The dynamics of inductively accelerated electrons in the U-3M torsatron
Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway...
Gespeichert in:
| Datum: | 2012 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/109092 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-109092 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1090922025-02-09T14:08:09Z The dynamics of inductively accelerated electrons in the U-3M torsatron Динамика индукционно-ускоренных электронов в торсатроне У-3М Динаміка індукційно-прискорених електронів у торсатроні У-3М Tarasov, M.I. Tarasov, I.K. Sitnikov, D.A. Pashnev, V.K. Goncharov, I.G. Listopad, V.M. Lymar, N.V. Shtan’, A.F. Solodovchenko, S.I. Магнитное удержание Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried out. Получены дополнительные экспериментальные данные о динамике потока убегающих электронов в торсатроне Ураган-3М. Произведены измерения синхротронного и СВЧ-излучения потока, получены результаты измерений тока потока и напряжения на обходе стелларатора. Кроме того, проведены эксперименты по стимуляции потока убегающих электронов. Отримано додаткові експериментальні дані щодо динаміки потоку утікаючих електронів у торсатроні Ураган-3М. Проведено вимірювання синхротронного та НВЧ-випромінювання потоку, отримано дані вимірювань струму потоку та напруги на обході стеларатора. Проведено експерименти зі стимуляції потоку утікаючих електронів. 2012 Article The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 52.59.Rz, 52.70.Nc, 52.70 La https://nasplib.isofts.kiev.ua/handle/123456789/109092 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Магнитное удержание Магнитное удержание |
| spellingShingle |
Магнитное удержание Магнитное удержание Tarasov, M.I. Tarasov, I.K. Sitnikov, D.A. Pashnev, V.K. Goncharov, I.G. Listopad, V.M. Lymar, N.V. Shtan’, A.F. Solodovchenko, S.I. The dynamics of inductively accelerated electrons in the U-3M torsatron Вопросы атомной науки и техники |
| description |
Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried out. |
| format |
Article |
| author |
Tarasov, M.I. Tarasov, I.K. Sitnikov, D.A. Pashnev, V.K. Goncharov, I.G. Listopad, V.M. Lymar, N.V. Shtan’, A.F. Solodovchenko, S.I. |
| author_facet |
Tarasov, M.I. Tarasov, I.K. Sitnikov, D.A. Pashnev, V.K. Goncharov, I.G. Listopad, V.M. Lymar, N.V. Shtan’, A.F. Solodovchenko, S.I. |
| author_sort |
Tarasov, M.I. |
| title |
The dynamics of inductively accelerated electrons in the U-3M torsatron |
| title_short |
The dynamics of inductively accelerated electrons in the U-3M torsatron |
| title_full |
The dynamics of inductively accelerated electrons in the U-3M torsatron |
| title_fullStr |
The dynamics of inductively accelerated electrons in the U-3M torsatron |
| title_full_unstemmed |
The dynamics of inductively accelerated electrons in the U-3M torsatron |
| title_sort |
dynamics of inductively accelerated electrons in the u-3m torsatron |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2012 |
| topic_facet |
Магнитное удержание |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/109092 |
| citation_txt |
The dynamics of inductively accelerated electrons in the U-3M torsatron / M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad, N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko // Вопросы атомной науки и техники. — 2012. — № 6. — С. 25-27. — Бібліогр.: 3 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT tarasovmi thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT tarasovik thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT sitnikovda thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT pashnevvk thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT goncharovig thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT listopadvm thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT lymarnv thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT shtanaf thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT solodovchenkosi thedynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT tarasovmi dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT tarasovik dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT sitnikovda dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT pashnevvk dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT goncharovig dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT listopadvm dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT lymarnv dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT shtanaf dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT solodovchenkosi dinamikaindukcionnouskorennyhélektronovvtorsatroneu3m AT tarasovmi dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT tarasovik dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT sitnikovda dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT pashnevvk dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT goncharovig dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT listopadvm dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT lymarnv dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT shtanaf dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT solodovchenkosi dinamíkaíndukcíjnopriskorenihelektronívutorsatroníu3m AT tarasovmi dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT tarasovik dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT sitnikovda dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT pashnevvk dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT goncharovig dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT listopadvm dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT lymarnv dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT shtanaf dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron AT solodovchenkosi dynamicsofinductivelyacceleratedelectronsintheu3mtorsatron |
| first_indexed |
2025-11-26T15:16:46Z |
| last_indexed |
2025-11-26T15:16:46Z |
| _version_ |
1849866542640005120 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 25
THE DYNAMICS OF INDUCTIVELY ACCELERATED ELECTRONS IN
THE U-3M TORSATRON
M.I. Tarasov, I.K. Tarasov, D.A. Sitnikov, V.K. Pashnev, I.G. Goncharov, V.M. Listopad,
N.V. Lymar, A.F. Shtan’, S.I. Solodovchenko
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine
E-mail: itarasov@ipp.kharkov.ua
Additional experimental data for the runaway electrons flow in the Uragan-3M torsatron were obtained. In
particular the synchrotron and ultrahigh frequency radiation were measured. Also the flow current dynamics was
studied by Rogovski coil and toroidal loop. Finally the experiments with the runaway flow stimulation were carried
out.
PACS: 52.59.Rz, 52.70.Nc, 52.70 La
INTRODUCTION
The effect of runaway electrons generation was
intensively studied in tokamak devices [1-2].
Unfortunately in stellarators the consequences of
formation of runaway particles flow was not considered
in a proper way. In this work we continue our previous
studies of runaway electron flow parameters [3] in the
Uragan-3M torsatron together with the particles ejection
to the system edge. We investigate the conditions of the
flow formation and propagation using a number of
traditional diagnostic methods. In particular the results
of the flow current measurements are presented together
with the flow radiation which was studied at different
frequency ranges. The clearest evidences of the flow
presence are the generation of hard X-Ray radiation,
synchrotron radiation output and the generation of
strong signal in the infrared spectrum range. To study
the conditions of runaway electrons generation in the
U-3M torsatron the experiments with additional
ionization were carried out. The amount of charged
particles in the U-3M torsatron during the magnetic
field rise was increased by introducing additional UHF-
power into the confinement volume at the magnetic
field pulse front.
1. EXPERIMENTAL SETUP
The experiments were carried out at the “Uragan-
3M” torsatron. The major and minor device radii are
R = 1 m, r0 = 0.12 m. Magnetic field strength B0 ≤ 1 T.
The parameters of helical coils were l = 3 and m = 9.
The experimental measurements were carried out by
a number of diagnostic methods which includes optical
spectroscopy, microwave reflectometry and
interferometry, Langmuir probes, ECE (Radiometry),
X-ray diagnostics, CX neutral energy analyzer,
magnetic field diagnostics, bolometry, pyrometric
detector, toroidal loop.
2. EXPERIMENTAL RESULTS
A synchrotron radiation output was observed during
the RF – power introduction into the main confinement
volume. The amplitude of the signal increased with the
radiation frequency (Fig. 1).
Fig. 1. The dynamics of level of synchrotron radiation
observed during the RF-heating pulse
The measurements of radiation output in the
submillimeter and infrared spectral ranges were carried
out by the LiNbO3 pyrometric detectors placed at the
plasma edge.
The results have shown a strong noise level during
the whole magnetic field pulse (Fig. 2). On this ‘noisy’
background a number of spikes corresponded to the RF-
heating pulse and the magnetic field pulse fronts were
observed.
Fig. 2. Submillimeter and infrared radiation
(f = 10…1000 GHz) during the whole magnetic
field pulse
The energy of accelerated particles was
approximately evaluated from the spectrum of the
X-Ray radiation output which occurs after the flow
particles interaction with metallic elements of the U-3M
torsatron confining magnetic field coils.
Usually the inductively accelerated particles leave
U-3M confinement volume after passing deceleration
stage at the back front of the magnetic field pulse. So
the energies of the particles become significantly lower.
t, s
, GHz
26 ISSN 1562-6016. ВАНТ. 2012. №6(82)
But if the studied cross-section contains a limiter the
particles interact with the metal surface much earlier.
Thus the X-Ray output energies in this cross-section are
much higher (Fig. 3).
Fig. 3. Hard X-Ray radiation spectrum from
the U-3M cross-section with (right) and without
(left) limiter
To study the process of the accelerated particles
flow creation we monitored signals in the Rogovski coil
circuit. The experimental measurements have shown
that the flow is formed on the magnetic field pulse
fronts (Fig. 4). The flow direction changed depending
on sign of temporal derivative of the magnetic field
strength and the current of runaway electrons varied in
the range of 100 to 200 A.
Fig. 4. Langmuir probe and Rogovski coil current
signals during the magnetic field pulse
The measurements carried out by a peripherial
Langmuir probe demonstrate that the flow formation
correlates in time with ejection of electrons to the
confinement volume edge.
The mechanism of particle acceleration is based on
variation of magnetic field amplitude at the magnetic
field pulse fronts. The intensity of toroidal magnetic
field component varies together with the intensity of
poloidal and vertical components. Time variation of the
vertical component of magnetic field creates a loop
voltage which accelerates charged particles in the U-3M
confinement volume. The particles velocity increment is
proportional to the loop voltage magnitude.
Fig. 5. The signal from toroidal loop during the
magnetic field pulse
Therefore the loop voltage measurements are of
great interest. In our case to provide such measurements
a toroidal loop was used. The experimental results
showed that the average loop voltage for the magnetic
field pulse equals to 7.2 kOe is ~0.25 V (Fig. 5).
Fig. 6. The signals from Langmuir probe, magnetic
probe and X-Ray detector with (b) and without (a)
the runaway flow stimulation by
the additional ionization
The flow of runaway electrons was stimulated by the
additional UHF-ionization which occurred at the
magnetic field pulse front. The UHF-generator
introduced ~0.5 kW at frequency 2.45 GHz to create
plasma when the magnetic field passes the resonance
value (0.86 kOe). Noticeable changes in the flow
characteristics were observed through the measurements
of current to the peripherial Langmuir probe together
with the X-Ray output at the back front of the magnetic
field pulse (Fig. 6).
The flow of inductively accelerated particles
interacts with the RF-plasma and affects the dynamics
of such parameters as plasma electrons density, plasma
temperature and plasma current (Fig. 7).
t, s
t, s
t, s
a
b
ISSN 1562-6016. ВАНТ. 2012. №6(82) 27
Fig. 7. The results of interaction of the flow particles
with plasma of the U-3M torsatron with and without
the runaway particles stimulation
CONCLUSIONS
The presence of hyperthermal particles flow in the
U-3M torsatron confinement volume was proved by a
number of experimental measurements. A synchrotron
radiation (5…44 GHz) output was observed during the
RF-heating pulse. Microwave and infrared frequency
range (10…1000 GHz) radiation was registrated during
the whole magnetic field pulse. The X-Ray radiation
energy reaches ~2 MeV what proves the suggestion
about formation of a high energetic particles flow due to
pulse character of the confining magnetic field.
The Rogovski coil measurements registered the flow
current IFLOW = 100…200 A. The accelerating
mechanism was revealed after obtaining the results of
measurements via toroidal loop which detected a loop
voltage of 0.25 V at the magnetic field pulse fronts.
REFERENCES
1. V.V. Alikaev, Yu.I. Arseniev, G.A. Bobrovskiy,
А.А. Kondratiev, K.А. Razumova // Jornal of Technical
Physics. 1975, v. XLV, №3, p. 515-522.
2. H. Dreicer. Electron and ion runaway in a fully
ionized gas // Phys. Rev. 1960, v. 117, №2, p. 329-342.
3. M.I. Tarasov, I.K. Tarasov, V.K. Pashnev,
D.A. Sitnikov, V.V. Olshansky, K.N. Stepanov,
E.D. Volkov // International Conference and School on
Plasma Physics and Controlled Fusion and 4-th Alushta
International Workshop on the Role of Electric Fields in
Plasma Confinement in Stellarators and Tokamaks,
Alushta (Crimea), Ukraine, September 13-18, 2010:
Book of Abstracts, p. 53.
Article received 10.10.12
ДИНАМИКА ИНДУКЦИОННО-УСКОРЕННЫХ ЭЛЕКТРОНОВ В ТОРСАТРОНЕ У-3М
М.И. Тарасов, И.К. Тарасов, Д.А. Ситников, В.К. Пашнев, И.Г. Гончаров, В.М. Листопад, Н.В. Лымарь,
А.Ф. Штань, С.И. Солодовченко
Получены дополнительные экспериментальные данные о динамике потока убегающих электронов в
торсатроне Ураган-3М. Произведены измерения синхротронного и СВЧ-излучения потока, получены
результаты измерений тока потока и напряжения на обходе стелларатора. Кроме того, проведены
эксперименты по стимуляции потока убегающих электронов.
ДИНАМІКА ІНДУКЦІЙНО-ПРИСКОРЕНИХ ЕЛЕКТРОНІВ У ТОРСАТРОНІ У-3М
М.І. Тарасов, І.К. Тарасов, Д.А. Ситников, В.К. Пашнєв, І.Г. Гончаров, В.М. Листопад, М.В. Лимар,
А.Ф. Штань, С.І. Солодовченко
Отримано додаткові експериментальні дані щодо динаміки потоку утікаючих електронів у торсатроні
Ураган-3М. Проведено вимірювання синхротронного та НВЧ-випромінювання потоку, отримано дані
вимірювань струму потоку та напруги на обході стеларатора. Проведено експерименти зі стимуляції потоку
утікаючих електронів.
standart U-3M perfomance
runaway electrons stimulation
|