runaway electrons stimulation