Plasma turbulence in localized sheared flows

Plasma configurations with strong velocity shear are considered taking into account magnetic shear. Ion temperature gradient driven drift instability and Kelvin-Helmholtz type instability are analyzed for such sheared plasma flows. Possible instability saturation mechanisms and estimation of particl...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2007
Main Author: Chirkov, A.Yu
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/110383
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Plasma turbulence in localized sheared flows / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 58-60. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110383
record_format dspace
spelling Chirkov, A.Yu
2017-01-04T08:05:20Z
2017-01-04T08:05:20Z
2007
Plasma turbulence in localized sheared flows / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 58-60. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 52.35.Ra; 52.35.Qz; 52.35.Mw
https://nasplib.isofts.kiev.ua/handle/123456789/110383
Plasma configurations with strong velocity shear are considered taking into account magnetic shear. Ion temperature gradient driven drift instability and Kelvin-Helmholtz type instability are analyzed for such sheared plasma flows. Possible instability saturation mechanisms and estimation of particle diffusivity are discussed.
Розглядаються плазмові конфігурації із сильним широм швидкостей, а також з обліком магнітного шира. Для таких течій плазми аналізуються іонно-температурно-градієнтна нестійкість і нестійкість типу Кельвіна-Гельмгольца. Обговорюються механізми насичення нестійкостей і оцінки коефіцієнта дифузії.
Рассматриваются плазменные конфигурации с сильным широм скоростей, а также с учетом магнитного шира. Для таких течений плазмы анализируются ионно-температурно-градиентная неустойчивость и неустойчивость типа Кельвина-Гельмгольца. Обсуждаются механизмы насыщения неустойчивостей и оценки коэффициента диффузии.
Work was supported by Russian President grant MK-3755.2005.8.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Basic plasma physics
Plasma turbulence in localized sheared flows
Турбулентність плазми в локалізованих ширових течіях
Турбулентность плазмы в локализованных шировых течениях
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Plasma turbulence in localized sheared flows
spellingShingle Plasma turbulence in localized sheared flows
Chirkov, A.Yu
Basic plasma physics
title_short Plasma turbulence in localized sheared flows
title_full Plasma turbulence in localized sheared flows
title_fullStr Plasma turbulence in localized sheared flows
title_full_unstemmed Plasma turbulence in localized sheared flows
title_sort plasma turbulence in localized sheared flows
author Chirkov, A.Yu
author_facet Chirkov, A.Yu
topic Basic plasma physics
topic_facet Basic plasma physics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Турбулентність плазми в локалізованих ширових течіях
Турбулентность плазмы в локализованных шировых течениях
description Plasma configurations with strong velocity shear are considered taking into account magnetic shear. Ion temperature gradient driven drift instability and Kelvin-Helmholtz type instability are analyzed for such sheared plasma flows. Possible instability saturation mechanisms and estimation of particle diffusivity are discussed. Розглядаються плазмові конфігурації із сильним широм швидкостей, а також з обліком магнітного шира. Для таких течій плазми аналізуються іонно-температурно-градієнтна нестійкість і нестійкість типу Кельвіна-Гельмгольца. Обговорюються механізми насичення нестійкостей і оцінки коефіцієнта дифузії. Рассматриваются плазменные конфигурации с сильным широм скоростей, а также с учетом магнитного шира. Для таких течений плазмы анализируются ионно-температурно-градиентная неустойчивость и неустойчивость типа Кельвина-Гельмгольца. Обсуждаются механизмы насыщения неустойчивостей и оценки коэффициента диффузии.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110383
citation_txt Plasma turbulence in localized sheared flows / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 58-60. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT chirkovayu plasmaturbulenceinlocalizedshearedflows
AT chirkovayu turbulentnístʹplazmivlokalízovanihširovihtečíâh
AT chirkovayu turbulentnostʹplazmyvlokalizovannyhširovyhtečeniâh
first_indexed 2025-11-24T16:02:15Z
last_indexed 2025-11-24T16:02:15Z
_version_ 1850850513900273664
fulltext 58 Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 58-60 PLASMA TURBULENCE IN LOCALIZED SHEARED FLOWS A.Yu. Chirkov Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005, Moscow, Russia, e-mail: chirkov@power.bmstu.ru Plasma configurations with strong velocity shear are considered taking into account magnetic shear. Ion temperature gradient driven drift instability and Kelvin-Helmholtz type instability are analyzed for such sheared plasma flows. Possible instability saturation mechanisms and estimation of particle diffusivity are discussed. PACS: 52.35.Ra; 52.35.Qz; 52.35.Mw 1. INTRODUCTION The objective of this work is to study instabilities and features of turbulence in localized plasma flows. Turbulence depends on strong velocity shear sufficiently in the case under consideration. Magnetic shear is taken into account, too. Ion temperature gradient driven drift instability (ITG instability) and Kelvin-Helmholtz type instability (KH instability) are of the interest in this work. These instabilities are considered in framework of non- local approach. Eigenfrequencies and eigenfunctions for ITG modes are calculated using wave equation resulting from gyrokinetic approach [1]. For KH instability we use wave equation [2] in low-frequency limit (|ω|<<ωci, ωci is ion cyclotron frequency). To estimate amplitudes of the wave modes and particle diffusivity the model of particle interactions with waves [3] can be used. 2. ITG MODES For the calculation we use the slab model, where the magnetic field is given by B e e= +      B x Lz s y , (1) where B is the absolute value of the magnetic field, x is the “radial” distance from considered (resonant) surface, 1)/( −= dxdBBL yzs is scale length of the magnetic shear, ez is the unity vector directed along the magnetic field, and ey is the transversal unity vector. For localized modes in such a geometry the component of the wave vector parallel to the magnetic field is sy Lxkk /|| = , where ky is the transversal component of the wave vector. For the radial profile of the wave potential Φ(x) one can use the wave equation [1] 0),( 2 2 =Φ+ Φ ωxQ dx d , (2) where         Ω + +ΩΩ − +Ω Ω− +−= − 2 22 22 ~)~(~~ ~1),( xs K sxsu K kxQ uz sy ρω , (3) ey yy Vk uk * 1 ~~ − =Ω ω , yyuk 0 ~ −= ωω , ω is the complex frequency, 01 )( uuu −= x , u(x) and u0 are the ion flow velocity and it’s value at x=0, )/(* neBe eBLTkV = , )/)(/1( eiTn TTLLK += , 1)/( −−= dxdnnLn is the scale length of density gradient, 1)/( −−= dxdTTL iiT is the scale length of the ion temperature gradient, 1−= sxx ρ , eBis TkmBe 11 −−=ρ , e is the electron charge, mi is the ion mass, kB is the Boltzmann constant, Te is the electron temperature, Ti is the ion temperature, un LLs /= , 1 ,,0 )/( −= dxduuL zyzyu is the scale length of the ion velocity shear. Eq. (3) for Q function obtained under the following condition: 1~<Tiyk ρ , Tiρδ >⊥ ~ , ωυ ~ || <Tik , where ρTi is the thermal ion gyroradius, δ⊥ is the radial width of the radial profile Φ(x), υTi is the thermal velocity of the ions. We consider sheared flow velocity profiles         −= 2 2 ,0, 2 exp b xuu zyzy , (4) where b is the width of sheared flow. To find eigenfrequencies and solve wave equation we use WKB method. Corresponding dispersion equation is πω ω ω )2/1(),( )( )( +=∫ + − ldxxQ x x , (5) where )(ω−x and )(ω+x are zeros of the Q function (turning points), l is radial mode number. WKB solution (radial eigenfunction) is ( )∫±=Φ − dxQiQx exp)( 4/1 . In Figs. 1 and 2 results of the calculations of the growth rate )Im(ωγ = are presented. The scale of the growth rate in these figures is 1 * −= ses V ρω . mailto:chirkov@power.bmstu.ru 59 -2 -1 0 1 2 0 0.1 0.2 0.3 0.4 γ/ωs u0y/V*e 2 1 4 56 3 Fig. 1. Influence of perpendicular flow shear on ITG growth rate (no parallel flow shear): 1 – s = 0.1, K = 4, kyρs = 0.5, b = 3ρs; 2 – s = 0.1, K = 4, kyρs = 0.5, b = 10ρs; 3 – s = 0.1, K = 4, kyρs = 0.1, b = 3ρs; 4 – s = 0.1, K = 4, kyρs = 0.8, b = 3ρs; 5 – s = 0.01, K = 4, kyρs = 0.5, b = 3ρs; 6 – s = 0.01, K = 2, kyρs = 0.5, b = 3ρs -3 -2 -1 0 1 2 3 0 0.1 0.2 0.3 γ/ωs u0zLn/(υsρs) 3 2 1 4 Fig. 2. Influence of parallel flow shear on ITG growth rate (no perpendicular flow shear): 1 – s = 0.1, K = 4, kyρs = 0.5; 2 – s = 0.1, K = 4, kyρs = 0.1; 3 – s = 0.1, K = 4, kyρs = 0.8; 4 – s =0.01, K = 4, kyρs = 0.5 ––––––– – b = 10ρs, – – – – – – b = 3ρs 0 5 10 15 0 4 8 12 16 ω R1/ω 0 kyb a 0 5 10 15 0 0.4 0.8 1.2 1.6 γ /ω 0 kyb b Fig. 3. Real frequencies (a) and growth rates (b) of KH modes l = 0 (–––––––), l = 1 (– – – – –) and l = 2 (– - – - – - –) 3. KH MODES In transport barriers strong sheared radial static electric field Er < 0 is usually observed [4, 5]. In this case perpendicular sheared velocity 0/ >−= BEu ry leads to sufficient dumping of ITG turbulence (see Fig. 1). But, Kelvin-Helmholtz type instability can be induced by strong E×B velocity shear. Wave equation for KH eigenfunctions has a form Eq. (2) and it can be solved using WKB theory. In low- frequency limit Q function is )(/ )( ),( '' 2 xVk xV kxQ Ey E y − +−= ω ω , (6) where VE(x) is E×B drift velocity. Here we consider the following flow velocity profile: )/1( 22 0 bxVVV EE −∆+= inside flow ( bx <|| ), and VE = V0 = const outside flow ( bx >|| ). Results of the calculations of the real frequency 60 )Re( 01 Vk yR −= ωω and the growth rate )Im(ωγ = are presented in Fig. 3. Scale the of real frequency an the increment is bVE /0 ∆=ω . These results obtained for the case when radial profile is centered in shear layer. Radial structure of low-frequency KH modes was considered in [6]. For 1>>bk y turnpoints are fare from the boundaries of the flow shear layer. They rich boundaries if bk y decrease down to some minimal value 1~)( minbk y . For min)( bkbk yy < there are no solutions with given flow velocity profile. 4. PARTICLE DIFFUSIVITY In this chapter we estimate particle diffusivity and saturation level in framework particle-waves interaction calculations [3]. For steady-state turbulence one can use the instability growth and dumping rates balance: >∆<++= ⊥ − ⊥ yyy ukDk 2 1)( 22 δγ , (7) where D⊥ is the radial particle diffusivity,         +         ∆>≈∆< 2 22 2 )(1)(1 ||2 1 dr rud rdr rud r k ru yy R y y ω (8) is perpendicular drift velocity averaged over particle drift orbit, ||/6 RDr ωπ ⊥=∆ is the radial diffusion shift of the particle during oscillation period, ωR is real frequency (taking into account Doppler shift), r is the radial coordinate. One can suppose for strong E×B shear case that KH instability in dominant source of turbulence. Using calculation results (presented in Fig. 3) and Eq. 7 we estimate maximal collisionless diffusivity as bVD E∆− ⊥ 310~ at 1~bk y . Work was supported by Russian President grant MK- 3755.2005.8. REFERENCES 1. M. Artun, W.M. Tang. Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows // Phys. Fluids. 1992, v. B4, p. 1102–1114. 2. G. Ganguli, Y.C. Lee, P.J. Palmadesso. Kinetic theory for electrostatic waves due to transverse velocity shears // Phys. Fluids. 1988, v. 31, p. 823–838. 3. V.I. Khvesyuk, A.Yu. Chirkov. Analysis of the mechanisms for the scattering of plasma particles by non-steady-state fluctuations // Tech. Phys. 2004, v. 49, N 4, p. 396–404. 4. R.C. Wolf. Internal transport barriers in tokamak plasmas // Plasma Phys. Control. Fusion. 2003, v. 45, p. R1–R91. 5. J.W. Connor, T. Fukuda, X. Garbet et al. A review of internal transport barrier physics for steady-state operation of tokamaks // Nucl. Fusion. 2004, v. 44, p. R1–R49. 6. A.Yu. Chirkov. Hydrodynamic instability and turbu- lence of non-uniform E×B plasma flow // Proc. of VII Int. Symp. on Radiation Plasma Dynamics, Moscow, 2006. (in Russian) . , . . . . , . - . .