Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water

In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Golubnichy, P.I., Krutov, Yu.M., Nikitin, E.V., Reshetnyak, D.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110375
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110375
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1103752025-02-23T18:21:11Z Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water Умови утворення довгоіснуючих світних об'єктів розпадної плазми електричного розряду у воді Условия образования долгоживущих светящихся объектов распадающейся плазмы электрического разряда в воде Golubnichy, P.I. Krutov, Yu.M. Nikitin, E.V. Reshetnyak, D.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO consist from unusual power-consuming connections of oxygen and hydrogen. Представлені результати експериментальних досліджень динаміки утворення довгоіснуючих світних об’єктів (ДСО), спектрів випромінювання розпадної плазми та розрахунки часової залежності ступеня іонізації, тиску, температури та хімічного складу продуктів розпаду. Отримані результати вказують, що ДСО складаеться з енергоємних сполук кисню та водню. Представлены результаты экспериментальных исследований динамики образования долгоживущих светящихся объектов (ДСО), спектров излучения распадающейся плазмы и расчеты временных зависимостей степени ионизации, давления, температуры и химического состава продуктов распада. Полученные данные указывают, что ДСО состоит из энергоемких соединений кислорода и водорода. 2008 Article Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52. 50. Lp https://nasplib.isofts.kiev.ua/handle/123456789/110375 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Golubnichy, P.I.
Krutov, Yu.M.
Nikitin, E.V.
Reshetnyak, D.V.
Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
Вопросы атомной науки и техники
description In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO consist from unusual power-consuming connections of oxygen and hydrogen.
format Article
author Golubnichy, P.I.
Krutov, Yu.M.
Nikitin, E.V.
Reshetnyak, D.V.
author_facet Golubnichy, P.I.
Krutov, Yu.M.
Nikitin, E.V.
Reshetnyak, D.V.
author_sort Golubnichy, P.I.
title Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
title_short Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
title_full Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
title_fullStr Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
title_full_unstemmed Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
title_sort conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url https://nasplib.isofts.kiev.ua/handle/123456789/110375
citation_txt Conditions accompanying formation of long-living luminous objects from dissipating plasma of electric discharge in water / P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak // Вопросы атомной науки и техники. — 2008. — № 4. — С. 143-146. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT golubnichypi conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater
AT krutovyum conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater
AT nikitinev conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater
AT reshetnyakdv conditionsaccompanyingformationoflonglivingluminousobjectsfromdissipatingplasmaofelectricdischargeinwater
AT golubnichypi umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí
AT krutovyum umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí
AT nikitinev umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí
AT reshetnyakdv umoviutvorennâdovgoísnuûčihsvítnihobêktívrozpadnoíplazmielektričnogorozrâduuvodí
AT golubnichypi usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode
AT krutovyum usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode
AT nikitinev usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode
AT reshetnyakdv usloviâobrazovaniâdolgoživuŝihsvetâŝihsâobʺektovraspadaûŝejsâplazmyélektričeskogorazrâdavvode
first_indexed 2025-11-24T09:07:07Z
last_indexed 2025-11-24T09:07:07Z
_version_ 1849662088448835584
fulltext CONDITIONS ACCOMPANYING FORMATION OF LONG-LIVING LUMINOUS OBJECTS FROM DISSIPATING PLASMA OF ELECTRIC DISCHARGE IN WATER P.I. Golubnichy, Yu.M. Krutov, E.V. Nikitin, D.V. Reshetnyak East-Ukrainian national university named after Vladimir Dahl, Lugansk, Ukraine E-mail: pigolub@gala.net, Tel.+38(0642)50-08-26 In the work we submit results of experimental research into dynamics of long-living luminous objects (LLLO) formation, spectra of radiation of dissipating plasma and calculations of time dependence of degree of ionization, pressure, temperatures and chemical compound of products of disintegration. The received data specify that LLLO consist from unusual power-consuming connections of oxygen and hydrogen. PACS: 52. 50. Lp EXPERIMENTAL RESULTS Long-living luminous objects (LLLO) are formed as a result of electric discharge in water [1-5]. The basic scheme of experimental installation is de- scribed in [4]. Shooting of the dynamics of luminous zones and spectra of radiation was carried out with a help of electron-optical chamber (EOC) designed on the basis of time-analyzing EOP PIM-103, supplied with amplifier of brightness PMU-2B. EOC could work in the mode of time-lapse shooting or chronography mode. Registration of spectra was carried out with the help of MUM monochromator. In Fig.1 the photo, illustrating the formation of lumi- nous objects inside an extending cavity, is submitted. On the photo are shown 9 frames which had been taken with the help of EOC. The exposition of each frame – 2.5 µs, an interval between the frames – 50 µs, the delay between the start of shooting and the moment of the termination of energy release – 50 µs. The order of following of the frames – from left to right, from top to down. Fig.1. Result of frame-by-frame shooting of the luminous area formed inside the cavity,initiated by electric discharge in water On the first photo two luminous zones of different sizes are visible. On the second photo the sizes of zones and their brightness have appreciably decreased. Inside the greater zone two objects with brightness appreciably higher than the surrounding are visible. On the follow- ing frame it is visible that luminous zones disappear and these two luminous objects exist up to the end of shoot- ing (≥350 µs), though they have reduced size (≈1 mm). Thus, it is possible to speak, that in 100 µs after the termination of energy release inside the cavity extend- ing in water we confidently registered LLLO. Hence, the processes resulting in producing of the compounds of which these objects are formed, and the process itself occurs in the mentioned above time. One of the important factors determining LLLO formation is duration of the discharge. In all experi- ments of the authors of the report it did not exceed 5 µs. Average radiance temperature of discharge plasma did not exceed 104 K. In 3 µs time after the termination of energy release in a continuous spectrum of radiation of dissipating plasma lines of radiation of atoms O and H started to be shown. In Fig.2 the photo received at chronography of the spectrum of radiation from the cav- ity is presented. Time of chronography – 10 µs, the de- lay between the start of shooting and the beginning of the discharge – 5 µs. In the top and bottom part of the photo basic lines of radiation of Kr with wave-lengths λ1 = 8059.5 and λ2 = 7694.54 Å accordingly are visible. Fig.2. Result of chronography of the spectrum of radia- tion of dissipating plasma of electric discharge in water (a) and of the spectrum of radiation of products of disintegration of water plasma (b) On Fig.2,a the widened line is visible, the middle of which corresponds to λ ≈ 7773.5 Å. In our opinion, it con- sists of three lines of radiation of atoms of oxygen with wave-lengths λ1 = 7775.39; λ2 = 7774.17; λ3 = 7771.94 Å. It is necessary to note, that the listed above lines of radia- tion specify formation in the process or recombination of water plasma of O* atoms in metastable state with energy 9.146 eV and radiation life time 180 µs. Obvi- ously, in these conditions atoms of H* in a metastable condition should be formed also with states, en- ergy 12.09 eV and radiation life time 0.1215 sec. 0 2 5 3 S 2/1 2 2 S ___________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 4. Серия: Плазменная электроника и новые методы ускорения (6), с.143-146. 143 mailto:pigolub@gala.net Approximately in 40 µs after the termination of en- ergy release we registered in the spectrum of radiation of products of disintegration of water plasma groups of lines which appear only at realization of the conditions neces- sary for LLLO formation. They are observed during ≤50 µs. The found groups of lines lay in the range 7388…7450 Å and 7910…8000 Å (the error of definition ± 2 Å). In Fig.2,b the result of chronography of one of such groups of lines is presented. The found groups of lines are similar to oscillatory molecular spectra, but do not correspond to known spectra of radiation of H2, O2, H2O and radical OH. From the above-stated follows that LLLO formation is preceded with appearance inside the extending cavity of metastable atoms O* and H*. Furthermore, LLLO appearance is accompanied by formation of unusual compounds of oxygen and (or) hydrogen. CONTENTS OF THE CAVITY As it has been specified, the discharge used for LLLO formation lasts some microseconds. According to the estimations made in [6], plasma under such condi- tions is equilibrium. Concentration of the charged parti- cles can be estimated by the Saha formula taking into account the effect of decrease in potential of ionization and electrons’ adhesion to neutral atoms from the fol- lowing system of equations: 144 3 2 1 3 2 , 1 02 .7 3 1 0 gn n I Ie A T expn g kTa a gn expn n g kTe a a A T neI T eV n n ne ⎧ ⎛ ⎞ ⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪ ⎪ ⎛ ⎞ ⎪ ⎜ ⎟⎜ ⎟⎪⎪ ⎝ ⎠⎨ ⎪ ⎛ ⎞ ⎪ ⎜ ⎟ ⎪ ⎜ ⎟⎡ ⎤⎜ ⎟⎪ ⎣ ⎦⎝ ⎠⎪ ⎪ ⎪⎩ − Δ++ = − − Δ−− = −Δ = ⋅ = ++ − I I− where ne, na, n+, n_ – concentration of electrons, neutral atoms, positive and negative ions of oxygen and hydro- gen, accordingly; A = 4.85·1021 m–3·K–3/2, g+, g–, ga – statistical weights of ions of different signs and neutral atoms; T – temperature of plasma; I – potential of ioniza- tion of atoms, ΔI – decrease in potential of ionization; I_ – affinity of atoms to electrons; k – Boltzmann constant. At concentration of electrons can be found from the ratio: an n+>> 0.5 1.5 2 0.5 1.5 ,O H O H g I In n AT expae g kTa g gI I I IAT n exp n expg gkT kTa a ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎛ ⎛ ⎞ ⎛ ⎞⎜ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ −Δ+= − − −Δ −Δ− −+ + ⎟ ⎟ ⎠ where nO, nH, IO, IH – concentration and potential of ioni- zation of atoms O and H, accordingly. Taking 1 2g ga ≈− , we obtain for T = 104 K: ΔI ~ 0,7 eV and ne ≈ 4·1018 cm-3, n = 1018 cm-3. At such degree of ionization the processes of electronic and ion – ionic recombination are determined, basically, by three- fold collisions of ions, atoms and electrons [7]. The fre- quency of recombination in this case is determined by the following dependencies: [ ] 278.75 10 ,, 9 2 n ne e tr T eV ν −⋅ += (1) 303.05 10 ,3[ ] n na A T eVa α ν ∧−⋅ +=− (2) where 3 0aα α ∧ = – atom’s relative polarizability, Aa – its atomic weight. The estimation of recombination speed of the scat- tering plasma of the electric discharge in water, based on ratio (1) and (2) shows, that in 1.5 µs after the termi- nation of energy release the degree of ionization falls by three orders; the temperature of contents of the cavity thus makes ≈ 6·103 K. Thus, the degree of ionization of contents of the cavity is quickly reduced, and LLLO cannot be clots of nonideal plasma. THE MODEL OF AFTER-DISCHARGE CAVITY The dynamics of expansion of the cavity was calcu- lated with the help of the Keller-Miksis equation [8]: ( ) 3 21 1 2 3 1 4 201 , U dU UR U c dt c P P dPgU R Ug c c dt R R μ σ ρ ρ ⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ − ⎛ ⎞⎛ ⎞= + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (3) where U = dR/dt, R – speed of the wall and variable ra- dius of the cavity; c – speed of a sound in water; ρ – den- sity of water; Pg – pressure of gas in the cavity; P0 = 1 atmosphere – hydrostatic pressure in unperturbed liquid; σ, μ – factors of surface tension and viscosity of water. Expansion of the cavity is accompanied by sharp re- duction in density of its contents. The analysis has shown that for such process the pressure of gas-steam mixture (GSM) can be found by Van der Waals equation without taking into account interaction of molecules: ν R Tm gP , ν ν , b x b ,g m mi iV ν b i im m = = =∑ ∑ − i ( ) / 20T T Tth where νm – amount of moles of gas-steam mixture in the cavity; Rg – absolute gas constant; T, V – tempera- ture of contents and volume of the cavity; bm – Van der Waals coefficient for the mixture; νi, xi, bi − the number of moles, molar ratios and Van der Waals constants for components of the mixture. Heat exchange between the cavity and liquid was taken into account with the help of boundary layer mod- el [9], however, not like in the specified work, we attributed to the transitive layer effective temperature = + , where T0 – temperature of water. The equation of heat flux through the wall of the cavity in this model has the form: ( )2 04 , T TdQ R kmdt lth π − = where km – heat conductivity of the mixture in thermo- diffussion layer; lth – thickness of this layer which was estimated with the formula [10]: ,l tmth χ= where cm m pχ κ= – temperature conductivity of the mixture mixes in the boundary layer. Processes of evaporation and condensation of mole- cules of steam on the wall were calculated in accor- dance with Hertz-Knudsen-Langmuir formula which for a flux of molecules through the surface gives: ( , d 8πR TdN g 2v 0 R α n nvv0kdt Mv = − ) O (4) where αk − factor of accommodation of steam molecules on the wall of the cavity (in the given work it was equal to 0.075 [11]); Mv − water’s molar mass; nv0 − equilib- rium steam concentration at temperature T0; − current concentration of the steam in the cavity. Ther- modynamic conditions inside the cavity will be influ- enced also with chemical transformations of compo- nents of the mixture. In the given work the reactions resulting in formation of H, O, OH, H 2v Hn n= 2, O2, H2O, O3 и H2O2 were considered, too. Speeds of direct and reverse reactions were described by the kinetic equations: , , , ,r k n n , r k n n ntot tot B BAf j f j b j b j= = , (5) where kf,j , kb,j − parameters of speed of direct and re- verse reaction; ntot − full concentration of particles in the cavity; nA, nB, nC − concentration of particles of grade A, B and C, participating in the reaction. Parameters of speed of the reactions were deter- mined with the help of modified Arrenius equation: c Ef, j f, jk A T expf, j f, j kT c Eb, j b, jk A T expb, j b, j kT ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = − = − 145 , , where Af,j, Ab,j, cf,j, cb,j − parameters of Arrenius equation which had been taken from the work [12]; Ef,j, Eb,j − energy of activation of direct and reverse reac- tion. For finding the temperature in the cavity in view of the processes described above, we used the equation: ( ) dT 1 dQ dVPgdt C dt dtv dθ dNi v4T 3T k V r ΔE ,j j0 dti exp θ T 1 ji ⎫ ⎪ ⎬ ⎪⎭ ⎧= − +⎨ ⎩ ⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟+ − − +∑ ∑⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦ (6) where Cv – thermal capacity of GSM in the cavity (it is equal to the sum of thermal capacities components of the mixture in view of oscillatory components); θi – characteristic oscillatory temperatures of water mole- cule (5262.4 K, 5404.6 K, 2294.9 K); , ,r r rj f j b j= − and ΔEj − speeds and thermal effects of the chemical reactions. In Fig.3 and 4 the results of the numerical calculation of the equations (3), (4), (6) and eight equations describ- ing chemical kinetics in the cavity are submitted. They were made with the help of expressions such as (5). From graphs in Fig.3 it is visible, that the tempera- ture of contents of a cavity sharply falls in the first 10 µs of expansions of the cavity, reaching the size ≈ 4·103 K. Further, on account of exothermal chemical reactions, the rate of its fall is slowed down and by the moment of confident LLLO registration (see Fig.1), the temperature is ≈ 3·103 K. Pressure inside the cavity at this moment is ≈ 0.4 atmosphere. According to graphs in Fig.4 the cavity by this time is filled basically by H, O, OH, H2, O2 and H2O. Concentrations of O3 and H2O2 are negligently small. Fig.3. Parameters of the cavity at initial stage of expan- sion; Curves: 1 - radius of the cavity; 2 - temperature of contents of the cavity; 3 - pressure in the cavity Fig.4. Kinetics of the chemical compound of after- discharge cavity: 1 – H, 2 – O, 3 – H2O, 4 – H2, 5 – OH, 6 – O2 (a); 1 – H2O2, 2 – O3 (b) DISCUSSION As it was specified in works [1,2] LLLO cannot be the heated up particles consisting of a material of elec- trodes as the sizes of luminous objects are rather great, and the spectrum of radiation sharply differs from the spectrum of absolutely black body. The material of elec- trodes cannot play the basic role during LLLO forma- tion as the latter appear only at discharges in distilled water (discharges in hydrocarbons, spirits, etc. do not lead to formation of luminous objects) with the use of refractory electrodes (tungsten, molybdenum, graphite). REFERENCES Thus the spectrum of LLLO radiation does not depend on material of electrodes. The temperature and pressure in the cavity when luminous objects are registered by EOC are such that any condensation of water is impos- sible. Formation of clots of nonideal plasma as it was specified above is impossible, too. LLLO cannot be simple association of the excited atoms or molecules as they keep integrity and form as at its exit from the cav- ity to surrounding water [1,2], as at its movement in air with speed up to 50 m/s [3]. 1. P.I. Golubnichy, V.M. Gromenko, Y.M. Krutov. Long-living luminous objects within a pulsing cav- ern initiated by a powerful energy release in water // Reports of AS of USSR. 1990, v.311, №2, p.356-360. 2. P.I. Golubnichy, V.M. Gromenko, Y.M. Krutov. Formation of long-living luminous objects at dissipa- tion of an dense temperature water plasma // Journal of Tech. Phys.(19). 1990, v.60, Is.1, p.183-186. 3. I.L. Veremeenko, A.P. Golubnichy, P.I. Golubnichy, Y.M. Krutov. The analysis of properties of the long- living luminous objects formed at powerful spark energy release in water // The bulletin of EUNU named after V.Dahl (34). 2000, №12, p. 98-107. All the aforesaid allows us to speak that LLLO are formed of unusual power-consuming compounds of oxygen and (or) hydrogen. In formation of such com- pounds metastable atoms of hydrogen and oxygen can play an important role. Their formation is evidenced by spectra of radiation of dissipating plasma. Reactionary ability of the excited atoms is much higher, than of not excited ones. Hence, not excited atoms of oxygen and radicals OH, whose concentration is great within the contents of the cavity at a stage of LLLO formation (see Fig.4) will react first of all with metastable atoms. By virtue of significant affinity to electron of atomic oxy- gen and OH, and to small potential of ionization of me- tastable oxygen and hydrogen the excited molecules with ionic and not covalent linkage will be formed. The geometry of such molecules will differ from a spatial arrangement of atoms in not excited molecules. For ex- ample, atoms of hydrogen and oxygen in a usual mole- cule of water settle down in tops of a triangle with an angle . Metastable atom in a state will react with radical ОН just like atom of an alkali element. In such case . Another combinations of the compound are possible, for exam- ple O 104.5HOH∠ = o 2/1 2 2 S 180H OH∗∠ = o *OH, O*O2, H*O2, H2 *O2, O2 *O2, etc. Such mole- cules will possess a stock of energy approximately equal to energy of excitation of metastable atom. Properties of the condensed phase formed from such compounds will sharply differ from properties of water or ice. Release of energy reserved in such excited molecules can lead to fluorescence or luminescence and other effects. The question on life time of such compounds in a gas or condensed phase remains open. 4. I.L. Veremeenko, P.I. Golubnichy, Y.M. Krutov, D.V. Reshetnyak. Long-living luminous objects formed in a large-scale water cavity // The works of Int. Sc. Conf. «VIII Zababahin scientific readings». Snezhinsk: RPNC, 2006, v.849, p. 94-100. 5. K.A. Naugolnyh, N.A. Roy. Electric discharges in water. M.: “Science”, 1971, p. 54-56. 6. Y.P. Raizer. Physics of gas discharge. M.: “Sci- ence”, 1987, p.68-85. 7. J.B. Keller, M.J. Miksis. Bubble oscillations large amplitude // J. Acoust. Soc. Am. 1980, v.68, p.628- 633. 8. R. Toegel, B. Gompf, R. Pecha, D. Lohse. Does wa- ter vapor prevent upscaling sonoluminescence // Phys. Rev. Lett. 2000, v.85, №15, p.3165-3168. 9. J.B. Zeldovich, Y.P. Raizer. Physics of shock waves and high-temperature hydrodynamical phenomena. M.: “Science”, 1966, p.510-514. 10. I.S. Ahatov, N.K. Vahitova, A.S. Topolnikov. Dy- namics of a bubble in liquid at laser breakdown // Appl. Mech. and Tech. Phys. 2002, v.43, №1, p.52- 59. 11. A.M. Starik, H.C. Titov. About kinetic mechanisms of initiation of burning of hydrogen-air mixtures in a supersonic flux behind a shock wave at excitation of molecular oscillations of initial reagents // Journal of Tech. Phys. 2001, v.71, Is. 8, p.1-12. 12. Properties of inorganic compounds. Reference-book. L.: “Chemistry”, 1983, p.59-85. Статья поступила в редакцию 07.05.2008 г. УСЛОВИЯ ОБРАЗОВАНИЯ ДОЛГОЖИВУЩИХ СВЕТЯЩИХСЯ ОБЪЕКТОВ РАСПАДАЮЩЕЙСЯ ПЛАЗМЫ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В ВОДЕ П.И. Голубничий, Ю.М. Крутов, Е.В. Никитин, Д.В. Решетняк Представлены результаты экспериментальных исследований динамики образования долгоживущих светящихся объектов (ДСО), спектров излучения распадающейся плазмы и расчеты временных зависимостей степени ионизации, давления, температуры и химического состава продуктов распада. Полученные данные указывают, что ДСО состоит из энергоемких соединений кислорода и водорода. УМОВИ УТВОРЕННЯ ДОВГОІСНУЮЧИХ СВІТНИХ ОБ'ЄКТІВ РОЗПАДНОЇ ПЛАЗМИ ЕЛЕКТРИЧНОГО РОЗРЯДУ У ВОДІ П.І. Голубничий, Ю.М. Крутов, Є.В. Нікітін, Д.В. Решетняк Представлені результати експериментальних досліджень динаміки утворення довгоіснуючих світних об’єктів (ДСО), спектрів випромінювання розпадної плазми та розрахунки часової залежності ступеня іонізації, тиску, температури та хімічного складу продуктів розпаду. Отримані результати вказують, що ДСО складаеться з енергоємних сполук кисню та водню. 146 CONTENTS OF THE CAVITY DISCUSSION