Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration

Field reversed configuration (FRC) is a prospective high b magnetic system for high efficiency D–³He fusion reactor. Self-consistent FRC plasma profiles and static electric field for reactor calculations are discussed in framework of the model including flow equilibrium and collisionless transport e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2007
1. Verfasser: Chirkov, A.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110384
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 55-57. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110384
record_format dspace
spelling Chirkov, A.Yu.
2017-01-04T08:24:07Z
2017-01-04T08:24:07Z
2007
Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 55-57. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 52.30.-q; 52.30.Ex; 52.55.Lf; 28.52.-s; 52.55.Dy
https://nasplib.isofts.kiev.ua/handle/123456789/110384
Field reversed configuration (FRC) is a prospective high b magnetic system for high efficiency D–³He fusion reactor. Self-consistent FRC plasma profiles and static electric field for reactor calculations are discussed in framework of the model including flow equilibrium and collisionless transport equations. The extrapolations to reactor regimes of plasma confinement scaling laws are considered.
Звернена магнітна конфігурація (FRC), – магнітна пастка з високим b, є перспективною системою для високоефективного D–³He-термоядерного реактора. Самоузгоджені розподіли параметрів плазми FRC і статичного електричного поля для розрахунків реактора обговорюються в рамках моделі, що включає рівняння рівноваги течій і беззіштовхувального переносу. Розглядається екстраполяція скейлінгів для утримання плазми в область реакторних режимів.
Обращенная магнитная конфигурация (FRC), – магнитная ловушка с высоким b, является перспективной системой для высокоэффективного D–³He-термоядерного реактора. Самосогласованные распределения параметров плазмы FRC и статического электрического поля для расчетов реактора обсуждаются в рамках модели, включающей уравнения равновесия течений и бесстолкновительного переноса. Рассматривается экстраполяция скейлингов для удержания плазмы в область реакторных режимов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Basic plasma physics
Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
Рівновага течій плазми, закони утримання і термоядерні перспективи зверненої магнітної конфігурації
Равновесие течений плазмы, законы удержания и термоядерные перспективы обращенной магнитной конфигурации
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
spellingShingle Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
Chirkov, A.Yu.
Basic plasma physics
title_short Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
title_full Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
title_fullStr Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
title_full_unstemmed Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
title_sort plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration
author Chirkov, A.Yu.
author_facet Chirkov, A.Yu.
topic Basic plasma physics
topic_facet Basic plasma physics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Рівновага течій плазми, закони утримання і термоядерні перспективи зверненої магнітної конфігурації
Равновесие течений плазмы, законы удержания и термоядерные перспективы обращенной магнитной конфигурации
description Field reversed configuration (FRC) is a prospective high b magnetic system for high efficiency D–³He fusion reactor. Self-consistent FRC plasma profiles and static electric field for reactor calculations are discussed in framework of the model including flow equilibrium and collisionless transport equations. The extrapolations to reactor regimes of plasma confinement scaling laws are considered. Звернена магнітна конфігурація (FRC), – магнітна пастка з високим b, є перспективною системою для високоефективного D–³He-термоядерного реактора. Самоузгоджені розподіли параметрів плазми FRC і статичного електричного поля для розрахунків реактора обговорюються в рамках моделі, що включає рівняння рівноваги течій і беззіштовхувального переносу. Розглядається екстраполяція скейлінгів для утримання плазми в область реакторних режимів. Обращенная магнитная конфигурация (FRC), – магнитная ловушка с высоким b, является перспективной системой для высокоэффективного D–³He-термоядерного реактора. Самосогласованные распределения параметров плазмы FRC и статического электрического поля для расчетов реактора обсуждаются в рамках модели, включающей уравнения равновесия течений и бесстолкновительного переноса. Рассматривается экстраполяция скейлингов для удержания плазмы в область реакторных режимов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110384
citation_txt Plasma flow equilibrium, confinement scaling laws and fusion prospects of a field reversed configuration / A.Yu. Chirkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 55-57. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT chirkovayu plasmaflowequilibriumconfinementscalinglawsandfusionprospectsofafieldreversedconfiguration
AT chirkovayu rívnovagatečíiplazmizakoniutrimannâítermoâderníperspektivizvernenoímagnítnoíkonfíguracíí
AT chirkovayu ravnovesietečeniiplazmyzakonyuderžaniâitermoâdernyeperspektivyobraŝennoimagnitnoikonfiguracii
first_indexed 2025-11-24T02:18:23Z
last_indexed 2025-11-24T02:18:23Z
_version_ 1850836712226291712
fulltext Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 55-57 55 PLASMA FLOW EQUILIBRIUM, CONFINEMENT SCALING LAWS AND FUSION PROSPECTS OF A FIELD REVERSED CONFIGURATION A.Yu. Chirkov Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005, Moscow, Russia, e-mail: chirkov@power.bmstu.ru Field reversed configuration (FRC) is a prospective high β magnetic system for high efficiency D–3He fusion reactor. Self-consistent FRC plasma profiles and static electric field for reactor calculations are discussed in framework of the model including flow equilibrium and collisionless transport equations. The extrapolations to reactor regimes of plasma confinement scaling laws are considered. PACS: 52.30.-q; 52.30.Ex; 52.55.Lf; 28.52.-s; 52.55.Dy 1. INTRODUCTION The field reversed magnetic configuration (FRC) is the cylindrical magnetic trap with high β (β is the ratio of plasma pressure to magnetic field pressure). In FRC plasma is confined in the region of the closed force lines of the magnetic field. Magnetic field in FRC plasma is generated both exterior magnetic coils and a diamagnetic current. Plasma places around of a neutral layer (or a neutral line) where pressure of plasma has a maximum, magnetic field B=0 and β=1. Closed lines area is bounded by the separatrix. According terminology of toroidal systems FRC has a high elongation, and it’s aspect ratio equal to unity. Usually magnetic field in the FRC is supposed to be pure poloidal, but FRC equilibriua with small toroidal component are possible [1]. One of the important problems of present FRCs is high anomalous transport across magnetic field. In the present paper possible confinement scaling laws are discussed and compared with reported data of experiments [2–8]. One can suppose that L-mode was realized in mentioned experiments. Note that H-mode formation has led to improvement of a plasma lifetime in reversed field pinch (RFP) [9]. High β values allow consider FRC as a base for high efficiency D–3He fusion reactor. The main goal of this work is physical justification of D–3He reactor based on FRC. To estimate confinement time for H-mode reactor operation regimes we modify L-mode confinement scaling laws taking into account anomalous transport suppression by flow shear. To calculate flow velocities, static electric field, plasma density and temperature profiles we use self-consistent model of plasma equilibrium with flows and transport [10]. In this model thermodynamic approach to flow invariants is similar to the model of two-fluid equilibria with flows [1]. FRC reactor parameters are calculated from power balance of high-β D–3He fusion plasma [11, 12]. We also compare D–3He FRC reactor concept with D–3He spherical tokamak [13]. 2. FLOW EQUILIBRIUM CALCULATIONS System of equations of flow equilibrium with turbulent transport [10] includes diffusion and energy equations associated with thermodynamic and Maxwell equation. The key equation of this system for “j” component (j = i, e) of the plasma is )( 2 1 2 jjj jj jB j j hUq m Tk ψ η η =++ + u , (1) where jjj nT ∇∇= /η ; kB is the Boltzmann constant; Tj, nj, and uj are temperature, density and flow velocity; mj and qj are the mass and the charge of the particle; U is the potential of the static electric field; hj(ψj) is the surface function of so-called adiabatic surface; ψj is the flux function of the adiabatic surface. Using this model we estimate the maximal ion flow shear parameter as )/( 2 shear BbqTk iiB≈γ , (2) where b is the width of flow shear region. 3. CONFINEMENT TIME SCALING LAWS 3.1. L-MODE Recently good agreement of low-frequency drift wave scaling laws [14] with experimental data [2–8] was shown. Confinement time also can be estimated using the results of calculations of the electrostatic finite β ITG-like instability driven by non-adiabatic particles and magnetic force line curvature [15]. Let’s consider “universal” scaling for L-mode particle confinement time in form t 0 2 1 2 Tk eBaaC B C T L       = ρ τ , (3) where C1 and C2 are some constants, a is the separatrix radius, )/( 0t eBTkm BiT =ρ , e is the electron charge, B0 is the external coil magnetic field (vacuum value), ei TTT +=t is so-called total temperature. In limiting case C2 = 0 (or C2 = 1) Eq. 3 corresponds to Bohm (or gyro-Bohm) scaling. mailto:chirkov@power.bmstu.ru 56 10 100 1000 10 100 1000 τexp (µs) τgyro-Bohm∝a3B0 2Tt -3/2 (µs) Fig. 1. Comparison of gyro-Bohm scaling with experimental data For example, gyro-Bohm scaling (in usual SI units exclude Tt in eV) is 2/3 t 2 0 33 Bohmgyro 104 − − ×= TBaτ . The comparisons of particle confinement time values measured in experiments [2–8] τexp with the gyro-Bohm scaling are presented in Fig. 1. Note for Bohm scaling with C1≈10 [16] agreement with experimental data not worse than for gyro-Bohm one. 3.2. H-MODE EXTRAPOLATION Taking into account turbulence suppression by flow shear [17] one can write confinement time )1( 22 shear cL τγττ += , (4) where τc is the turbulence correlation time having an order of inverse linear instability increment. Correlation time can be estimated from the overage diffusivity for L- mode (D⊥L) as follows LLc aD ττδ // 22 ≈≈ ⊥ , (5) where δ ≈ b is the width of the turbulent layer near FRC separatrix. So, extrapolation of the confinement time to reactor H-mode is 32 shear 2)/( LL a τγδττ += . For high efficiency reactor strong flow shear is needed: γshear>>τL –1, τ >>τL, 32 shear 2)/( La τγδτ ≈ . Let’s consider the most pessimistic L-mode scenario with Bohm confinement time scaling law )/(10 t0 2 Bohm TkeBa BL == ττ . In this case for reactor calculation we use extrapolation in form         += 4 22 t 0 2 100110 b a Tk eBa B δ τ . (6) Also for reactor configuration we assume δ ≈ b ≈ 0.1a. β r/a Fig. 2. Plasma β profile for reactor calculations P, MW/m3 r, m 1 2 3 4 5 Fig. 3. Power distributions. 1 – fusion power, 2 – neutron power, 3 – bremsstrahlung, 4 – emitted synchrotron radiation power, 5 – synchrotron radiation taking into account absorption 4. FUSION PLASMA POWER BALANCE AND FRC REACTOR CONCEPT For FRC reactor plasma we consider temperature and density profiles connected as follows ηnT ∝ with η = 2 and Te = Ti. Corresponding β profile is plotted in Fig. 2. D–3He fusion plasma and FRC reactor parameters we calculate using models of D–3He fuel cycles [11] and FRC fusion plasma [12]. These models are based on integral power balance ∫ Σ +++=      + V jBj dV Tkn PPPP Q τsbrnfus 11 , (7) where Q is the plasma power amplification factor; Pfus, Pn, Pbr and Ps are fusion power, neutron power, bremsstrahlung power and synchrotron radiation power integrated over plasma volume V. In Fig. 3 radial power distributions for D–3He FRC fusion reactor are plotted. Results of calculations are presented in the Table. For comparison Table contains parameters of D–3He spherical tokamak reactor [13]. 57 Parameters of D–3He reactors based on FRC and spherical tokamak for regimes with Q=20 Reactor type FRC Spherical tokamak [13] Fuel cycle D–3He, n3He/nD=1 D–3He with 3He self-supply, n3He/nD=0.36 Plasma radius a, m 1.6 3 Aspect ratio 1 1.5 Elongation – 3.8 Magnetic field B0, T 5 3.2 Maximal/averaged β 1/0.46 0.95/0.54 Maximal/averaged T, keV 60/28 50/40 Synchrotron wall reflectivity Γs 0.5 0.65 Confinement time τ, s (scaling) 2.5 (Eq. (6)) 16 (ITER) Fusion power Pfus, MW 32.3 per meter of plasma cylinder 1500 Bremsstrahlung power fraction Pbr/Pfus 0.4 0.6 Synchrotron power fraction Ps/Pfus 0.052 0.023 Neutron power fraction Pn/Pfus 0.072 0.15 Neutron wall load Wn, MW/m2 0.18 0.2 REFERENCES 1. L.C. Steinhauer, H.Y. Guo // Phys. Plasmas. 2006, v. 13, p.052514. 2. A.L. Hoffman et al. // Plasma Phys. and Contr. Nucl. Fusion Res. IAEA, Vienna, 1987, v. 2, p. 541. 3. N.A. Krall // Phys. Fluids. 1989, v. B1, p. 1811. 4. D.J. Rej et al. // Phys. Fluids. 1990, v. B2, p. 1706. 5. D.J. Rej et al. // Nucl. Fusion. 1990, v. 30, p. 1087. 6. A.L. Hoffman, J.T. Slough // Nucl. Fusion. 1993, v. 33, p. 27. 7. L. Steinhauer. FRC data digest // US-Japan Workshop on FRC, Niigata, 1996. 8. K. Kitano, et al. // Proc. 25th EPS Conf. on Contr. Fusion and Plasma Phys., Prague, 1998. 9. T. Asai et al. // Phys. Plasmas. 2000, v. 7, p. 2294. 10. A.Yu. Chirkov // Vestnik MGTU. Natural Sciences. 2006, 2, p. 115 (in Russian). 11. V.I. Khvesyuk, A.Yu. Chirkov // Plasma Phys. Control. Fusion. 2002, v. 44, p. 253. 12. A.Yu. Chirkov, V.I. Khvesyuk // Fusion Technology. 2001, v. 39 (1T), p. 406–409. 13. A.Yu. Chirkov // Zh. Tekh. Fiz. 2006, v. 76, 9, p. 51. 14. A.Yu. Chirkov // Prikl. Fiz. (submitted) (in Russian). 15. A.Yu. Chirkov, V.I. Khvesyuk // Problems of Atomic Science and Technology(12). 2006, N6, p. 110-11. 16. V.I. Khvesyuk, A.Yu. Chirkov // Fusion Technology. 2001, v. 39 (1T), p. 398. 17. K. Itoh, S.-I. Itoh // Plasma Phys. Control Fusion. 1996, v. 38, p. 1. , . (FRC), – β, D–3He- . FRC , . . , . (FRC), – β, D–3He- . FRC , . .