Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge

The angular velocity of equal-density plasma layer rotations along the magnetic field has been measured. The values obtained in different points are similar that is in accordance with the isorotation law. It has been established that in the plasma the oscillations are propagating along the magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2012
Hauptverfasser: Kovtun, Yu.V., Skibenko, A.I., Skibenko, E.I., Pinos, I.B., Larin, Yu.V., Yuferov, V.B.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/109203
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, I.B. Pinos, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 211-213. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-109203
record_format dspace
spelling Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Pinos, I.B.
Larin, Yu.V.
Yuferov, V.B.
2016-11-21T19:44:54Z
2016-11-21T19:44:54Z
2012
Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, I.B. Pinos, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 211-213. — Бібліогр.: 12 назв. — англ.
1562-6016
PACS: 52.80.Sm
https://nasplib.isofts.kiev.ua/handle/123456789/109203
The angular velocity of equal-density plasma layer rotations along the magnetic field has been measured. The values obtained in different points are similar that is in accordance with the isorotation law. It has been established that in the plasma the oscillations are propagating along the magnetic field with a velocity value close to the Alfven velocity V ~ VA.
Проведены измерения угловой скорости вращения плазменных слоев одинаковой плотности вдоль магнитного поля, значения которой оказались в различных точках близкими друг к другу, что согласуется с законом изоротации. Установлено, что в плазме вдоль магнитного поля распространяются колебания со скоростью, близкой по величине к aльфвеновской скорости V ~ VA.
Проведено вимірювання кутової швидкості обертання плазмових шарів однакової густини уздовж магнітного поля, значення якої в різних точках виявилися близькими одне до одного, що узгоджується із законом ізоротації. Встановлено, що в плазмі уздовж магнітного поля розповсюджуються коливання із швидкістю, близькою по величині до альфвеновської швидкості V ~ VA.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Низкотемпературная плазма и плазменные технологии
Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
Распространение колебаний многокомпонентной плазмы вдоль магнитного поля в импульсном отражательном разряде
Розповсюдження коливань багатокомпонентної плазми уздовж магнітного поля в імпульсному відбивному розряді
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
spellingShingle Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Pinos, I.B.
Larin, Yu.V.
Yuferov, V.B.
Низкотемпературная плазма и плазменные технологии
title_short Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
title_full Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
title_fullStr Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
title_full_unstemmed Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
title_sort propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge
author Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Pinos, I.B.
Larin, Yu.V.
Yuferov, V.B.
author_facet Kovtun, Yu.V.
Skibenko, A.I.
Skibenko, E.I.
Pinos, I.B.
Larin, Yu.V.
Yuferov, V.B.
topic Низкотемпературная плазма и плазменные технологии
topic_facet Низкотемпературная плазма и плазменные технологии
publishDate 2012
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Распространение колебаний многокомпонентной плазмы вдоль магнитного поля в импульсном отражательном разряде
Розповсюдження коливань багатокомпонентної плазми уздовж магнітного поля в імпульсному відбивному розряді
description The angular velocity of equal-density plasma layer rotations along the magnetic field has been measured. The values obtained in different points are similar that is in accordance with the isorotation law. It has been established that in the plasma the oscillations are propagating along the magnetic field with a velocity value close to the Alfven velocity V ~ VA. Проведены измерения угловой скорости вращения плазменных слоев одинаковой плотности вдоль магнитного поля, значения которой оказались в различных точках близкими друг к другу, что согласуется с законом изоротации. Установлено, что в плазме вдоль магнитного поля распространяются колебания со скоростью, близкой по величине к aльфвеновской скорости V ~ VA. Проведено вимірювання кутової швидкості обертання плазмових шарів однакової густини уздовж магнітного поля, значення якої в різних точках виявилися близькими одне до одного, що узгоджується із законом ізоротації. Встановлено, що в плазмі уздовж магнітного поля розповсюджуються коливання із швидкістю, близькою по величині до альфвеновської швидкості V ~ VA.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/109203
citation_txt Propagation of multicomponent plasma oscillations along the magnetic field in the pulsed reflex discharge / Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, I.B. Pinos, Yu.V. Larin, V.B. Yuferov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 211-213. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT kovtunyuv propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT skibenkoai propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT skibenkoei propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT pinosib propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT larinyuv propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT yuferovvb propagationofmulticomponentplasmaoscillationsalongthemagneticfieldinthepulsedreflexdischarge
AT kovtunyuv rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT skibenkoai rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT skibenkoei rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT pinosib rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT larinyuv rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT yuferovvb rasprostraneniekolebaniimnogokomponentnoiplazmyvdolʹmagnitnogopolâvimpulʹsnomotražatelʹnomrazrâde
AT kovtunyuv rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
AT skibenkoai rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
AT skibenkoei rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
AT pinosib rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
AT larinyuv rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
AT yuferovvb rozpovsûdžennâkolivanʹbagatokomponentnoíplazmiuzdovžmagnítnogopolâvímpulʹsnomuvídbivnomurozrâdí
first_indexed 2025-11-25T14:25:27Z
last_indexed 2025-11-25T14:25:27Z
_version_ 1850516953524862976
fulltext ISSN 1562-6016. ВАНТ. 2012. №6(82) 211 PROPAGATION OF MULTICOMPONENT PLASMA OSCILLATIONS ALONG THE MAGNETIC FIELD IN THE PULSED REFLEX DISCHARGE Yu.V.Kovtun, A.I.Skibenko, E.I.Skibenko, I.B.Pinos, Yu.V.Larin, V.B.Yuferov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: Ykovtun@kipt.kharkov.ua The angular velocity of equal-density plasma layer rotations along the magnetic field has been measured. The val- ues obtained in different points are similar that is in accordance with the isorotation law. It has been established that in the plasma the oscillations are propagating along the magnetic field with a velocity value close to the Alfven velocity V ~ VA. PACS: 52.80.Sm The plasma in the crossed BE × fields is of interest for solving a wide range of scientific and applied prob- lems in plasma physics, namely, in the field of investi- gations on laboratory, fusion and space plasma [1]. A distinct feature of the plasma being in the crossed BE × fields is its drift rotation that in the case of a mul- ticomponent plasma leads to the spatial separation of an ion component. Possibility to use rotating-plasma de- vices for substance separation promotes the plasma in- vestigations and development of facilities and com- plexes designed for substance separation into the mass groups and elements [2]. Among the large class of rotat- ing plasma devices a reflex discharge is a particular case. The reflex discharge study has many years’ his- tory, but, by now some problems are not considered or are studied insufficiently. Examples of such problems are the excitation and propagation of reflex-discharge plasma oscillations along the magnetic field. The investigation [3] on the low-frequency oscilla- tions of helium plasma in the stationary reflex discharge with an heated cathode has shown that there are regions with different behavior of oscillations depending on the magnetic field (B ≤ 0,4 T). The correlation analysis of probe signals permitted to establish that the phase veloc- ity of low-frequency oscillation propagation along the magnetic field is equal to 2·107 cm/s. This value lies in the range between the velocity of sound (~ 106 cm/s) and the Alfven velocity (109 cm/s). In [4] measurements were carried out of the low-frequency (f = 10…100 kHz) helium plasma oscillations under differ- ent initial conditions (P ≈ 0,013…0,133 Pa, B ≤ 0,03 T, Id ≤ 30 A) in the stationary reflex discharge with an heated cathode. From the plot of oscillation frequencies versus plasma parameters we concluded that the oscilla- tions observed are due to the excitation in the plasma of ion-acoustic, slow magneto-compression and Alfven waves. In [5] the low-frequency oscillations of the pulsed reflex-discharge plasma in the glass chamber were investigated using a slit scan of the plasma column glow by the electron-optical converter. The depend- ences of the oscillation frequency on the magnetic field (B ≤ 1,2 T), pressure (P ≈ 0,133…13,3 Pa) and atomic weight of gas (H2, He, Ar, Kr) evidence that the oscilla- tions observed belong to the class of drift Alfven waves in the inhomogeneous plasma. So, the reflex-discharge plasma oscillation propaga- tion along the magnetic field is not clearly understood and requires further investigations. The present paper gives preliminary experimental results on the character of multi-component gas-metal reflex-discharge plasma oscillation propagation along the magnetic field. The work continues previous inves- tigations [6-8] on the multi-component gas-metal plas- ma formed in the pulsed high-current reflex discharge. The gas-metal plasma has been formed by the discharge in the medium of firing gas Ar (P ≈ 0,133…1,33 Pa) and sputtered cathode material (Ti). The maximum plasma density was Np ≥ 1·1014 cm-3. The discharge vol- tage and the current were Udis. ≤ 4 kV and Idis. ~ 1,8 kA, respectively. The pulsed magnetic field of 18 ms dura- tion had a mirror configuration with a limiting induction value B0 ≤ 0,34 T in the installation center. The voltage onto the discharge gap was applied after magnetic field induction with delay of 2 ms. Plasma oscillation propagation along the magnetic field was studied using the microwave fluctuation spectrometry. Plasma location was carried out with an O-wave having a wave length of λ = 8 mm. The angular rotation rate of plasma layers with equal critical density Ncr. ≥ 1.7·1013 cm-3, distributed along the magnetic field (see Fig. 1), was determined using the autocorrelation function (ACF) of reflected microwave signals which can be calculated by formula [9]: ∑ − = += 1 0 )()(1)( N t kkxx txtx N C ττ , (1) where Сxx(τk) – is the ACF of signal, N – is the number of points in the signal realization, τk – is the phase shift. We determine the ACF period and then find the angular rotation velocity that for the case of a circular symmetry is obtained from the relation: Tπωϕ 2= , (2) where ωφ is the plasma rotation angular velocity, T is the ACF period. Comparison of ACF periods of reflected microwave signal distributed along the magnetic field have shown that the ACF periods are similar (see Fig. 2,a), i.e. the angular rotation velocities have close values (see Fig. 2,b). 212 ISSN 1562-6016. ВАНТ. 2012. №6(82) Fig. 1.Schematic representation of the experimental assembly and diagnostic facilities. 1 – vacuum chamber (anode), 2, 9 – cathodes, 3, 8 – detectors, 4, 7 – horn antennas of microwave reflectometers, 5 – solenoid magnet, 6 – microwave oscillator This relationship is in accordance with the isorota- tion law [1] or with the Ferraro theorem [10], the angu- lar velocity is constant along the magnetic field lines ω=ω0=const. Fig. 2. ACF period (a) and angular velocity of plasma layers distributed along the magnetic field as a function of time (for signals received by antennas 4 (○) and 7 (×) see Fig. 1). P ≈ 0,93 Pa, Udis. = 3,8 kV Using the phase shift of reflected signals we deter- mined the radial size of reflected layers and, respec- tively, calculated the rotation velocity (vφ = ωφr) which was not higher than vφ ≤ 1·106 cm/s, that is in accor- dance with results obtained in [7,8]. To determine the time of plasma oscillation propa- gation along the magnetic field used were cross- correlation functions calculated in [9] by formula: ∑ − = += 1 0 )()(1)( N t kkxy tytx N C ττ , (3) where Сxy(τk) is the cross-correlation function (CCF) between the signals x(t) and y(t), N is the number of points I the realization of signals x(t) and y(t), τk is the delay time between two signals. Analysis of CCF for reflected signals has shown that the CCF shift τ practi- cally decreases with time, and, consequently, the CCF shift dependence τ differs from the ACF period depend- ence on time (see Fig. 2,a). It means that the CCF pro- vides data on the plasma oscillations propagating along the magnetic field. To be sure that on both the reflecto- meters the same fluctuations are observed, we have in- vestigated the coherence function of signals from the reflectometers which is determined as [9]: ( ) ( ) ( ) 1)( 2 2 ≤= fGfG fG f yx xy xyγ , (4) where Gxy(f) is the function of cross-spectral density of two signals, Gx(f) and Gy(f) are the functions of spectral density of signals x(t)and y(t) respectively. A high de- gree of oscillation coherence (see Fig. 3) recorded at both the reflectometers evidences that the same oscilla- tions are moving along the magnetic field. Fig. 3. Coherence function of reflected microwave sig- nals If the CCF phase shift τ and the distance l between the horns of microwave reflectometers are known it is possible to determine the plasma fluctuation propaga- tion velocity as: τlV = , (5) The calculation results based on experimental data ob- tained by formula 5 are given in Fig. 4 for l ≈ 64,5 cm. As is seen from Fig.4 the plasma fluctuation propaga- tion velocity is slightly increasing with time. The expla- nation may be the following: Under conditions of this experiment the plasma layer density Ncr. ≈ 1.7·1013 cm-3 is constant in time and the magnetic field increases by ∆B = ± 7%, as compared with the average value. Con- sequently, the plasma fluctuation propagation velocity can be dependent on the magnetic field value. Fig. 4. Velocity of oscillation propagation along the magnetic field, points –experiment, solid line – calcula- tion by formula 6, dashed line – calculation by formula (7). (P ≈ 0,93 Pa , Udis. = 3,8 kV) The wave velocity in the plasma can be determined from the dispersion equation. We evaluate the ion sound ISSN 1562-6016. ВАНТ. 2012. №6(82) 213 velocity VS and the Alfven velocity VA as a first ap- proximation. The ion sound velocity is equal to VS = (kTe/mi)1/2. Taking kTe ~ 10 eV and mi = Ar ion mass we obtain VS ≈ 5·105 cm/s, that is by two order of magni- tude less than the measured one. The Alfven velocity is determined from the relation of [11]: ρμ0 BVA = , (6) where μ0 is the magnetic constant, ρ is the plasma den- sity. For the multicomponent plasma the Alfven velocity can be found as in [12]. ( )22110 , NmNm BV multA + = μ , (7) where m1 and m2 are the masses of ions ( sort 1 and sort 2), N1 and N2 are their concentrations. The results of Alfven velocity evaluation by formulas 6 and 7 for ρ = 1.137·10-9 g/cm3 (100% Ar) and N1 = N2 = 8.5·1012 cm-3 (50% Ar, 50% Ti) are given in Fig. 4. As is seen, the measured velocity value is close to the Alfven velocity V ~ VA ~ 107 cm/s. CONCLUSIONS The presented paper reports about the initial stage of investigations on the oscillations of multicomponent gas-metal plasma in the pulsed reflex discharge. The summary of investigation results is the follow- ing: 1. Comparison of the autocorrelation functions of re- flected microwave signals, distributed along the mag- netic field, has shown that the periods of these functions are similar, i.e. the angular rotation velocities are close and such a relationship is in accordance with the isoro- tation law or with the Ferraro theorem. 2. Investigation of the cross-correlation functions of reflected microwave signals distributed along the mag- netic field permitted to determine the time of plasma oscillation propagation along the magnetic field and to calculate the propagation velocity that is close to the Alfven velocity V ~ VA. REFERENCES 1. B. Lenert // Nucl. Fusion. 1971. v.11, №5, p. 485- 533. 2. A.J. Fetterman, N.J. Fisch // Phys. Plasmas. 2011, v.18, №10, p. 103503 . 3. F.F. Chen, A.W. Cooper // Phys. Rev. Letters. 1962, v. 9, №8, p. 333-335. 4. Y. Tanaka, K. Yamamoto // Japanes J. Appl. Phys. 1967, v. 6, № 4, p. 520-554. 5. A.P. Williams, L.A. Dushin, I.K. Nicholas et al.//High-frequency properties of the plasma. 1968, Is- sue 3, р. 39-46. 6. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. // Plasma Phys. Reports. 2010, v.36, №12, p. 1065-1071. 7. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. // Ukr. J. Phys. 2010, v.55, №12, p. 1269-1277. 8. Yu.V. Kovtun, A.I. Skibenko, E.I. Skibenko, et al. // Problems of Atomic Science and Technology. Series «Plasma Physics». 2010, Issue 16, № 6(70), p. 153- 155. 9. J.S. Bendat, A.G. Piersol. Engineering applications of correlation and spectral analysis. John Wiley & Sons. 1980, 315 p. 10. V.C.A. Ferraro // Mon. Not. Roy. Astr. Soc. 1937, v. 97, p. 458-472. 11. H. Alfven // Nature. 1942, v. 150, № 3805, p. 405- 406. 12. K. Rahbarnia, S. Ullrich, A. Stark, et al. // J. Plasma Fusion Res. SERIES. 2009, v. 8, p. 31–34. Article received 07.09.12 РАСПРОСТРАНЕНИЕ КОЛЕБАНИЙ МНОГОКОМПОНЕНТНОЙ ПЛАЗМЫ ВДОЛЬ МАГНИТНОГО ПОЛЯ В ИМПУЛЬСНОМ ОТРАЖАТЕЛЬНОМ РАЗРЯДЕ Ю.В. Ковтун, А.И. Скибенко, Е.И. Скибенко, И.Б. Пинос, Ю.В. Ларин, В.Б. Юферов Проведены измерения угловой скорости вращения плазменных слоев одинаковой плотности вдоль маг- нитного поля, значения которой оказались в различных точках близкими друг к другу, что согласуется с законом изоротации. Установлено, что в плазме вдоль магнитного поля распространяются колебания со скоростью, близкой по величине к aльфвеновской скорости V ~ VA. РОЗПОВСЮДЖЕННЯ КОЛИВАНЬ БАГАТОКОМПОНЕНТНОЇ ПЛАЗМИ УЗДОВЖ МАГНІТНОГО ПОЛЯ В ІМПУЛЬСНОМУ ВІДБИВНОМУ РОЗРЯДІ Ю.В. Ковтун, А.І. Скибенко, Є.І. Скібенко, І.Б. Пінос, Ю.В. Ларін, В.Б. Юферов Проведено вимірювання кутової швидкості обертання плазмових шарів однакової густини уздовж магні- тного поля, значення якої в різних точках виявилися близькими одне до одного, що узгоджується із законом ізоротації. Встановлено, що в плазмі уздовж магнітного поля розповсюджуються коливання із швидкістю, близькою по величині до альфвеновської швидкості V ~ VA.