On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak
It is known that in plasmas with a magnetic field the Hall electric field is generated at the expense of the charge separation on the magnetic Debye radius rB=|B|/(4pene). In addition, the plasma current equilibrium can arise, where the charged particles are drifting in the crossed electric and magn...
Збережено в:
| Дата: | 2007 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/110323 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak / A.V Gordeev // Вопросы атомной науки и техники. — 2007. — № 1. — С. 3-5. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110323 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1103232025-02-10T01:38:43Z On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak Про можливості резонансного механізму генерації ELM при інжекції пучка нейтральних часток у токамаках О возможности резонансного механизма генерации ELM при инжекции пучка нейтральных частиц в токамаках Gordeev, A.V. Magnetic confinement It is known that in plasmas with a magnetic field the Hall electric field is generated at the expense of the charge separation on the magnetic Debye radius rB=|B|/(4pene). In addition, the plasma current equilibrium can arise, where the charged particles are drifting in the crossed electric and magnetic fields. Such a situation can be realized in tokamaks as a result of the ionization processes for the beams of the energetic neutral particles that are injected in tokamaks in order to increase the plasma density and temperature. In this presentation, the generation of the resonance instability for the azimuthal drifting flux of the ions and electrons crosswise to the strong magnetic field is considered. Відомо, що в плазмі з магнітним полем генерація холловського електричного поля за рахунок поділу зарядів відбувається на магнітному дебаєвському радіусі rB=|B|/(4pene). При цьому можливо утворення плазмової токової рівноваги, де заряджені частки дрейфують у схрещених електричному і магнітному полях. Така ситуація може бути реалізована в токамаках як наслідок процесів іонізації пучка енергійних нейтральних часток, інжектуємих у токамаки, з метою підвищення густини плазми і її температури. Розглянуто генерацію резонансної нестійкості азимутальних потоків іонів і електронів, що дрейфують поперек сильного магнітного поля. Известно, что в плазме с магнитным полем генерация холловского электрического поля за счёт разделения зарядов происходит на магнитном дебаевском радиусе rB=|B|/(4pene). При этом возможно образование плазменного токового равновесия, где заряженные частицы дрейфуют в скрещённых электрическом и магнитном полях. Такая ситуация может быть реализована в токамаках в результате процессов ионизации пучка энергичных нейтральных частиц, инжектируемых в токамаки, с целью увеличения плотности плазмы и её температуры. Рассмотрена генерация резонансной неустойчивости азимутальных потоков ионов и электронов, дрейфующих поперёк сильного магнитного поля. This paper has been partially supported within the System of the Initiative Projects of Russian Research Centre “Kurchatov Institute” 2007 Article On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak / A.V Gordeev // Вопросы атомной науки и техники. — 2007. — № 1. — С. 3-5. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.30.Ex, 52.35.We, 52.55.-s https://nasplib.isofts.kiev.ua/handle/123456789/110323 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Magnetic confinement Magnetic confinement |
| spellingShingle |
Magnetic confinement Magnetic confinement Gordeev, A.V. On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak Вопросы атомной науки и техники |
| description |
It is known that in plasmas with a magnetic field the Hall electric field is generated at the expense of the charge separation on the magnetic Debye radius rB=|B|/(4pene). In addition, the plasma current equilibrium can arise, where the charged particles are drifting in the crossed electric and magnetic fields. Such a situation can be realized in tokamaks as a result of the ionization processes for the beams of the energetic neutral particles that are injected in tokamaks in order to increase the plasma density and temperature. In this presentation, the generation of the resonance instability for the azimuthal drifting flux of the ions and electrons crosswise to the strong magnetic field is considered. |
| format |
Article |
| author |
Gordeev, A.V. |
| author_facet |
Gordeev, A.V. |
| author_sort |
Gordeev, A.V. |
| title |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak |
| title_short |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak |
| title_full |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak |
| title_fullStr |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak |
| title_full_unstemmed |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak |
| title_sort |
on the possibility for the resonance elm-generation mechanism by the injection of the neutral particle beam in tokamak |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2007 |
| topic_facet |
Magnetic confinement |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110323 |
| citation_txt |
On the possibility for the resonance ELM-generation mechanism by the injection of the neutral particle beam in tokamak / A.V Gordeev // Вопросы атомной науки и техники. — 2007. — № 1. — С. 3-5. — Бібліогр.: 7 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT gordeevav onthepossibilityfortheresonanceelmgenerationmechanismbytheinjectionoftheneutralparticlebeamintokamak AT gordeevav promožlivostírezonansnogomehanízmugeneracííelmpriínžekcíípučkaneitralʹnihčastokutokamakah AT gordeevav ovozmožnostirezonansnogomehanizmageneraciielmpriinžekciipučkaneitralʹnyhčasticvtokamakah |
| first_indexed |
2025-12-02T12:50:39Z |
| last_indexed |
2025-12-02T12:50:39Z |
| _version_ |
1850400926997676032 |
| fulltext |
MAGNETIC CONFINEMENT
Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 3-5 3
ON THE POSSIBILITY FOR THE RESONANCE ELM-GENERATION
MECHANISM BY THE INJECTION OF THE NEUTRAL PARTICLE BEAM
IN TOKAMAK
A.V. Gordeev
RRC “Kurchatov Institute”, Moscow, Russia, e-mail: gordeev@dap.kiae.ru
It is known that in plasmas with a magnetic field the Hall electric field is generated at the expense of the charge
separation on the magnetic Debye radius ( )eB en4Br π=
r . In addition, the plasma current equilibrium can arise, where
the charged particles are drifting in the crossed electric and magnetic fields. Such a situation can be realized in
tokamaks as a result of the ionization processes for the beams of the energetic neutral particles that are injected in
tokamaks in order to increase the plasma density and temperature. In this presentation, the generation of the resonance
instability for the azimuthal drifting flux of the ions and electrons crosswise to the strong magnetic field is considered.
In this case, the generation of the resonance instability by the account of the ion inertia is obtained for the fast
magnetosonic oscillations by
Biω>>ω [ ( )cmBez iiBi
r
=ω is the ion cyclotron frequency], when the resonance condition
pi0kv ω±=−ω ( )22
z
2
pi
1
0pi ck+ωγ=ω − is valid for some points ( is the oscillation frequency, v0 is the beam velocity
of the charged particles, 1
Brk −≤ is the oscillation wave vector, ωpi is the ion plasma frequency). The considered
instability corresponds to the parameter range 0ii
22
ii cvmn4Bcmn4 π>>>>π .
PACS: 52.30.Ex, 52.35.We, 52.55.-s
1. INTRODUCTION
The problem of the plasma heating and the equilibrium
confinement in tokamaks is the main problem in the
project ITER [1]. As it follows from [1,2], the problem of
the stable equilibrium itself and in particular the problem
of the ELM generation in tokamaks, as yet, far enough
from the complete resolution. It is not ruled out that it is
just the inclusion of this problem in the complicated
numerical codes which is not favorable for the elucidation
of the ELM mechanism. In the presented paper the
attempt is made by way of example for the cylindrical
model of the tokamak to consider the resonance instability
which arises quite naturally by the propagation through
plasma of the energetic particles’ flux. The instability
considered is suggested as the physical mechanism of the
ELM. In this case, the energetic particles can be generated
as a result of the ionization of the neutral particles’ fluxes,
which usually used for the increasing of the plasma
density and temperature in tokamaks [1]. It is known, that
by the injection of the charged particles of the high energy
in the plasma with the magnetic field the propagation of
this beams on the account of the Hall electric field [3,4]
arises. In the case of the plasma cylinder with the
longitudinal magnetic field Bz due to the absence of the
unidirectional stationary azimuthal electric field Eθ the
azimuthal particle drift on the account of the radial
electric field Er arises. Thus, in contrast to the considered
in [5] plane case, in the cylindrical geometry by the
presence of the longitudinal magnetic field the drifting
rotation of the plasma flux occurs. One can show that the
drift plasma fluxes turn out to be unstable relative to the
fast magnetosonic oscillations near the lower hybrid
range of frequency. In addition, the characteristic size
scale of these oscillations is about the magnetic Debye
radius ( )eB en4Br π= . The presented instability is
proposed as the ELM – generation mechanism.
2. THE MAIN EQUATIONS
Further on, the case will be considered when the energy
of the injected particles is essentially larger than the
thermal energies of the tokamak particles, so the particles
temperatures will not be taken into account. Therefore, for
the describing of the ion and electron motion in the strong
electric and magnetic fields the relativistic equations for
the cold particles are used
]Bv[
c
ez
Eez
dt
pd
i,e
i,e
i,e
i,e rrr
r
×+= (1)
and Maxwell equations
t
E
c
1)vnvnz(
c
e4]B[ eeiii ∂
∂
+−
π
=×∇
r
rrr
,
]E[
t
B
c
1 r
r
×∇=
∂
∂
− , )nnz(e4E eii −π=⋅∇
r
. (2)
Here i,evr is the electron and ion velocities,
i,ei,ei,e vmp rr
γ= , 22
i,e cv11 r
−=γ , i,en are the
electron and ion densities, zi is the ion charge number,
ze = -1, E
r
is the electric field, B
r
is the magnetic field.
3. THE DERIVATION OF THE DISPERSION
RELATION FOR THE RESONANCE
INSTABILITY OF THE DRIFT FLUX OF IONS
AND ELECTRONS
In the considered frequency range, the large electron
mobility along the magnetic field B0 is of the essential
importance. Then by neglecting the electron inertia in the
transverse direction one can obtain the following equation
relative E in the WKB approximation (see also [6]):
mailto:gordeev@dap.kiae.ru
4
0E)s(k
ds
Ed 2
02
2
=− θ
θ ,
22
2
pi
2
0
2
pi
22
0 ~
~
1)s(k
Ω−Ω
ΩΩ
Λ+Ω+Ω−= , (3)
Here
kc
ω
=Ω , 0k
k~ β−Ω θ ,
22
i
i
22
i2
pi kcm
nez4π
=Ω ,
2
0
2
ii
0 B
cmn4π
=Λ ,
+Ω
γ
=Ω 2
2
z2
pi2
0
2
k
k1 ,
0r
mk =θ , 2
z
22 kkk += θ . Here m is the integer.
Here, one can consider that the spatial region r, where
the drifting flux settles down, corresponds to the
characteristic radius r0>> r, what allows to neglect the
cylindrical effects. In the following presentation, because
of the inequality θ<< kk z , one can consider that
( )θθ = ksignkk and ( ) 0vksign~
θ−Ω=Ω .
4. THE RESONANCE PLASMA INSTABILITY
FOR THE AZIMUTHAL DRIFTING FLUX OF
IONS AND ELECTRONS
From the equation (3) one can see that the effective
interaction of the drifting flux with the electromagnetic
oscillations occurs in the poles, where pi0vk ω±=−ω θ ,
( )22
z
2
pi
1
0pi ck+ωγ=ω − . Here, the values v0 and piω
are determined by the ion flux parameters, and the
frequency is determined by the ground plasma. Of
course, the drifting flux goes through the ground plasma.
However, in the calculations the drifting fluxes and the
ground plasma will be spatially separated. This procedure
results in the diminishing of the instability increment
without any change of the physical mechanism.
By the further investigations within the frame of the
Eq.(3), we take approach from that used in the paper [7].
As one can see from the Figure, in the region of the
azimuthal flux there exists the pole-pole well ( )21 s,s ,
The plasma velocity profile and the contour in the
complex plane
and in the region of the ground plasma there exists the
zero – zero well (s1,s2). Both these regions correspond to
the negative values of )s(k 2
0 . For the construction of the
perturbations that go to zero by ±∞→s , one must use
the Landau rule when one should add to the frequency
the small positive imaginary quantity: ε+ω→ω i ,
where > 0.
With this procedure in mind, the electric field E , that by
( )1sRes < to the left of the pole potential well ( )21 s,s
goes to zero and is equal to
= ∫θ
s
s
0
0 1
dskexp
k
BE , (4)
after the passage through the pole 1s is transformed
inside the pole potential well ( )21 s,s into the traveling
wave [7]
( )[ ] ( )
π
−−
−
= ∫θ
s
s
2
04/12
0 1
4
dsskiexp
sk
BE , (5)
that after the passage through the pole 2s for
( )2sRes > turns to the exponentially increasing solution
by the moving away from the 2s . In this case, by the
sewing the solution, that increases by the going away
from the pole 2s , with the exponentially descending
solution to left of the potential well ( )21 s,s for
12 sss << , one can obtain the connection condition
between the coefficients A and B
( ) ( ) ( )
−−≅
−− ∫∫
1
2
2
1
s
s
0
q
s
s
2
0 dssk2expA1dsskiexpiB . (6)
In addition, because of the exponentially weak
connection between oscillations in the regions ( )21 s,s
and ( )21 s,s the dispersion relation is determined by the
equation
+π=−∫ 2
1q)s(kds
2
1
s
s
2
0
, q = 1, 2, 3,… (7)
Now, multiplying equation (3) by the complex conjugate
electric field amplitude *E θ and then subtracting from the
obtained expression the complex conjugated quantity, one
can arrive, after the integration with respect to s, at the
following relation:
( )
( )
=
Ω∂
∂
−
Ω ∫ Re
k
sk
dsIm
2
0
s
s
2
0
2
1
( ) ( )
−Ω ∫
1
2
02exp~ s
s
dssksign , (8)
where
( ) ( )
( )( )[ ]
Ω−Ω
ΩΩ
ΛΩ+Ω−=
Ω∂
∂
2
22
2
pi
2
0
2
0
~Re
~ReRe2
Re
k
Thus, the instability there exists, when ( )Ω~sign has the
opposite values in the potential wells ( )21 s,s and ( )21 s,s .
This is the case, when ( ) 0Re >Ω for the ground plasma
and ( ) 0~Re <Ω for the drifting flux of ions and electrons.
This relation gives for the ion beams with the density
ne ~ 1011 cm-3 the increment ( )ΩIm ~ 108 s-1.
5
5. CONCLUSIONS
Within the framework of the investigated instability one
can explain the relaxation oscillations that arise by the
generation of the ELM disturbances [1]. Indeed, the
considered instability is determined by the resonance
condition pi0vk ω±=−ω θ , where the value of is
somewhat less than the ion plasma frequency that
corresponds to the ground plasma. By the arising of the
ELM perturbations, the density decrease of the ground
plasma in the edge region occurs what results in the
decrease of the ion plasma frequency and the value of
itself. This must lead to the violation of the resonance
condition and also to the termination of the instability. As
a result, the plasma density increases and the ELM
generation arises anew.
ACKNOWLEDGEMENT
This paper has been partially supported within the System
of the Initiative Projects of Russian Research Centre
“Kurchatov Institute”.
REFERENCES
1. ITER PHYSICS BASIS // Nuclear Fusion. 1999, v.39,
N12.
2. Book of Abstracts of the 33 European Physical Society
Conference on Plasma Physics, Roma, Italy, June 19-23,
2006.
3. A.V. Gordeev, T.V. Losseva // Plasma Physics
Reports. 2005, v.31, N1, p.26.
4. A.V.Gordeev // Plasma Physics Reports. 2006, v.32,
N9, p.780.
5. A.V. Gordeev// Proceedings of the 22nd Symposium on
Plasma Physics and Technology, Prague, June 26-29,
2006 / Czechoslovak Journal of Physics, v.58, 2006,
Suppl. B, p.73.
6. V.D. Shafranov // Reviews of Plasma Physics /ed. by
M.A. Leontovich. New York: “Consultants Bureau”.
1967, v.3.
7. A.V.Gordeev, L.I. Rudakov// Sov. Phys. JETP. 1969,
v.28, p.1226.
ELM
A. .
,
( )eB en4Br π=
r .
, .
,
, .
,
.
Biω>>ω [ ( )cmBez iiBi
r
=ω - ], pi0kv ω±=−ω
( )22
z
2
pi
1
0pi ck+ωγ=ω − ( - , v0 -
, 1
Brk −≤ - , ωpi - ).
0ii
22
ii cvmn4Bcmn4 π>>>>π .
ELM
.
,
( )eB en4Br π=
r .
, .
, ,
.
, .
Biω>>ω [ ( )cmBez iiBi
r
=ω -
], pi0kv ω±=−ω ( )22
z
2
pi
1
0pi ck+ωγ=ω −
( - , v0 - , 1
Brk −≤ - , ωpi -
). 0ii
22
ii cvmn4Bcmn4 π>>>>π .
|