Тензор Грина кристаллов гексагональной системы
Метод построения тензора Грина для основного уравнения теории упругости в случае анизотропной среды, предложенный И.М. Лифшицем и Л.Н. Розенцвейгом, в принципе, сводится к вычетам и подразумевает нахождение корней (полюсов) некоторого алгебраического уравнения шестой степени. В зависимости от значен...
Saved in:
| Date: | 2012 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/109345 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Тензор Грина кристаллов гексагональной системы / П.Н. Остапчук // Вопросы атомной науки и техники. — 2012. — № 5. — С. 40-45. — Бібліогр.: 8 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Метод построения тензора Грина для основного уравнения теории упругости в случае анизотропной среды, предложенный И.М. Лифшицем и Л.Н. Розенцвейгом, в принципе, сводится к вычетам и подразумевает нахождение корней (полюсов) некоторого алгебраического уравнения шестой степени. В зависимости от значений упругих модулей кристалла эти полюсы могут быть комплексными либо чисто мнимыми. В работе компоненты тензора Грина кристаллов гексагональной системы получены в общем виде, справедливом как для мнимых, так и для комплексных полюсов. В отличие от металлов кубической сингонии результат является точным. Показан предельный переход к изотропному приближению. |
|---|