Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge

A specific nonlinear regime of electron cyclotron instability is discussed aimed at explanation of complex temporal patterns of stimulated electromagnetic radiation from a mirror trap with non-equilibrium plasma typical of ECR discharge. This regime is characterized by self-modulation of a plasma cy...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2013
Автори: Shalashov, A.G., Golubev, S.V., Gospodchikov, E.D., Mansfeld, D.A., Viktorov, M.E., Vodopyanov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/109267
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge / A.G. Shalashov, S.V. Golubev, E.D. Gospodchikov, D.A. Mansfeld, M.E. Viktorov, A.V. Vodopyanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 111-113. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-109267
record_format dspace
spelling Shalashov, A.G.
Golubev, S.V.
Gospodchikov, E.D.
Mansfeld, D.A.
Viktorov, M.E.
Vodopyanov, A.V.
2016-11-22T10:54:51Z
2016-11-22T10:54:51Z
2013
2013
Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge / A.G. Shalashov, S.V. Golubev, E.D. Gospodchikov, D.A. Mansfeld, M.E. Viktorov, A.V. Vodopyanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 111-113. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 52.35.Hr, 52.72.+v
https://nasplib.isofts.kiev.ua/handle/123456789/109267
A specific nonlinear regime of electron cyclotron instability is discussed aimed at explanation of complex temporal patterns of stimulated electromagnetic radiation from a mirror trap with non-equilibrium plasma typical of ECR discharge. This regime is characterized by self-modulation of a plasma cyclotron maser due to coherent interference of two counter-propagating unstable waves with degenerate frequencies. The proposed simple theoretical model allows reproducing multi-scale behavior of quasi-periodic pulses of electromagnetic radiation and precipitation of energetic electrons detected at a laboratory setup based on a mirror trap with plasma sustained by mm-wave gyrotron radiation.
Обсуждается новый нелинейный режим электронно-циклотронной неустойчивости, объясняющий сложную временную динамику импульсов электромагнитного излучения сильнонеравновесной плазмы ЭЦР-разряда в прямой магнитной ловушке. Режим реализуется при самомодуляции циклотронного мазера полем биений двух встречных неустойчивых волн с вырожденными частотами. Предложенная простая теоретическая модель позволяет воспроизвести многомасштабную структуру импульсов электромагнитного излучения и высыпания энергичных электронов, зарегистрированных в лабораторном эксперименте с использованием прямой ловушки с плазмой, поддерживаемой излучением гиротрона миллимeтрового диапазона.
Обговорюється новий нелінійний режим електронно-циклотронної нестійкості, що пояснює складну часову динаміку імпульсів електромагнітного випромінювання сильнонеравномірної плазми ЕЦР-розряду в прямій магнітній пастці. Режим реалізується при самомодуляціі циклотронного мазера полем биття двох зустрічних нестійких хвиль з виродженими частотами. Запропонована проста теоретична модель дозволяє відтворити багатомасштабну структуру імпульсів електромагнітного випромінювання та висипання енергійних електронів, зареєстрованих у лабораторному експерименті з використанням прямої пастки з плазмою, що підтримується випромінюванням гіротрона миллиметрового діапазону.
The work has been supported by RFBR (grants 10- 02-00441, 10-02-00646) and the Presidential Council for Young Scientist Support (grant MK-3061.2012.2).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Космическая плазма
Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
Генерация широкополосного электромагнитного излучения при распаде плазмы ЭЦР-разряда в прямой магнитной ловушке
Генерація широкосмугового електромагнітного випромінювання при розпаді плазми ЕЦР-розряду в прямій магнітній пастці
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
spellingShingle Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
Shalashov, A.G.
Golubev, S.V.
Gospodchikov, E.D.
Mansfeld, D.A.
Viktorov, M.E.
Vodopyanov, A.V.
Космическая плазма
title_short Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
title_full Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
title_fullStr Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
title_full_unstemmed Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge
title_sort generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ecr discharge
author Shalashov, A.G.
Golubev, S.V.
Gospodchikov, E.D.
Mansfeld, D.A.
Viktorov, M.E.
Vodopyanov, A.V.
author_facet Shalashov, A.G.
Golubev, S.V.
Gospodchikov, E.D.
Mansfeld, D.A.
Viktorov, M.E.
Vodopyanov, A.V.
topic Космическая плазма
topic_facet Космическая плазма
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Генерация широкополосного электромагнитного излучения при распаде плазмы ЭЦР-разряда в прямой магнитной ловушке
Генерація широкосмугового електромагнітного випромінювання при розпаді плазми ЕЦР-розряду в прямій магнітній пастці
description A specific nonlinear regime of electron cyclotron instability is discussed aimed at explanation of complex temporal patterns of stimulated electromagnetic radiation from a mirror trap with non-equilibrium plasma typical of ECR discharge. This regime is characterized by self-modulation of a plasma cyclotron maser due to coherent interference of two counter-propagating unstable waves with degenerate frequencies. The proposed simple theoretical model allows reproducing multi-scale behavior of quasi-periodic pulses of electromagnetic radiation and precipitation of energetic electrons detected at a laboratory setup based on a mirror trap with plasma sustained by mm-wave gyrotron radiation. Обсуждается новый нелинейный режим электронно-циклотронной неустойчивости, объясняющий сложную временную динамику импульсов электромагнитного излучения сильнонеравновесной плазмы ЭЦР-разряда в прямой магнитной ловушке. Режим реализуется при самомодуляции циклотронного мазера полем биений двух встречных неустойчивых волн с вырожденными частотами. Предложенная простая теоретическая модель позволяет воспроизвести многомасштабную структуру импульсов электромагнитного излучения и высыпания энергичных электронов, зарегистрированных в лабораторном эксперименте с использованием прямой ловушки с плазмой, поддерживаемой излучением гиротрона миллимeтрового диапазона. Обговорюється новий нелінійний режим електронно-циклотронної нестійкості, що пояснює складну часову динаміку імпульсів електромагнітного випромінювання сильнонеравномірної плазми ЕЦР-розряду в прямій магнітній пастці. Режим реалізується при самомодуляціі циклотронного мазера полем биття двох зустрічних нестійких хвиль з виродженими частотами. Запропонована проста теоретична модель дозволяє відтворити багатомасштабну структуру імпульсів електромагнітного випромінювання та висипання енергійних електронів, зареєстрованих у лабораторному експерименті з використанням прямої пастки з плазмою, що підтримується випромінюванням гіротрона миллиметрового діапазону.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/109267
citation_txt Generation of wideband electromagnetic radiation on a decay stage of a mirror-confined plasma produced by ECR discharge / A.G. Shalashov, S.V. Golubev, E.D. Gospodchikov, D.A. Mansfeld, M.E. Viktorov, A.V. Vodopyanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 111-113. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT shalashovag generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT golubevsv generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT gospodchikoved generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT mansfeldda generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT viktorovme generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT vodopyanovav generationofwidebandelectromagneticradiationonadecaystageofamirrorconfinedplasmaproducedbyecrdischarge
AT shalashovag generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT golubevsv generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT gospodchikoved generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT mansfeldda generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT viktorovme generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT vodopyanovav generaciâširokopolosnogoélektromagnitnogoizlučeniâpriraspadeplazmyécrrazrâdavprâmoimagnitnoilovuške
AT shalashovag generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
AT golubevsv generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
AT gospodchikoved generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
AT mansfeldda generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
AT viktorovme generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
AT vodopyanovav generacíâširokosmugovogoelektromagnítnogovipromínûvannâprirozpadíplazmiecrrozrâduvprâmíimagnítníipastcí
first_indexed 2025-11-26T00:17:51Z
last_indexed 2025-11-26T00:17:51Z
_version_ 1850599587849437184
fulltext ISSN 1562-6016. ВАНТ. 2013. №1(83) 111 GENERATION OF WIDEBAND ELECTROMAGNETIC RADIATION ON A DECAY STAGE OF A MIRROR-CONFINED PLASMA PRODUCED BY ECR DISCHARGE A.G. Shalashov, S.V. Golubev, E.D. Gospodchikov, D.A. Mansfeld, M.E. Viktorov, A.V. Vodopyanov Institute of Applied Physics of the Russian Academy of Sciences, N. Novgorod, Russia A specific nonlinear regime of electron cyclotron instability is discussed aimed at explanation of complex tempo- ral patterns of stimulated electromagnetic radiation from a mirror trap with non-equilibrium plasma typical of ECR discharge. This regime is characterized by self-modulation of a plasma cyclotron maser due to coherent interference of two counter-propagating unstable waves with degenerate frequencies. The proposed simple theoretical model allows reproducing multi-scale behavior of quasi-periodic pulses of electromagnetic radiation and precipitation of energetic electrons detected at a laboratory setup based on a mirror trap with plasma sustained by mm-wave gyro- tron radiation. PACS: 52.35.Hr, 52.72.+v INTRODUCTION Laboratory setups based on mirror traps are actively used to simulate nonlinear wave-particle interactions in space plasmas. In particular, we reported previously that a new regime of electron cyclotron (EC) instability has been revealed in a compact mirror trap during the plas- ma decay [1]. In these experiments plasma discharge with duration of ~1 ms was sustained by 37.5 GHz / 80 kW gyrotron under the EC resonance conditions. The ECR heating results in an electron distribution function that consists of two fractions, one of them being a small en- ergetic addition to the other component which is much cooler and denser. In the reported experiments the bulk plasma density is about 1013 cm-3, an electron tempera- ture is 300 eV, a hot-electron density is 5×1010 cm-3, and an effective hot-electron temperature (primarily the transverse energy) is 10 keV. Detailed description on this experiment is given in the accompanying paper [2] in this issue. Here we only mention that intense short- pulse (5 μs) emissions of fast (10…100 keV) electrons and synchronous bursts of electromagnetic radiation at the fundamental cyclotron harmonic have been observed with about 1 ms delay after the end of the microwave pulse supporting the initial non-equilibrium plasma. Observed bursts form rather complex temporal patterns – the interval between single spikes in a time series may become irregular, spikes may join in double-bursts, and a kind of stochastic generation regime is sometimes detected. Typical examples of such activity are shown in Fig. 1 (top). The important feature of this data is that different patterns were observed quite randomly for the same experimental conditions. In the present communi- cation we discuss a possible simple mechanism respon- sible for such complex and random temporal behavior of the observed burst activity. 1. TWO-LEVEL MASER MODEL Main features of the instability were reproduced by the model of simple two-level maser proposed in our previous paper [3]. The joint evolution of the hot- electron density N and the density of the electromag- netic energy W can be qualitatively described by the following equations / , / . / ( ) , hdN dt W N h T dW dt W hN κ κ γ ν γ = − ≈⎧ ⎨ = − ≈⎩ (1) The first equation describes the rf-field-induced losses of hot electrons with effective temperature Th, while the second equation describes the change of the wave en- ergy in terms of the relation between the linear instabil- ity growth-rate γ and dissipation ν. The coefficients κ and h determine the losses of hot particles and the aver- aged growth-rate, respectively. The derivation of Eqs. (1) from the quasi-linear plasma theory and com- prehensive discussion of its application limits can be found, e.g., in Ref. [4]. Quasi-linear interaction of hot resonant electrons with the electromagnetic wave exponentially increasing at the linear stage of instability reduces its transverse energy. As a result, some fast electrons fall within a loss cone and leave a trap. These losses reduce the instability growth rate and, finally, restrict the increase in the elec- tromagnetic energy density in the system. Here the dis- sipation is governed by electron collisions with the background plasma thus )(tν is assumed to be known function monotonically decreasing during the plasma decay after the gyrotron power switch-off. Decrease in the wave energy losses provides repeated recovery of the instability conditions and thus serves as an effective source of free energy. This particular feature is respon- sible for the operation of the cyclotron maser in absence of a direct pump at the plasma decay stage. The above model describes relatively well some es- sential features of the measured data, but it does not reproduce the essential features of the latest data in which quite different patterns of the burst activity were observed randomly for the same experimental condi- tions [2]. This random switching between different non- linear regimes of instability may be explained as a result of self-modulation of a plasma cyclotron maser due to coherent interference of two (or more) unstable waves with degenerate frequencies resulting in spatial modula- tion of amplification. Let us consider a simplest case of two counter-propagating modes with complex ampli- tudes a+ and a– such that the wave field may be repre- sented as follows )exp()()exp()( tiiktatiiktaE ωξωξδ −−+−∝ −+ . 112 ISSN 1562-6016. ВАНТ. 2013. №1(83) Note that in an axisymmetric trap spatial coordinate ξ stands most likely for the azimuthal direction. A stand- ing wave formed by two coherent counter-propagating modes result in modulation n~ of the hot electron den- sity at the second spatial harmonic, such that { } 0~ )]2exp()(Re[)( NiktntnN ξ+= . In turn this results in the same modulation of the growth-rate and in the Bragg scattering that couples the counter-propagating modes. Taking all these effects into account, one obtains the following modification of the basic maser equations (1): 2 2 * * * ~ ~ 2 2 * ~ ~ 1 1 ~2 2 *1 1 ~2 2 / (| | | |) / (| | | |) . / ( ) / ( ) dn dt a a n a a n a a n dn dt a a n a a n da dt n a a n da dt n a a n ν ν + − + − + − + − + − + + − − − + ⎧ = − + − − ⎪ = − + −⎪ ⎨ = − +⎪ ⎪ = − +⎩ (2) Here all densities are normalized over the initial density of hot electrons 0N , time t0γτ = and dissipation rate 0/ γν are normalized over the initial growth-rate 00 hN=γ , the wave amplitudes are chosen such that the wave energy is scaled in terms of initial hot-electron energy, ||||/ 22 0 −+ += aaTNW h , and the superscript star denotes a complex conjugate. Particular regimes that are of interest in context of the present paper are related to the initial conditions .)0(,)0(,0)0(,1)0( ~ thth aaaann −−++ ==== Here initial wave amplitudes are defined by thermal fluctuations in a hot plasma; their level in our experi- ments may be estimated as [5] 8 0 2 2 0 2 2 10~~8/|||| − ± <Δ>< = NcTN Ea h th π ωωπδ , where 302~ ⋅πω GHz and ωω <Δ are, correspond- ingly, the frequency and the spectral width of the ex- cited mode, and 10 0 102~ ⋅N cm-3. Zero initial condi- tion for the density modulation n~ reflects the fact that in our case the initial density fluctuations (before the excitation of the maser) may be ignored since the modu- lation of inversion is over-pumped by the exciting waves during the burst formation. In this case solutions of equations (2) conserve the phase of wave amplitudes. Therefore, without loss of generality one can consider only real valued initial conditions for the wave amplitudes. Some interesting qualitative properties of maser dynamics in this regime have been identified in our early paper [6]. 2. TOWARDS EXPLANATION OF THE EXPERIMENTAL DATA The dynamics of the background plasma component is very essential for the proposed model since decreas- ing wave losses in the background plasma actually pump the maser instability. Unfortunately, measure- ments of the background plasma parameters have been possible only for the steady state ECR discharge and no reliable data are available describing the decay phase. So we reconstruct the electron density and temperature during the plasma decay basing on the particle and en- ergy balance equations solved with initial conditions corresponded to the measured parameters of the ECR discharge. As applied to the discussed experiment, this technique was implemented earlier in [1, 6]. In our ex- periment the wave losses were mainly defined by the electron-ion collisions in the background plasma, so the loss rate is approximately equal to the effective colli- sional rate 2/3−∝≈ eeei TNνν [7]. Example of evolution of the loss rate is shown in Fig. 2. Maser generation typically starts at 6.0* ≈t ms, what corresponds to the characteristic growth rate of 17 *0 s104.4)( −⋅≈= tνγ . (3) While the instability was observed, the collisional loss rate can be approximated as exponential decay 7 1 3 1 0 1 * 0 1( ) exp[ ( )], 5.5 10 s , 3.8 10 s .t t tν ν ν ν ν− −= − ≈ ⋅ ≈ ⋅ At time t* the electron temperature Te is about 0.1 eV and the typical background density is Ne ~ 1011 cm-3, the Fig. 1. Top: oscillograms of the signals from the pin diode measured precipitations of hot electrons from the trap after the gyrotron power is switched-off. Bottom: precipitation of hot electrons (dn/dt) calculated from equations (2) for dif- ferent ratios δa between the initial amplitudes of two competing modes. One can see quasi-periodic (left), chaotic (cen- ter) and double-burst (right) regimes similar to those observed experimentally. Time is normalized over initial growth- rate (γ0). Initial conditions: a+=10–2 ν1 / γ0 , a-=10–2 δa ν1 / γ0, n=1, n~=0. Plasma decay is modeled by exponent with ν0 / γ0= 1.05, ν1 / γ0=0.0003 ISSN 1562-6016. ВАНТ. 2013. №1(83) 113 density and pressure ratios between hot and bulk plasma fractions are Nh / Ne ~ 0.1 and NhTh / NeTe ~ 104…105. This data agrees to the previously published results [1]. Fig. 2. Evolution of the collisional loss rate during the plasma decay and its analytical approximation at the instability stage. The time interval where the instability was observed is shown in gray Peculiar feature of the proposed model is its sensitiv- ity to small variations of initial conditions in the pa- rameter range typical of described experiments. In par- ticular, essentially different temporal patterns may be obtained for slightly different initial amplitudes of the counter-propagating waves while all other parameters of the system remain the same, see Fig. 1 (lower plots). Note that a random spread in the initial wave amplitudes is very natural due to its thermal origin. Once excited, both modes described above compete for the same re- sources, namely a free energy stored in hot electrons, so one mode typically dominates over another. The re- sulted maser dynamics show rather complex behavior similar to what was observed in the experiment. Note that in the theoretical plots time is normalized over the initial growth-rate γ0 which is a free parameter here. In order to match the experimental data one should assume 4 01 103/ −⋅≈γν what corresponds to 7 0 103.1 ⋅≈γ s-1. This fits well to the estimate (3) obtained from the plasma decay modeling. Note that 7 0 10~γ is in a good agree- ment with the kinetic cyclotron instability of the extraor dinary wave propagating quasi-perpendicular to the mag- netic field near the fundamental cyclotron harmonic that may be attributed to explain our experiment [1]. CONCLUSIONS The self-modulation of the cyclotron maser may ex- plain qualitatively the variety and randomness of the observed data. The proposed model is very simple so it does not require knowledge of the details such as par- ticular type and characteristics of the unstable modes. Matching of the model to the experimental data results in a realistic estimation for the growth rate typical of the extraordinary wave instability at the fundamental cyclo- tron resonance. However, quantitative modeling re- quires more elaborate study which accounts for the wave traveling outside the generation region as well as plasma inhomogeneity in the radial direction across the magnetic trap. The work has been supported by RFBR (grants 10- 02-00441, 10-02-00646) and the Presidential Council for Young Scientist Support (grant MK-3061.2012.2). REFERENCES 1. A.V. Vodopyanov et al. // JETP. 2007, № 104 p. 296. 2. M.E. Viktorov et al. // PAST, Ser. «Plasma Physics». 2012, p. 158. 3. A.G. Shalashov et al. // JETP Lett. 2006, №84, p. 314. 4. V.Yu. Trakhtengerts, M.J. Rycroft. Whistler and Alfven Mode Cyclotron Masers in Space.NY: Cambridge, 2008. 5. N.A. Krall, A.W. Trivelpiece. Principles of Plasma Physics.NY: «McGraw-Hill», 1973, p. 674. 6. A.G. Shalashov et al. // PPCF. 2012, № 54 р. 085023. 7. V.L. Ginzburg. The Propagation of Electromagnetic Waves in Plasmas. NY: «Pergamon Press», 1970, p. 615. Article received 23.09.12 ГЕНЕРАЦИЯ ШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ПРИ РАСПАДЕ ПЛАЗМЫ ЭЦР-РАЗРЯДА В ПРЯМОЙ МАГНИТНОЙ ЛОВУШКЕ А.Г. Шалашов, С.В. Голубев, Е.Д. Господчиков, Д.А. Мансфельд, М.Е. Викторов, А.В. Водопьянов Обсуждается новый нелинейный режим электронно-циклотронной неустойчивости, объясняющий слож- ную временную динамику импульсов электромагнитного излучения сильнонеравновесной плазмы ЭЦР- разряда в прямой магнитной ловушке. Режим реализуется при самомодуляции циклотронного мазера полем биений двух встречных неустойчивых волн с вырожденными частотами. Предложенная простая теоретиче- ская модель позволяет воспроизвести многомасштабную структуру импульсов электромагнитного излуче- ния и высыпания энергичных электронов, зарегистрированных в лабораторном эксперименте с использова- нием прямой ловушки с плазмой, поддерживаемой излучением гиротрона миллимeтрового диапазона. ГЕНЕРАЦІЯ ШИРОКОСМУГОВОГО ЕЛЕКТРОМАГНІТНОГО ВИПРОМІНЮВАННЯ ПРИ РОЗПАДІ ПЛАЗМИ ЕЦР-РОЗРЯДУ В ПРЯМІЙ МАГНІТНІЙ ПАСТЦІ А.Г. Шалашов, С.В. Голубєв, Є.Д. Господчиков, Д.А. Мансфельд, М.Є. Вікторов, А.В. Водоп’янов Обговорюється новий нелінійний режим електронно-циклотронної нестійкості, що пояснює складну часову динаміку імпульсів електромагнітного випромінювання сильнонеравномірної плазми ЕЦР-розряду в прямій магнітній пастці. Режим реалізується при самомодуляціі циклотронного мазера полем биття двох зустрічних нестійких хвиль з виродженими частотами. Запропонована проста теоретична модель дозволяє відтворити багатомасштабну структуру імпульсів електромагнітного випромінювання та висипання енергійних електронів, зареєстрованих у лабораторному експерименті з використанням прямої пастки з плазмою, що підтримується випромінюванням гіротрона миллиметрового діапазону.