Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. T...
Gespeichert in:
| Datum: | 2008 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/110375 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110375 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1103752025-02-23T18:21:11Z Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water Умови утворення довгоіснуючих світних об'єктів розпадної плазми електричного розряду у воді Условия образования долгоживущих светящихся объектов распадающейся плазмы электрического разряда в воде Golubnichy, P.I. Krutov, Yu.M. Nikitin, E.V. Reshetnyak, D.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO consist from unusual power-consuming connections of oxygen and hydrogen. Представлені результати експериментальних досліджень динаміки утворення довгоіснуючих світних об’єктів (ДСО), спектрів випромінювання розпадної плазми та розрахунки часової залежності ступеня іонізації, тиску, температури та хімічного складу продуктів розпаду. Отримані результати вказують, що ДСО складаеться з енергоємних сполук кисню та водню. Представлены результаты экспериментальных исследований динамики образования долгоживущих светящихся объектов (ДСО), спектров излучения распадающейся плазмы и расчеты временных зависимостей степени ионизации, давления, температуры и химического состава продуктов распада. Полученные данные указывают, что ДСО состоит из энергоемких соединений кислорода и водорода. 2008 Article Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52. 50. Lp https://nasplib.isofts.kiev.ua/handle/123456789/110375 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Golubnichy, P.I. Krutov, Yu.M. Nikitin, E.V. Reshetnyak, D.V. Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water Вопросы атомной науки и техники |
| description |
In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO consist from unusual power-consuming connections of oxygen and hydrogen. |
| format |
Article |
| author |
Golubnichy, P.I. Krutov, Yu.M. Nikitin, E.V. Reshetnyak, D.V. |
| author_facet |
Golubnichy, P.I. Krutov, Yu.M. Nikitin, E.V. Reshetnyak, D.V. |
| author_sort |
Golubnichy, P.I. |
| title |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| title_short |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| title_full |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| title_fullStr |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| title_full_unstemmed |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| title_sort |
conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2008 |
| topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110375 |
| citation_txt |
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT golubnichypi conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater AT krutovyum conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater AT nikitinev conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater AT reshetnyakdv conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater AT golubnichypi umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí AT krutovyum umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí AT nikitinev umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí AT reshetnyakdv umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí AT golubnichypi usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode AT krutovyum usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode AT nikitinev usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode AT reshetnyakdv usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode |
| first_indexed |
2025-11-24T09:07:07Z |
| last_indexed |
2025-11-24T09:07:07Z |
| _version_ |
1849662088448835584 |
| fulltext |
CONDITIONS ACCOMPANYING FORMATION OF LONG-LIVING
LUMINOUS OBJECTS FROM DISSIPATING PLASMA
OF ELECTRIC DISCHARGE IN WATER
P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak
East-Ukrainian national university named after Vladimir Dahl, Lugansk, Ukraine
E-mail: pigolub@gala.net, Tel.+38(0642)50-08-26
In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO)
formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization,
pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO
consist from unusual power-consuming connections of oxygen and hydrogen.
PACS: 52. 50. Lp
EXPERIMENTAL RESULTS
Long-living luminous objects (LLLO) are formed
as a result of electric discharge in water [1-5].
The basic scheme of experimental installation is de-
scribed in [4]. Shooting of the dynamics of luminous
zones and spectra of radiation was carried out with a
help of electron-optical chamber (EOC) designed on the
basis of time-analyzing EOP PIM-103, supplied with
amplifier of brightness PMU-2B. EOC could work in
the mode of time-lapse shooting or chronography mode.
Registration of spectra was carried out with the help of
MUM monochromator.
In Fig.1 the photo, illustrating the formation of lumi-
nous objects inside an extending cavity, is submitted. On
the photo are shown 9 frames which had been taken with
the help of EOC. The exposition of each frame – 2.5 µs,
an interval between the frames – 50 µs, the delay between
the start of shooting and the moment of the termination of
energy release – 50 µs. The order of following of the
frames – from left to right, from top to down.
Fig.1. Result of frame-by-frame shooting
of the luminous area formed inside the cavity,initiated
by electric discharge in water
On the first photo two luminous zones of different
sizes are visible. On the second photo the sizes of zones
and their brightness have appreciably decreased. Inside
the greater zone two objects with brightness appreciably
higher than the surrounding are visible. On the follow-
ing frame it is visible that luminous zones disappear and
these two luminous objects exist up to the end of shoot-
ing (≥350 µs), though they have reduced size (≈1 mm).
Thus, it is possible to speak, that in 100 µs after the
termination of energy release inside the cavity extend-
ing in water we confidently registered LLLO. Hence,
the processes resulting in producing of the compounds
of which these objects are formed, and the process itself
occurs in the mentioned above time.
One of the important factors determining LLLO
formation is duration of the discharge. In all experi-
ments of the authors of the report it did not exceed 5 µs.
Average radiance temperature of discharge plasma did
not exceed 104 K. In 3 µs time after the termination of
energy release in a continuous spectrum of radiation of
dissipating plasma lines of radiation of atoms O and H
started to be shown. In Fig.2 the photo received at
chronography of the spectrum of radiation from the cav-
ity is presented. Time of chronography – 10 µs, the de-
lay between the start of shooting and the beginning of
the discharge – 5 µs. In the top and bottom part of the
photo basic lines of radiation of Kr with wave-lengths
λ1 = 8059.5 and λ2 = 7694.54 Å accordingly are visible.
Fig.2. Result of chronography of the spectrum of radia-
tion of dissipating plasma of electric discharge in water
(a) and of the spectrum of radiation of products
of disintegration of water plasma (b)
On Fig.2,a the widened line is visible, the middle of
which corresponds to λ ≈ 7773.5 Å. In our opinion, it con-
sists of three lines of radiation of atoms of oxygen with
wave-lengths λ1 = 7775.39; λ2 = 7774.17; λ3 = 7771.94 Å.
It is necessary to note, that the listed above lines of radia-
tion specify formation in the process or recombination of
water plasma of O* atoms in metastable state with
energy 9.146 eV and radiation life time 180 µs. Obvi-
ously, in these conditions atoms of H* in a metastable
condition should be formed also with states, en-
ergy 12.09 eV and radiation life time 0.1215 sec.
0
2
5
3 S
2/1
2
2 S
___________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 4.
Серия: Плазменная электроника и новые методы ускорения (6), с.143-146.
143
mailto:pigolub@gala.net
Approximately in 40 µs after the termination of en-
ergy release we registered in the spectrum of radiation of
products of disintegration of water plasma groups of lines
which appear only at realization of the conditions neces-
sary for LLLO formation. They are observed during
≤50 µs. The found groups of lines lay in the range
7388…7450 Å and 7910…8000 Å (the error of definition
± 2 Å). In Fig.2,b the result of chronography of one of
such groups of lines is presented. The found groups of
lines are similar to oscillatory molecular spectra, but do
not correspond to known spectra of radiation of H2, O2,
H2O and radical OH.
From the above-stated follows that LLLO formation
is preceded with appearance inside the extending cavity
of metastable atoms O* and H*. Furthermore, LLLO
appearance is accompanied by formation of unusual
compounds of oxygen and (or) hydrogen.
CONTENTS OF THE CAVITY
As it has been specified, the discharge used for
LLLO formation lasts some microseconds. According to
the estimations made in [6], plasma under such condi-
tions is equilibrium. Concentration of the charged parti-
cles can be estimated by the Saha formula taking into
account the effect of decrease in potential of ionization
and electrons’ adhesion to neutral atoms from the fol-
lowing system of equations:
144
3 2
1
3 2
,
1 02 .7 3 1 0
gn n I Ie A T expn g kTa a
gn expn n g kTe a a A T
neI
T eV
n n ne
⎧ ⎛ ⎞
⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ⎛ ⎞
⎪ ⎜ ⎟⎜ ⎟⎪⎪ ⎝ ⎠⎨
⎪ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟⎡ ⎤⎜ ⎟⎪ ⎣ ⎦⎝ ⎠⎪
⎪
⎪⎩
− Δ++ = −
− Δ−− =
−Δ = ⋅
= ++ −
I I−
where ne, na, n+, n_ – concentration of electrons, neutral
atoms, positive and negative ions of oxygen and hydro-
gen, accordingly; A = 4.85·1021 m–3·K–3/2, g+, g–, ga –
statistical weights of ions of different signs and neutral
atoms; T – temperature of plasma; I – potential of ioniza-
tion of atoms, ΔI – decrease in potential of ionization; I_
– affinity of atoms to electrons; k – Boltzmann constant.
At concentration of electrons can be found
from the ratio:
an n+>>
0.5
1.5
2
0.5
1.5 ,O H
O H
g I In n AT expae g kTa
g gI I I IAT n exp n expg gkT kTa a
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎛ ⎞ ⎛ ⎞⎜
⎞
⎜ ⎟ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝
−Δ+= −
−
−Δ −Δ− −+ + ⎟
⎟
⎠
where nO, nH, IO, IH – concentration and potential of ioni-
zation of atoms O and H, accordingly.
Taking 1 2g ga ≈−
, we obtain for T = 104 K:
ΔI ~ 0,7 eV and ne ≈ 4·1018 cm-3, n = 1018 cm-3. At such
degree of ionization the processes of electronic and ion –
ionic recombination are determined, basically, by three-
fold collisions of ions, atoms and electrons [7]. The fre-
quency of recombination in this case is determined by the
following dependencies:
[ ]
278.75 10
,, 9 2
n ne
e tr T eV
ν
−⋅ += (1)
303.05 10
,3[ ]
n na
A T eVa
α
ν
∧−⋅ +=− (2)
where 3
0aα α
∧
= – atom’s relative polarizability, Aa – its
atomic weight.
The estimation of recombination speed of the scat-
tering plasma of the electric discharge in water, based
on ratio (1) and (2) shows, that in 1.5 µs after the termi-
nation of energy release the degree of ionization falls by
three orders; the temperature of contents of the cavity
thus makes ≈ 6·103 K. Thus, the degree of ionization of
contents of the cavity is quickly reduced, and LLLO
cannot be clots of nonideal plasma.
THE MODEL OF AFTER-DISCHARGE
CAVITY
The dynamics of expansion of the cavity was calcu-
lated with the help of the Keller-Miksis equation [8]:
( )
3 21 1
2 3
1 4 201 ,
U dU UR U
c dt c
P P dPgU R Ug
c c dt R R
μ σ
ρ ρ
⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
− ⎛ ⎞⎛ ⎞= + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(3)
where U = dR/dt, R – speed of the wall and variable ra-
dius of the cavity; c – speed of a sound in water; ρ – den-
sity of water; Pg – pressure of gas in the cavity; P0 = 1
atmosphere – hydrostatic pressure in unperturbed liquid;
σ, μ – factors of surface tension and viscosity of water.
Expansion of the cavity is accompanied by sharp re-
duction in density of its contents. The analysis has shown
that for such process the pressure of gas-steam mixture
(GSM) can be found by Van der Waals equation without
taking into account interaction of molecules:
ν R Tm gP , ν ν , b x b ,g m mi iV ν b i im m
= = =∑ ∑
− i
( ) / 20T T Tth
where νm – amount of moles of gas-steam mixture in
the cavity; Rg – absolute gas constant; T, V – tempera-
ture of contents and volume of the cavity; bm – Van der
Waals coefficient for the mixture; νi, xi, bi − the number
of moles, molar ratios and Van der Waals constants for
components of the mixture.
Heat exchange between the cavity and liquid was
taken into account with the help of boundary layer mod-
el [9], however, not like in the specified work, we
attributed to the transitive layer effective temperature
= + , where T0 – temperature of water. The
equation of heat flux through the wall of the cavity in
this model has the form:
( )2 04 ,
T TdQ R kmdt lth
π
−
=
where km – heat conductivity of the mixture in thermo-
diffussion layer; lth – thickness of this layer which was
estimated with the formula [10]:
,l tmth χ=
where cm m pχ κ= – temperature conductivity of the
mixture mixes in the boundary layer.
Processes of evaporation and condensation of mole-
cules of steam on the wall were calculated in accor-
dance with Hertz-Knudsen-Langmuir formula which for
a flux of molecules through the surface gives:
( ,
d 8πR TdN g 2v 0 R α n nvv0kdt Mv
= − )
O
(4)
where αk − factor of accommodation of steam molecules
on the wall of the cavity (in the given work it was equal
to 0.075 [11]); Mv − water’s molar mass; nv0 − equilib-
rium steam concentration at temperature T0; −
current concentration of the steam in the cavity. Ther-
modynamic conditions inside the cavity will be influ-
enced also with chemical transformations of compo-
nents of the mixture. In the given work the reactions
resulting in formation of H, O, OH, H
2v Hn n=
2, O2, H2O, O3 и
H2O2 were considered, too. Speeds of direct and reverse
reactions were described by the kinetic equations:
, , , ,r k n n , r k n n ntot tot B BAf j f j b j b j= = , (5)
where kf,j , kb,j − parameters of speed of direct and re-
verse reaction; ntot − full concentration of particles in
the cavity; nA, nB, nC − concentration of particles of
grade A, B and C, participating in the reaction.
Parameters of speed of the reactions were deter-
mined with the help of modified Arrenius equation:
c Ef, j f, jk A T expf, j f, j kT
c Eb, j b, jk A T expb, j b, j kT
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
= −
= −
145
,
,
where Af,j, Ab,j, cf,j, cb,j − parameters of Arrenius
equation which had been taken from the work [12]; Ef,j,
Eb,j − energy of activation of direct and reverse reac-
tion. For finding the temperature in the cavity in view of
the processes described above, we used the equation:
( )
dT 1 dQ dVPgdt C dt dtv
dθ dNi v4T 3T k V r ΔE ,j j0 dti exp θ T 1 ji
⎫
⎪
⎬
⎪⎭
⎧= − +⎨
⎩
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ − − +∑ ∑⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦
(6)
where Cv – thermal capacity of GSM in the cavity (it is
equal to the sum of thermal capacities components of
the mixture in view of oscillatory components); θi –
characteristic oscillatory temperatures of water mole-
cule (5262.4 K, 5404.6 K, 2294.9 K); , ,r r rj f j b j= −
and ΔEj − speeds and thermal effects of the chemical
reactions.
In Fig.3 and 4 the results of the numerical calculation
of the equations (3), (4), (6) and eight equations describ-
ing chemical kinetics in the cavity are submitted. They
were made with the help of expressions such as (5).
From graphs in Fig.3 it is visible, that the tempera-
ture of contents of a cavity sharply falls in the first
10 µs of expansions of the cavity, reaching the size
≈ 4·103 K. Further, on account of exothermal chemical
reactions, the rate of its fall is slowed down and by the
moment of confident LLLO registration (see Fig.1), the
temperature is ≈ 3·103 K. Pressure inside the cavity at
this moment is ≈ 0.4 atmosphere. According to graphs
in Fig.4 the cavity by this time is filled basically by H,
O, OH, H2, O2 and H2O. Concentrations of O3 and H2O2
are negligently small.
Fig.3. Parameters of the cavity at initial stage of expan-
sion; Curves: 1 - radius of the cavity; 2 - temperature of
contents of the cavity; 3 - pressure in the cavity
Fig.4. Kinetics of the chemical compound of after-
discharge cavity: 1 – H, 2 – O, 3 – H2O, 4 – H2,
5 – OH, 6 – O2 (a); 1 – H2O2, 2 – O3 (b)
DISCUSSION
As it was specified in works [1,2] LLLO cannot be
the heated up particles consisting of a material of elec-
trodes as the sizes of luminous objects are rather great,
and the spectrum of radiation sharply differs from the
spectrum of absolutely black body. The material of elec-
trodes cannot play the basic role during LLLO forma-
tion as the latter appear only at discharges in distilled
water (discharges in hydrocarbons, spirits, etc. do not
lead to formation of luminous objects) with the use of
refractory electrodes (tungsten, molybdenum, graphite).
REFERENCES Thus the spectrum of LLLO radiation does not depend
on material of electrodes. The temperature and pressure
in the cavity when luminous objects are registered by
EOC are such that any condensation of water is impos-
sible. Formation of clots of nonideal plasma as it was
specified above is impossible, too. LLLO cannot be
simple association of the excited atoms or molecules as
they keep integrity and form as at its exit from the cav-
ity to surrounding water [1,2], as at its movement in air
with speed up to 50 m/s [3].
1. P.I. Golubnichy, V.M. Gromenko, Y.M. Krutov.
Long-living luminous objects within a pulsing cav-
ern initiated by a powerful energy release in water //
Reports of AS of USSR. 1990, v.311, №2, p.356-360.
2. P.I. Golubnichy, V.M. Gromenko, Y.M. Krutov.
Formation of long-living luminous objects at dissipa-
tion of an dense temperature water plasma // Journal
of Tech. Phys.(19). 1990, v.60, Is.1, p.183-186.
3. I.L. Veremeenko, A.P. Golubnichy, P.I. Golubnichy,
Y.M. Krutov. The analysis of properties of the long-
living luminous objects formed at powerful spark
energy release in water // The bulletin of EUNU
named after V.Dahl (34). 2000, №12, p. 98-107.
All the aforesaid allows us to speak that LLLO are
formed of unusual power-consuming compounds of
oxygen and (or) hydrogen. In formation of such com-
pounds metastable atoms of hydrogen and oxygen can
play an important role. Their formation is evidenced by
spectra of radiation of dissipating plasma. Reactionary
ability of the excited atoms is much higher, than of not
excited ones. Hence, not excited atoms of oxygen and
radicals OH, whose concentration is great within the
contents of the cavity at a stage of LLLO formation (see
Fig.4) will react first of all with metastable atoms. By
virtue of significant affinity to electron of atomic oxy-
gen and OH, and to small potential of ionization of me-
tastable oxygen and hydrogen the excited molecules
with ionic and not covalent linkage will be formed. The
geometry of such molecules will differ from a spatial
arrangement of atoms in not excited molecules. For ex-
ample, atoms of hydrogen and oxygen in a usual mole-
cule of water settle down in tops of a triangle with an
angle . Metastable atom in a state
will react with radical ОН just like atom of an
alkali element. In such case . Another
combinations of the compound are possible, for exam-
ple O
104.5HOH∠ = o
2/1
2
2 S
180H OH∗∠ = o
*OH, O*O2, H*O2, H2
*O2, O2
*O2, etc. Such mole-
cules will possess a stock of energy approximately equal
to energy of excitation of metastable atom. Properties of
the condensed phase formed from such compounds will
sharply differ from properties of water or ice. Release of
energy reserved in such excited molecules can lead to
fluorescence or luminescence and other effects. The
question on life time of such compounds in a gas or
condensed phase remains open.
4. I.L. Veremeenko, P.I. Golubnichy, Y.M. Krutov,
D.V. Reshetnyak. Long-living luminous objects
formed in a large-scale water cavity // The works of
Int. Sc. Conf. «VIII Zababahin scientific readings».
Snezhinsk: RPNC, 2006, v.849, p. 94-100.
5. K.A. Naugolnyh, N.A. Roy. Electric discharges in
water. M.: “Science”, 1971, p. 54-56.
6. Y.P. Raizer. Physics of gas discharge. M.: “Sci-
ence”, 1987, p.68-85.
7. J.B. Keller, M.J. Miksis. Bubble oscillations large
amplitude // J. Acoust. Soc. Am. 1980, v.68, p.628-
633.
8. R. Toegel, B. Gompf, R. Pecha, D. Lohse. Does wa-
ter vapor prevent upscaling sonoluminescence //
Phys. Rev. Lett. 2000, v.85, №15, p.3165-3168.
9. J.B. Zeldovich, Y.P. Raizer. Physics of shock waves
and high-temperature hydrodynamical phenomena.
M.: “Science”, 1966, p.510-514.
10. I.S. Ahatov, N.K. Vahitova, A.S. Topolnikov. Dy-
namics of a bubble in liquid at laser breakdown //
Appl. Mech. and Tech. Phys. 2002, v.43, №1, p.52-
59.
11. A.M. Starik, H.C. Titov. About kinetic mechanisms
of initiation of burning of hydrogen-air mixtures in a
supersonic flux behind a shock wave at excitation of
molecular oscillations of initial reagents // Journal of
Tech. Phys. 2001, v.71, Is. 8, p.1-12.
12. Properties of inorganic compounds. Reference-book.
L.: “Chemistry”, 1983, p.59-85.
Статья поступила в редакцию 07.05.2008 г.
УСЛОВИЯ ОБРАЗОВАНИЯ ДОЛГОЖИВУЩИХ СВЕТЯЩИХСЯ ОБЪЕКТОВ
РАСПАДАЮЩЕЙСЯ ПЛАЗМЫ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В ВОДЕ
П.И. Голубничий, Ю.М. Крутов, Е.В. Никитин, Д.В. Решетняк
Представлены результаты экспериментальных исследований динамики образования долгоживущих
светящихся объектов (ДСО), спектров излучения распадающейся плазмы и расчеты временных
зависимостей степени ионизации, давления, температуры и химического состава продуктов распада.
Полученные данные указывают, что ДСО состоит из энергоемких соединений кислорода и водорода.
УМОВИ УТВОРЕННЯ ДОВГОІСНУЮЧИХ СВІТНИХ ОБ'ЄКТІВ РОЗПАДНОЇ ПЛАЗМИ
ЕЛЕКТРИЧНОГО РОЗРЯДУ У ВОДІ
П.І. Голубничий, Ю.М. Крутов, Є.В. Нікітін, Д.В. Решетняк
Представлені результати експериментальних досліджень динаміки утворення довгоіснуючих світних
об’єктів (ДСО), спектрів випромінювання розпадної плазми та розрахунки часової залежності ступеня
іонізації, тиску, температури та хімічного складу продуктів розпаду. Отримані результати вказують, що
ДСО складаеться з енергоємних сполук кисню та водню.
146
CONTENTS OF THE CAVITY
DISCUSSION
|