The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator

The motion of the charged test particles ensemble of tungsten ions in the drift optimized stellarator Wendelstein 7-X with the chain of 5 magnetic islands is studied. The numerical code solves the guiding center equations written in the Hamiltonian form. To simulate the Coulomb scattering the Mont...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2008
Main Authors: Kononenko, Zh.S., Shishkin, A.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/110356
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator / Zh.S. Kononenko, A.A. Shishkin // Вопросы атомной науки и техники. — 2008. — № 4. — С. 95-98. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110356
record_format dspace
spelling Kononenko, Zh.S.
Shishkin, A.A.
2017-01-03T16:54:30Z
2017-01-03T16:54:30Z
2008
The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator / Zh.S. Kononenko, A.A. Shishkin // Вопросы атомной науки и техники. — 2008. — № 4. — С. 95-98. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 52.55.Fa
https://nasplib.isofts.kiev.ua/handle/123456789/110356
The motion of the charged test particles ensemble of tungsten ions in the drift optimized stellarator Wendelstein 7-X with the chain of 5 magnetic islands is studied. The numerical code solves the guiding center equations written in the Hamiltonian form. To simulate the Coulomb scattering the Monte Carlo collision operator is used. The scattering of the particles due to the collisions and magnetic islands is shown. The question of the possibility to use the magnetic islands for the prevention of impurity penetration to the plasma is discussed
Вивчено рух ансамблю заряджених частинок іонів вольфраму у дрейфово-оптимізованому стелараторі Вендельштайн 7-Х з ланцюгом з п’яти магнітних островів. Рівняння ведучого центру, що записані у гамільтоновій формі, розв’язуються чисельно. Для моделювання кулонівського розсіяння використовується дискретний оператор Монте-Карло. Показано розсіяння частинок в полоїдальному перерізі під впливом зіткнень та магнітних островів. Обговорюється питання про можливість використання островів для запобігання проникання домішок у плазму.
Изучено движение ансамбля заряженных тестовых частиц ионов вольфрама в дрейфово- оптимизированном стеллараторе Вендельштайн 7-Х с цепочкой из пяти магнитных островов. Уравнения ведущего центра, записанные в гамильтоновской форме, решаются численно. Для моделирования кулоновского рассеяния используется дискретный оператор Монте-Карло. Показано рассеяние частиц в полоидальном сечении под воздействием столкновений и магнитных островов. Обсуждается вопрос о возможности использования магнитных островов для предотвращения проникновения примесей в плазму.
The authors would like to thank the Science and Technology Center in Ukraine (Project № 3685) for the partial support of this work.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Термоядерный синтез (коллективные процессы)
The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
Вплив магнітних островів на рух іонів домішки у дрейфово-оптимізованому стелараторі
Влияние магнитных островов на движение примесных ионов в дрейфово-оптимизированном стеллараторе
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
spellingShingle The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
Kononenko, Zh.S.
Shishkin, A.A.
Термоядерный синтез (коллективные процессы)
title_short The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
title_full The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
title_fullStr The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
title_full_unstemmed The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
title_sort influence of magnetic islands on the impurity ion motion in the drift optimized stellarator
author Kononenko, Zh.S.
Shishkin, A.A.
author_facet Kononenko, Zh.S.
Shishkin, A.A.
topic Термоядерный синтез (коллективные процессы)
topic_facet Термоядерный синтез (коллективные процессы)
publishDate 2008
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вплив магнітних островів на рух іонів домішки у дрейфово-оптимізованому стелараторі
Влияние магнитных островов на движение примесных ионов в дрейфово-оптимизированном стеллараторе
description The motion of the charged test particles ensemble of tungsten ions in the drift optimized stellarator Wendelstein 7-X with the chain of 5 magnetic islands is studied. The numerical code solves the guiding center equations written in the Hamiltonian form. To simulate the Coulomb scattering the Monte Carlo collision operator is used. The scattering of the particles due to the collisions and magnetic islands is shown. The question of the possibility to use the magnetic islands for the prevention of impurity penetration to the plasma is discussed Вивчено рух ансамблю заряджених частинок іонів вольфраму у дрейфово-оптимізованому стелараторі Вендельштайн 7-Х з ланцюгом з п’яти магнітних островів. Рівняння ведучого центру, що записані у гамільтоновій формі, розв’язуються чисельно. Для моделювання кулонівського розсіяння використовується дискретний оператор Монте-Карло. Показано розсіяння частинок в полоїдальному перерізі під впливом зіткнень та магнітних островів. Обговорюється питання про можливість використання островів для запобігання проникання домішок у плазму. Изучено движение ансамбля заряженных тестовых частиц ионов вольфрама в дрейфово- оптимизированном стеллараторе Вендельштайн 7-Х с цепочкой из пяти магнитных островов. Уравнения ведущего центра, записанные в гамильтоновской форме, решаются численно. Для моделирования кулоновского рассеяния используется дискретный оператор Монте-Карло. Показано рассеяние частиц в полоидальном сечении под воздействием столкновений и магнитных островов. Обсуждается вопрос о возможности использования магнитных островов для предотвращения проникновения примесей в плазму.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110356
citation_txt The influence of magnetic islands on the impurity ion motion in the drift optimized stellarator / Zh.S. Kononenko, A.A. Shishkin // Вопросы атомной науки и техники. — 2008. — № 4. — С. 95-98. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT kononenkozhs theinfluenceofmagneticislandsontheimpurityionmotioninthedriftoptimizedstellarator
AT shishkinaa theinfluenceofmagneticislandsontheimpurityionmotioninthedriftoptimizedstellarator
AT kononenkozhs vplivmagnítnihostrovívnaruhíonívdomíškiudreifovooptimízovanomustelaratorí
AT shishkinaa vplivmagnítnihostrovívnaruhíonívdomíškiudreifovooptimízovanomustelaratorí
AT kononenkozhs vliâniemagnitnyhostrovovnadviženieprimesnyhionovvdreifovooptimizirovannomstellaratore
AT shishkinaa vliâniemagnitnyhostrovovnadviženieprimesnyhionovvdreifovooptimizirovannomstellaratore
AT kononenkozhs influenceofmagneticislandsontheimpurityionmotioninthedriftoptimizedstellarator
AT shishkinaa influenceofmagneticislandsontheimpurityionmotioninthedriftoptimizedstellarator
first_indexed 2025-11-26T23:37:03Z
last_indexed 2025-11-26T23:37:03Z
_version_ 1850781574727991296
fulltext THE INFLUENCE OF MAGNETIC ISLANDS ON THE IMPURITY ION MOTION IN THE DRIFT OPTIMIZED STELLARATOR Zh.S. Kononenko, A.A. Shishkin1 Kharkiv V.N. Karazin National University, Kharkоv, Ukraine 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: kononenko_zh@mail.ru The motion of the charged test particles ensemble of tungsten ions in the drift optimized stellarator Wendelstein 7-X with the chain of 5 magnetic islands is studied. The numerical code solves the guiding center equations written in the Hamiltonian form. To simulate the Coulomb scattering the Monte Carlo collision operator is used. The scat- tering of the particles due to the collisions and magnetic islands is shown. The question of the possibility to use the magnetic islands for the prevention of impurity penetration to the plasma is discussed. PACS: 52.55.Fa 1. INTRODUCTION The control of impurity ions plays the important role for the plasma confinement in the present-day toroidal fusion magnetic devices. Impurities come to the plasma from the walls and divertor plates and lead to the sig- nificant increase of the bremsstrahlung radiation losses. The most dangerous for the confinement are the impuri- ties of heavy metals such as molybdenum and tungsten. In this paper, the motion of the ensemble of tungsten impurity ions in the magnetic field of Wendelstein 7-X is studied. W7-X is the modular stellarator being con- structed at Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The W7-X coil system consists of 50 modular and 20 planar non-circular coils com- bined in M=5 magnetic periods [1]. There are also 10 control coils used to control the magnetic island posi- tion. The coil system of W7-X is developed in such a way that the drift losses are minimized in this configura- tion. The main W7-X parameters are the following: the major plasma radius R0=5.5 m, minor plasma radius a=0.52 m, the average magnetic field on the magnetic axis B ___________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 4. Серия: Плазменная электроника и новые методы ускорения (6), с.95-98. 95 B0=2.5 T. In our previous paper [2] it was shown how the magnetic islands influence on the impurity transport when the particles do not form the drift islands. In this paper, we concentrate our attention on a such collision- ality regime when the particles form the drift island and study the influence of the magnetic islands on the parti- cle dynamics. 2. MAGNETIC FIELD MODEL For the analytical description and numerical calcula- tions we use Boozer magnetic coordinates ),,( φθψ , where ψ is the label of the magnetic surfaces, θ and φ are the poloidal and toroidal angles, respectively. The strength of the equilibrium magnetic field, which has the nested magnetic surfaces is used in the following form: ∑ −⋅+= nm mn nMmrbBB , 0 ))(cos)(1( φθ , (1) where BB0 is the average magnetic field on the magnetic axis. The Fourier coefficients as the functions of the normalized radius r are presented in Fig.1 for the so- called vacuum standard configuration of W7-X. For the simplicity we consider the model magnetic field where only the diamagnetic , mirror , toroidal and helical harmonics are non-zero. For the different magnetic configurations of W7-X these harmonics are much larger than the rest of the harmon- ics [1]. In axisymmetric configurations the toroidal harmonic is the leading and it provides the main contribution to the Shafranov shift of the magnetic sur- faces. In W7-X it is significantly reduced compared to the geometrical inverse aspect ratio. The mirror har- monic characterizes the ripple of the magnetic field strength on the magnetic axis. It can be used for the suppression of the bootstrap current in finite beta plasmas to improve the confinement [3]. It should be noted that the sign of this harmonic is opposite to the sign of the helical and toroidal harmonics. The helical harmonic leads to the existence of the helically trapped particles and 1/ν diffusion regime in a long mean free path limit. )(rbmn )(rb00 )(rb01 )(rb10 )(rb11 )(rb10 )(rb01 )(rb11 Fig.1. The Fourier harmonics of B for the standard configuration of W7-X The magnetic islands are modeled by adding to the equilibrium magnetic field the perturbation in the fol- lowing form [4]: )( 0BB rr αδ ×∇= , (2) where the function α , which has the unit of the length, presents a structure of the destroyed magnetic field. The perturbation function α is chosen in the form )sin( θφαα mnr m 0 −= . (3) The total magnetic field can be presented as the sum of the equilibrium magnetic field and the perturbation B r δ BBB 0 rrr δ+= . (4) For the W7-X configuration (with M=5 magnetic periods along the torus) the perturbation with the wave numbers n=5, m=5 was studied. This perturbation splits the rational magnetic surface , where the rotational transform is ).( 950rres = 1=ι , into the chain of 5 magnetic islands (Fig.2). For the case of consideration the radial islands width was .. cm94≈Δ We should note that the form of magnetic surfaces in W7-X stellarator in real geometry changes from the bean to the triangle depending on the toroidal angle φ . In Fig. 2 the magnetic surfaces are circular because we operate in Boozer magnetic coordinates where the mag- netic lines are straight in ),( φθ plane. 3. GUIDING CENTER EQUATIONS To study the particle dynamics in the complicated stellarator magnetic field the guiding center equations written in the Hamiltonian form [4,5]: are solved numerically using the Runge-Kutta method. Here, )( gIIgIg c ′−′++= ριγ and αρρ += ||c . The system of equations (5) is written in the normalized form. All lengths are normalized to the major plasma radius , the time is given in the units of 0R 0/1 ω , where mc ZeB0 0 =ω is the particle gyrofrequency on the axis, the energy is normalized to , and the magnetic field strength is normalized to its average value on the magnetic axis . The functions I and g are propor- tional to the toroidal and poloidal currents inside and outside the flux surface, respectively. The rotational transform profile 2 0 2 0 Rmω 0B )(rι is taken in the form presented in Fig.3. Fig.2. Poicaré plot of magnetic surfaces for 0φ = Fig.3. The profile of the rotational transform ( )rι 4. COLLISIONAL OPERATOR To model a collisional kick for a test particle in the pitch angle space, the discrete collision operator is ap- plied after each integration time step. The Lorentz colli- sion operator has the form [6]: ,)(1()1()()( 1 2 1 ttttt dndnn ΔνλΔνλλ −− −±−= (6) where tΔ should satisfy the condition 1<<tdΔν . The symbol “ ± ” indicates that the sign should be chosen randomly, but with the equal probabilities for plus and minus. The deflection can be calculated through the plasma parameters as [6,7]: ))()(( /// βαβα αα αβββαβα ΨΦ υ Λπ ν xx m nee4 32 22 d −= (7) Here , , and αe αm αυ are the charge, mass, and the velocity of a test particle, and are the charge and the density of background particles (ions and electrons), βe βn αβΛ is the Coulomb logarithm, and β βαβα υ m T2 x =/ is the ratio of the test particle velocity to thermal veloc- ity of the background particles. 96 b a Fig.4. The scattering of the ensemble of 500 impurity ions for the case without magnetic islands (in the poloidal cross-section). (a) The initial positions of test ions; (b) Particle positions after 5 collision times a b Fig.5. The scattering of the ensemble of 500 impurity ions in case of existence of the chain of 5 magnetic islands (in the poloidal cross-section). (a) The initial positions of test ions; (b) Particle positions after 5 collision times b a Fig.6. The temporal dependence of the mean-square displacement C2(t). (а) The configuration without magnetic islands; (b) The configuration with the chain of 5 magnetic islands The functions Φ(x) and Ψ(x) are given by ∫ −= x 0 2 dtt2x ,)exp()( π Φ (8) ./))()(()( 2x2xxxx ΦΦΨ ′−= (9) In this paper, we study the collisionality regime when the normalized deflection frequency is . 5100.1~ −×=dν 5. PARTICLE SCATTERING The particles of the monoenergetic ensemble of 1000N = impurity ions with the energy keV3E = with randomly distributed initial pitch angles starts their motion from the same initial radial coordinate 950r0 .= , where 1=ι . The initial poloidal and toroidal angles of particles are distributed randomly but uniformly. We 97 study the motion of tungsten impurity ions with the atomic mass number A=184 and the charge state Z=30. Each particle evolves independently of others according to equations (5) and its initial conditions. The pitch an- gle of a particle is changed at each time step using the Monte Carlo collision operator (6). As the measure of statistical properties of the en- semble, the mean square displacement is calculated: >><−=< 2 2 trtrC ))()(( δδ , where 0rtrtr −= )()(δ is the particle radial displacement. Brackets mean the en- semble average: ∑ = =>< N 1i iX N 1X , where N is the number of particles of the ensemble. The number of particles of the ensemble was chosen to satisfy 2 con- tradictory conditions: the number of particles should be enough large to obtain good statistics but not very large in order to preserve the CPU time. Fig.4 presents the scattering of the ensemble of 500 impurity ions for the case without magnetic islands. The particles do not strongly deviate from the initial mag- netic surface after 5 collision times in the radial direction. Fig.6,a shows the linear increase in time of C dE /t ν= 5 2(t) for this case. It means that we have the normal diffusive process with the diffusion coefficient defined as dt tdC 2 1tD 2 )()( = [6]. Fig.5 presents the scattering of the similar ensemble but for the case when the chain of 5 magnetic islands exists in the plasma. In the considered collisionality regime the particles form the drift islands. Thus, parti- cles are allowed to have large radial deviations. As it is shown in Fig.5,b, the particles nearly uniformly fill the islands region after 5 collision times. In this case the mean-square displacement C2(t) saturates to the constant value, as it is shown in Fig.6,b. The chain of the magnetic islands acts as the trap for the particles. The particles move just inside and are ac- cumulated in the region of islands. The control of parti- cle motion using the magnetic islands can be used to prevent the penetration of the impurities to the central regions of the plasma from the walls. SUMMARY In this paper, the impurity ion motion is studied for the standard configuration of W7-X stellarator when the chain of 5 magnetic islands exists at the plasma periph- ery. The mean square displacement of the ensemble of impurity ions is calculated for the case without magnetic islands and with them. It is shown that the magnetic islands can prevent the penetration of impurity ions into the centre of the plasma and lead to the change of the regime of the particle transport. Acknowledgements. The authors would like to thank the Science and Technology Center in Ukraine (Project № 3685) for the partial support of this work. REFERENCES 1. T. Andreeva. Vacuum magnetic configurations of Wendelstein 7-X. IPP-Report 2002, III/270. 2. Zh.S. Kononenko and A.A. Shishkin. Impurity ion dynamics near magnetic islands in the drift opti- mized stellarator configuration of the Wendelstein 7- X // Ukr. J. Phys. 2008, v.53, №5, p.438-442. 3. M. Yokoyama, Y. Nakamura and M. Wakatani. An optimized helical axis stellarator with modulated l=1 helical coil // J. Plasma Fusion Res. 1997, v.73, №7, p.723-731. 4. R.B. White and M.S. Chance. Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section // Phys. Fluids. 1984, v.27, №10, p.2455-2467. 5. A.A. Shishkin, I.N. Sidorenko, H. Wobig. Magnetic islands and drift surface resonances in Helias con- figurations // J. Plasma Fusion Res. Ser. 1998, v.1, p.480-483. 6. A.H. Boozer and G. Kuo-Petravic. Monte Carlo evaluation of transport coeffiсients // Phys. Fluids. 1981, v.24, №5, p.851-859. 7. E. Strumberger. Deposition patterns of fast ions on plasma facing components in W7-X // Nucl. Fusion. 2000, v.40, №10, p.1697-1713. Статья поступила в редакцию 15.05.2008 г. ВЛИЯНИЕ МАГНИТНЫХ ОСТРОВОВ НА ДВИЖЕНИЕ ПРИМЕСНЫХ ИОНОВ В ДРЕЙФОВО-ОПТИМИЗИРОВАННОМ СТЕЛЛАРАТОРЕ Ж.С. Кононенко, А.А. Шишкин Изучено движение ансамбля заряженных тестовых частиц ионов вольфрама в дрейфово- оптимизированном стеллараторе Вендельштайн 7-Х с цепочкой из пяти магнитных островов. Уравнения ведущего центра, записанные в гамильтоновской форме, решаются численно. Для моделирования кулоновского рассеяния используется дискретный оператор Монте-Карло. Показано рассеяние частиц в полоидальном сечении под воздействием столкновений и магнитных островов. Обсуждается вопрос о возможности использования магнитных островов для предотвращения проникновения примесей в плазму. ВПЛИВ МАГНІТНИХ ОСТРОВІВ НА РУХ ІОНІВ ДОМІШКИ У ДРЕЙФОВО-ОПТИМІЗОВАНОМУ СТЕЛАРАТОРІ Ж.С. Кононенко, O.O. Шишкін Вивчено рух ансамблю заряджених частинок іонів вольфраму у дрейфово-оптимізованому стелараторі Вендельштайн 7-Х з ланцюгом з п’яти магнітних островів. Рівняння ведучого центру, що записані у гамільтоновій формі, розв’язуються чисельно. Для моделювання кулонівського розсіяння використовується дискретний оператор Монте-Карло. Показано розсіяння частинок в полоїдальному перерізі під впливом зіткнень та магнітних островів. Обговорюється питання про можливість використання островів для запобігання проникання домішок у плазму. 98