Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber
For experimental studies the generation of carbon nanoparticles with continuous removal of material was used plasmaliquid system with discharge in reverse vortex flow of "tornado" type. As a model of hydrocarbon has been used 96% ethanol. To generate reverse vortex flow used inert gas argo...
Gespeichert in:
| Datum: | 2012 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/109201 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber / Iu.P. Veremii, K.V. Iukhymenko, V.Ya. Chernyak, A.I. Liptuga, T.E. Lisitchenko, V.P. Demchina, V.S. Kudryavzev // Вопросы атомной науки и техники. — 2012. — № 6. — С. 217-219. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-109201 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1092012025-02-23T19:56:47Z Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber Плазменный катализ синтеза углеродных наночастиц в пиролитической камере Плазмовий каталіз синтезу вуглецевих наночастинок у піролітичній камері Veremii, Iu.P. Iukhymenko, K.V. Chernyak, V.Ya. Liptuga, A.I. Lisitchenko, T.E. Demchina, V.P. Kudryavzev, V.S. Низкотемпературная плазма и плазменные технологии For experimental studies the generation of carbon nanoparticles with continuous removal of material was used plasmaliquid system with discharge in reverse vortex flow of "tornado" type. As a model of hydrocarbon has been used 96% ethanol. To generate reverse vortex flow used inert gas argon. The possibility of continuous transport of carbon nanomaterials from the synthesis area of solid-phase chemically passive microparticles revealed. Analysis of gas samples was carried out on gas chromatograph 6890N Agilen. Purified carbon samples investigated by Fourier spectrometer "Infralyum FT-801" Для исследования генерации наночастиц углерода с непрерывным удалением материала была использована плазменно-жидкостная система с обратновихревым потоком типа "торнадо". В качестве модельного углеводорода был использован 96% этанол. Для создания обратновихревого потока использовали инертный газ аргон. Выявлена возможность непрерывного удаления углеродных наноматериалов из области синтеза с помощью твердофазных химически пассивных микрочастиц. Анализ проб газа проводился на газовом хроматографе 6890N Agilen. Очищенные образцы углерода исследовали с помощью фурье-спектрометра "Инфралюм ФТ-801". Для дослідження генерації наночастинок вуглецю з безперервним видаленням матеріалу була використана плазмово-рідинна система зі зворотньовихровим потоком типу "торнадо". В якості модельного вуглеводню був використаний 96% етанол. Для створення зворотньовихрового потоку використовували інертний газ аргон. Виявлено можливість безперервного видалення вуглецевих наноматеріалів з області синтезу за допомогою твердофазних хімічно пасивних мікрочастинок. Аналіз проб газу проводився на газовому хроматографі 6890N Agilen. Очищені зразки вуглецю досліджували за допомогою фур'є-спектрометра "Інфралюм ФТ-801". This work was partially supported by the State fund for fundamental researches (Grant F41.1/014), Ministry of Education and Science of Ukraine, National Academy of Sciences of Ukraine. 2012 Article Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber / Iu.P. Veremii, K.V. Iukhymenko, V.Ya. Chernyak, A.I. Liptuga, T.E. Lisitchenko, V.P. Demchina, V.S. Kudryavzev // Вопросы атомной науки и техники. — 2012. — № 6. — С. 217-219. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52, 52.77.-j https://nasplib.isofts.kiev.ua/handle/123456789/109201 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
| spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Veremii, Iu.P. Iukhymenko, K.V. Chernyak, V.Ya. Liptuga, A.I. Lisitchenko, T.E. Demchina, V.P. Kudryavzev, V.S. Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber Вопросы атомной науки и техники |
| description |
For experimental studies the generation of carbon nanoparticles with continuous removal of material was used plasmaliquid system with discharge in reverse vortex flow of "tornado" type. As a model of hydrocarbon has been used 96% ethanol. To generate reverse vortex flow used inert gas argon. The possibility of continuous transport of carbon nanomaterials from the synthesis area of solid-phase chemically passive microparticles revealed. Analysis of gas samples was carried out on gas chromatograph 6890N Agilen. Purified carbon samples investigated by Fourier spectrometer "Infralyum FT-801" |
| format |
Article |
| author |
Veremii, Iu.P. Iukhymenko, K.V. Chernyak, V.Ya. Liptuga, A.I. Lisitchenko, T.E. Demchina, V.P. Kudryavzev, V.S. |
| author_facet |
Veremii, Iu.P. Iukhymenko, K.V. Chernyak, V.Ya. Liptuga, A.I. Lisitchenko, T.E. Demchina, V.P. Kudryavzev, V.S. |
| author_sort |
Veremii, Iu.P. |
| title |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| title_short |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| title_full |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| title_fullStr |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| title_full_unstemmed |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| title_sort |
plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2012 |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/109201 |
| citation_txt |
Plasma catalysis of carbon nanoparticles synthesis in the pyrolytic chamber / Iu.P. Veremii, K.V. Iukhymenko, V.Ya. Chernyak, A.I. Liptuga, T.E. Lisitchenko, V.P. Demchina, V.S. Kudryavzev // Вопросы атомной науки и техники. — 2012. — № 6. — С. 217-219. — Бібліогр.: 4 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT veremiiiup plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT iukhymenkokv plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT chernyakvya plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT liptugaai plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT lisitchenkote plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT demchinavp plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT kudryavzevvs plasmacatalysisofcarbonnanoparticlessynthesisinthepyrolyticchamber AT veremiiiup plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT iukhymenkokv plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT chernyakvya plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT liptugaai plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT lisitchenkote plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT demchinavp plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT kudryavzevvs plazmennyjkatalizsintezauglerodnyhnanočasticvpirolitičeskojkamere AT veremiiiup plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT iukhymenkokv plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT chernyakvya plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT liptugaai plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT lisitchenkote plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT demchinavp plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí AT kudryavzevvs plazmovijkatalízsintezuvuglecevihnanočastinokupírolítičníjkamerí |
| first_indexed |
2025-11-24T20:13:48Z |
| last_indexed |
2025-11-24T20:13:48Z |
| _version_ |
1849704032671629312 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 217
PLASMA CATALYSIS OF CARBON NANOPARTICLES SYNTHESIS
IN THE PYROLYTIC CHAMBER
Iu.P. Veremii, K.V. Iukhymenko, V.Ya. Chernyak, *A.I. Liptuga, T.E. Lisitchenko,
**V.P. Demchina, **V.S. Kudryavzev
Taras Shevchenko Kiev National University, Dept. of Physical Electronics, Kiev, Ukraine;
* V.Ye. Lashkaryov Institute of Semiconductor Physics of NASU, Kiev, Ukraine;
**Institute of Gas of NASU, Kiеv, Ukraine
Е-mail: veremii@i.ua, chernyak_v@ukr.net
For experimental studies the generation of carbon nanoparticles with continuous removal of material was used plasma-
liquid system with discharge in reverse vortex flow of "tornado" type. As a model of hydrocarbon has been used 96%
ethanol. To generate reverse vortex flow used inert gas argon. The possibility of continuous transport of carbon
nanomaterials from the synthesis area of solid-phase chemically passive microparticles revealed. Analysis of gas samples
was carried out on gas chromatograph 6890N Agilen. Purified carbon samples investigated by Fourier spectrometer
"Infralyum FT-801"
PACS: 52, 52.77.-j
INTRODUCTION
One of the main tasks of the process of generation of
nanomaterials is to create a continuous cycle of the
system. In previous experiments have been conclusively
proved that the substrate temperature has a decisive
influence on the size and morphology of the final product
[1]. So you need ensured process with the continuous
formation and removal of formed carbon material from
the reaction volume on the chemically passive particles
with controlled temperature of surface.
1. EXPERIMENTAL
For experimental studies the generation of carbon
nanoparticles in plasma-liquid system with continuous
removal of material was used plasma discharge in the
reverse vortex flow of "tornado" type [2], whose scheme
is shown in Fig.1.
It consists of a cylindrical glass vessel by diameter of
90 mm and height of 70 mm, sealed by the flanges at the
top and at the bottom (1). The vessel was filled by the
work liquid (2) through the inlet pipe and the level of
liquid was controlled by the spray pump. The basic
cylindrical T-shaped stainless steel water-cooled electrode
on the lower flange is fully immersed in the liquid. The
electrode on the upper flange made from duralumin had a
special conic hub with the axial nozzle by diameter 2 mm
and length of 10 mm. The gas was injected into the vessel
through the orifice (9) in the upper flange tangentially to
the cylinder wall and created a reverse vortex flow of
tornado type, so the rotating gas went down to the liquid
surface and moved to the central axis where flowed out
through the nozzle in the form of jet (5) into the pyrolytic
chamber (3). Since the area of minimal static pressure
above the liquid surface during the vortex gas flow is
located near the central axis, it creates the column of
liquid at the gas-liquid interface in the form of the cone
Fig. 1. Schematic setup: 1 - electrodes, 2 - working liquid, 3 -
pyrolytic chamber, 4 - heater, 5 - plasma torch, 6 - flask of
distillate, 7 - PSU, 8 - instrumentation
9 l
AV
PSworking
liquid
H2O
H2O H2O
dust
exhaust
gases
1
2
4
3
5
6
8
7
9
H2O
with the height of ~ 5 - 7 mm above the liquid surface
(without electric discharge).
The voltage was supplied between the upper and the
lower electrodes (1) in the liquid by the DC power source
(7) powered up to 10 kV. The conditions of breakdown in
the discharge chamber were regulated by three
parameters: by the level of the work liquid; by the gas
flow rate and by the value of voltage. The range of
discharge currents varied within 25-100 mA. The pressure
in the discharge chamber during the discharge operation
was ~ 1.2 bar; the static pressure outside the reactor was
~ 1 bar.
Fine dust that provides removal and formation of
carbon particles uniformly fed into a heated reaction
metal chamber (3), where it is rapidly heated to required
temperature. Thermal heating chamber is provided a
heating coil (4), the set temperature is the temperature
substrates for the formation of carbon nanomaterials. It
should be noted that the contribution to the temperature of
the reaction chamber also allows plasma torch (5) and the
gas flow, which transports dust particles in chamber, so
you need to take into account the amendments to the final
218 ISSN 1562-6016. ВАНТ. 2012. №6(82)
temperature of dust. Temperatures recorded system
thermocouple located at the inlet and outlet pyrolytic
chamber. For substrate temperature for the formation of
carbon nanomaterials is temperature, which is set at the
entrance of the reaction chamber in the dust to mix
activated materials.
Dust particles and the synthesized nanomaterials,
which were removed by gas flow, are collected into the
flask with distillate (6) for the further decantation and
evaporation.
Use of chemically inert dust particles makes it
possible not only to provide centers of formation of
carbon nanomaterials and make the resulting products
outside the system, but also greatly simplify the process
of purification.
As a model hydrocarbon used 96% ethanol C2H5OH.
Inert gas argon used to form reverse vortex flow for
eliminate the burning of ethanol. The thickness of the gas
layer between the liquid surface and the top flange was 8
mm. Since alcohol is very volatile substance has been
selected polarity "solid cathode", which provides a lower
flow rate of fluid.
2. METHODS AND RESULTS
Emission spectra were measured with system that was
made up of optical fiber, spectrum device with CCD-line
and PC. The spectrometer worked in range 200 –
1100 nm with resolution 0.6 nm. PC was used as a
control device for measuring and data processing. The
main component in the spectra of radiation is the
molecule C2, also present CN, CH.
The main component of the plasma is C2 molecules
are also present radicals CN, CH, and atoms H, C.
Presence atoms and molecules of carbon is a favorable
factor for the formation of carbon structures.
Fig. 2. Typical emission spectrum of argon/alcohol
plasma in the reactor type TORNADO-LE
0
10
20
30
40
50
250 350 450 550 650 750
λ, nm
I, a.u.
С2
С2
С2
Н
СH+CN
Analysis of gas samples was carried out on gas
chromatograph 6890N Agilen. Conditions of analysis on
gas chromatograph: detector - katharometer; detectors
temperature 200 °C; carrier gas - argon; analysis of the
light gases carried through the column MOLSIV, 15 m
long; analysis of hydrocarbons - PLOTQ on column 15 m
long; samples were injected directly into the
chromatograph dispenser.
Samples of gas were collected directly at the output of
the pyrolytic chamber (without water filtration) and outlet
flask of distillate (with water filtration). Mode of the
following: voltage 5.2 kV, current 50 mA, temperature in
the pyrolytic chamber 275…300 ° C. Gas collected at the
outlet of the reaction chamber has the following
composition (in decreasing order): H2, CO, CH4, C2H2,
C2H4, H2O, C2H5OH, C2H6, CO2, nC4H10, iC4H10, C3H6.
0
5
10
15
20
25
30
35
40
45
50
H2 CO CH4 C2H4 C2H2 H2O O2 N2
%
from the reaction
chamber
after the flask with the
distilled water
Fig. 3. The main components of exhaust gas
Gas changes its chemical composition with the
passage of through the water. Hydrogen displaces the
nitrogen and oxygen dissolved into water. The
composition in the ratio of carbon-obtained molecules
does not change, it means that chemical reactions occur
mainly in the pyrolytic chamber and finished before exit
of it.
To study the absorption spectra of solid samples was
used FTIR spectrometer "Infralyum FT-801". Samples
were prepared on glass BaF2 thickness of 4 mm,
absorption band in the range 2300…2400 cm-1
corresponds to the spurious band of air (fig.4). Spectra
have the slope of the baseline caused by dispersion and
scattering [3]. The tables of characteristic frequencies, the
bands of the IR spectrum can be associated with certain
functional groups that make up molecules, such as: CH,
CH2, CH3, CO, C-C bond in aromatic rings [4].
Almost all organic compounds show peak or group of
peaks of absorption near 3000 cm-1. Absorption in this
area caused by the stretching vibrations of C-H bonds.
Absorption in 1460, 1380 cm-1 caused by the different
deformation vibrations of C-H bonds.
10
15
20
25
30
35
800 1300 1800 2300 2800 3300
wavenumber (cm-1)
tra
ns
m
is
si
on
(%
)
inside of reactor
output from the system
sp
3 C – H
C=О C С
C=С
aromatic
rings
60
65
20
15
10
Fig. 4. FTIR spectra of samples: obtained in a plasma
reactor and sampled output from the system
Stretching vibrations of the double bond C=O are
intense signal in the range of 1800…1650 cm-1. Carbonyl
group belongs to the most easily noticeable structural
fragments of molecules detected by IR-spectroscopy. The
provisions of carbonyl absorption bands in the spectrum
depends on the nature of substituent at the carbonyl group
C=O.
ISSN 1562-6016. ВАНТ. 2012. №6(82) 219
Aromatic rings found in the IR spectrum of moderate
stretching vibration peak of C-H in the area 3030 cm-1.
Another characteristic feature - stretching vibrations of
aromatic carbon-carbon bonds are usually observed at
1600 and 1475 cm-1.
For alcohol characteristic absorption bands: a broad
band of intense vibrations of associated OH groups at ~
3300 cm-1, an intense band of valence vibrations of C-O
in the 1200-1000 cm-1. In the transmission spectra can see
faint traces of ethanol absorption bands (1050, 1250, 1400
and 2950 cm-1).
CONCLUSIONS
• The possibility of generating carbon nanostructures
in plasma-liquid system type "TORNADO" was
investigated.
• The possibility of working in continuous mode was
found.
• The possibility of continuous transport of
nanomaterials chemically passive microparticles from the
zone of formation was discovered.
• It is shown that the main chemical reactions
occurring in the reaction chamber.
• Formed carbon materials are structured, with carbon-
carbon bonds mainly sp2 and sp3 hybridization.
ACNOWLEDGEMENTS
This work was partially supported by the State fund
for fundamental researches (Grant F41.1/014), Ministry
of Education and Science of Ukraine, National Academy
of Sciences of Ukraine.
REFERENCES
1. Iu.P. Veremii, V.Ya. Chernyak, S.A. Filatov,
S.V. Olszewski, V.O. Forostyanij. Influence of
temperature condition on the process of CNM
generation // Problems of Atomic Science and
Technology. Series « Plasma Physics» (13). 2009, № 1,
p. 139-141.
2. O.A. Nedybaliuk, V.Ya. Chernyak, S.V. Olszewski,
E.V. Martysh. Dynamic plasma-liquid system with
discharge in reverse vortex flow of “Tornado” type //
International Journal of Plasma Environmental Science
& Technology. 2011, v.5, № 1, p. 20-24.
3. T. Ezhevskay, A. Bublikov. Fourier spectrometers with
specialized consoles (FTIR, IR-microscope, etc.) //
Analytics. 2012, № 1 p. 38-45 (in Russian).
4. L.A. Kazitsyna, N.B. Kupletskaya. Application of UV,
IR, NMR and mass spectroscopy in organic chemistry.
Moscow: "Mosk. University Press", 1979 (in Russian).
Article received 20.09.12
ПЛАЗМЕННЫЙ КАТАЛИЗ СИНТЕЗА УГЛЕРОДНЫХ НАНОЧАСТИЦ В ПИРОЛИТИЧЕСКОЙ
КАМЕРЕ
Ю.П. Веремий, К.В. Юхименко, В.Я. Черняк, А.И. Липтуга, Т.Е. Лиситченко, В.П. Демчина,
В.С. Кудрявцев
Для исследования генерации наночастиц углерода с непрерывным удалением материала была использована
плазменно-жидкостная система с обратновихревым потоком типа "торнадо". В качестве модельного
углеводорода был использован 96% этанол. Для создания обратновихревого потока использовали инертный газ
аргон. Выявлена возможность непрерывного удаления углеродных наноматериалов из области синтеза с
помощью твердофазных химически пассивных микрочастиц. Анализ проб газа проводился на газовом
хроматографе 6890N Agilen. Очищенные образцы углерода исследовали с помощью фурье-спектрометра
"Инфралюм ФТ-801".
ПЛАЗМОВИЙ КАТАЛІЗ СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОЧАСТИНОК У ПІРОЛІТИЧНІЙ КАМЕРІ
Ю.П. Веремій, К.В. Юхименко, В.Я. Черняк, А.І. Ліптуга, Т.Є. Лиситченко, В.П. Демчина,
В.С. Кудрявцев
Для дослідження генерації наночастинок вуглецю з безперервним видаленням матеріалу була використана
плазмово-рідинна система зі зворотньовихровим потоком типу "торнадо". В якості модельного вуглеводню був
використаний 96% етанол. Для створення зворотньовихрового потоку використовували інертний газ аргон.
Виявлено можливість безперервного видалення вуглецевих наноматеріалів з області синтезу за допомогою
твердофазних хімічно пасивних мікрочастинок. Аналіз проб газу проводився на газовому хроматографі 6890N
Agilen. Очищені зразки вуглецю досліджували за допомогою фур'є-спектрометра "Інфралюм ФТ-801".
|