Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona
We present a coherent nonlinear theory of three-wave coupling involving Langmuir, kinetic Alfvén and whistler waves. The initial stage of the energy exchange among these modes and the following nonlinear temporal dynamics are studied. The role of pump depletion, dissipation and frequency mismatch in...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2007 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/110408 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the / O.K. Sirenko, Yu.M. Voitenko, M. Goossens, A.C.-L. Chian // Вопросы атомной науки и техники. — 2007. — № 1. — С. 84-86. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110408 |
|---|---|
| record_format |
dspace |
| spelling |
Sirenko, O.K. Voitenko, Yu.M. Goossens, M. Chian, A.C.-L. 2017-01-04T12:01:17Z 2017-01-04T12:01:17Z 2007 Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the / O.K. Sirenko, Yu.M. Voitenko, M. Goossens, A.C.-L. Chian // Вопросы атомной науки и техники. — 2007. — № 1. — С. 84-86. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.35.-g https://nasplib.isofts.kiev.ua/handle/123456789/110408 We present a coherent nonlinear theory of three-wave coupling involving Langmuir, kinetic Alfvén and whistler waves. The initial stage of the energy exchange among these modes and the following nonlinear temporal dynamics are studied. The role of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics is analyzed. Depending on the relative damping rates of the waves, the initial Langmuir waves can be nonlinearly transformed either into whistlers, or into KAWs. The theory is applied to the Langmuir waves excited by electron beams in a diluted solar corona where the local electron-cyclotron frequency is higher than the local electron plasma frequency. Представлена когерентна нелінійну теорія трихвильової взаємодії, що включає ленгмюрівську, кінетичну альфвенівську хвилі та вістлер. Вивчена початкова стадія енергетичного обміну між даними хвилями та його наступна часова динаміка. Проаналізовано вплив зміни амплітуди хвилі накачки, вплив диссипації та частотного зсуву на нелінійну хвильову динаміку. В залежності від відносного затухання хвиль, початкові ленгмюрівські хвилі можуть бути нелінійно трансформовані або в вістлери, або в кінетичні альфвенівські хвилі. Результати теорії застосовані для ленгмюрівських хвиль, що збуджуються електронним пучком в розрідженій корональній плазмі, де локальна електронно-циклотронна частота більша за локальну електронну плазмову частоту. Представлена когерентная нелинейная теория трехволнового взаимодействия ленгмюровской, кинетической альфвеновской волн и вистлера. Изучена начальная стадия энергообмена между данными волнами и его последующая временная динамика. Проанализировано влияние изменения амплитуды волны накачки, влияние диссипации и частотного сдвига на нелинейную волновую динамику. В зависимости от относительного затухания волн начальные легмюровские волны могут быть нелинейно трансформированы или в вистлеры, или в кинетические альфвеновские волны. Результаты теории применены для ленгмюровской волны, которая возбуждается электронным пучком в разреженной корональной плазме, где локальная электронно-циклотронная частота больше, чем локальная электронная плазменная частота. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Space plasma Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona Нелінійне затухання ленгмюрівських хвиль внаслідок ленгмюр-альфвен-вістлер взаємодії в сонячній короні Нелинейное затухание ленгмюровских волн вследствие ленгмюр-альфвен-вистлер взаимодействия в солнечной короне Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona |
| spellingShingle |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona Sirenko, O.K. Voitenko, Yu.M. Goossens, M. Chian, A.C.-L. Space plasma |
| title_short |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona |
| title_full |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona |
| title_fullStr |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona |
| title_full_unstemmed |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the solar corona |
| title_sort |
nonliner damping of electron beam-driven langmuir waves due to langmuir-kinetic alfvén-whistler coupling in the solar corona |
| author |
Sirenko, O.K. Voitenko, Yu.M. Goossens, M. Chian, A.C.-L. |
| author_facet |
Sirenko, O.K. Voitenko, Yu.M. Goossens, M. Chian, A.C.-L. |
| topic |
Space plasma |
| topic_facet |
Space plasma |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Нелінійне затухання ленгмюрівських хвиль внаслідок ленгмюр-альфвен-вістлер взаємодії в сонячній короні Нелинейное затухание ленгмюровских волн вследствие ленгмюр-альфвен-вистлер взаимодействия в солнечной короне |
| description |
We present a coherent nonlinear theory of three-wave coupling involving Langmuir, kinetic Alfvén and whistler waves. The initial stage of the energy exchange among these modes and the following nonlinear temporal dynamics are studied. The role of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics is analyzed. Depending on the relative damping rates of the waves, the initial Langmuir waves can be nonlinearly transformed either into whistlers, or into KAWs. The theory is applied to the Langmuir waves excited by electron beams in a diluted solar corona where the local electron-cyclotron frequency is higher than the local electron plasma frequency.
Представлена когерентна нелінійну теорія трихвильової взаємодії, що включає ленгмюрівську, кінетичну альфвенівську хвилі та вістлер. Вивчена початкова стадія енергетичного обміну між даними хвилями та його наступна часова динаміка. Проаналізовано вплив зміни амплітуди хвилі накачки, вплив диссипації та частотного зсуву на нелінійну хвильову динаміку. В залежності від відносного затухання хвиль, початкові ленгмюрівські хвилі можуть бути нелінійно трансформовані або в вістлери, або в кінетичні альфвенівські хвилі. Результати теорії застосовані для ленгмюрівських хвиль, що збуджуються електронним пучком в розрідженій корональній плазмі, де локальна електронно-циклотронна частота більша за локальну електронну плазмову частоту.
Представлена когерентная нелинейная теория трехволнового взаимодействия ленгмюровской, кинетической альфвеновской волн и вистлера. Изучена начальная стадия энергообмена между данными волнами и его последующая временная динамика. Проанализировано влияние изменения амплитуды волны накачки, влияние диссипации и частотного сдвига на нелинейную волновую динамику. В зависимости от относительного затухания волн начальные легмюровские волны могут быть нелинейно трансформированы или в вистлеры, или в кинетические альфвеновские волны. Результаты теории применены для ленгмюровской волны, которая возбуждается электронным пучком в разреженной корональной плазме, где локальная электронно-циклотронная частота больше, чем локальная электронная плазменная частота.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110408 |
| citation_txt |
Nonliner damping of electron beam-driven Langmuir waves due to Langmuir-kinetic Alfvén-whistler coupling in the / O.K. Sirenko, Yu.M. Voitenko, M. Goossens, A.C.-L. Chian // Вопросы атомной науки и техники. — 2007. — № 1. — С. 84-86. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT sirenkook nonlinerdampingofelectronbeamdrivenlangmuirwavesduetolangmuirkineticalfvenwhistlercouplinginthesolarcorona AT voitenkoyum nonlinerdampingofelectronbeamdrivenlangmuirwavesduetolangmuirkineticalfvenwhistlercouplinginthesolarcorona AT goossensm nonlinerdampingofelectronbeamdrivenlangmuirwavesduetolangmuirkineticalfvenwhistlercouplinginthesolarcorona AT chianacl nonlinerdampingofelectronbeamdrivenlangmuirwavesduetolangmuirkineticalfvenwhistlercouplinginthesolarcorona AT sirenkook nelíníinezatuhannâlengmûrívsʹkihhvilʹvnaslídoklengmûralʹfvenvístlervzaêmodíívsonâčníikoroní AT voitenkoyum nelíníinezatuhannâlengmûrívsʹkihhvilʹvnaslídoklengmûralʹfvenvístlervzaêmodíívsonâčníikoroní AT goossensm nelíníinezatuhannâlengmûrívsʹkihhvilʹvnaslídoklengmûralʹfvenvístlervzaêmodíívsonâčníikoroní AT chianacl nelíníinezatuhannâlengmûrívsʹkihhvilʹvnaslídoklengmûralʹfvenvístlervzaêmodíívsonâčníikoroní AT sirenkook nelineinoezatuhanielengmûrovskihvolnvsledstvielengmûralʹfvenvistlervzaimodeistviâvsolnečnoikorone AT voitenkoyum nelineinoezatuhanielengmûrovskihvolnvsledstvielengmûralʹfvenvistlervzaimodeistviâvsolnečnoikorone AT goossensm nelineinoezatuhanielengmûrovskihvolnvsledstvielengmûralʹfvenvistlervzaimodeistviâvsolnečnoikorone AT chianacl nelineinoezatuhanielengmûrovskihvolnvsledstvielengmûralʹfvenvistlervzaimodeistviâvsolnečnoikorone |
| first_indexed |
2025-11-26T00:08:22Z |
| last_indexed |
2025-11-26T00:08:22Z |
| _version_ |
1850592060393914368 |
| fulltext |
84 Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 84-86
NONLINEAR DAMPING OF ELECTRON BEAM-DRIVEN LANGMUIR
WAVES DUE TO LANGMUIR-KINETIC ALFVÉN-WHISTLER COUPLING
IN THE SOLAR CORONA
O.K. Sirenko1, Yu.M. Voitenko1,2, M. Goossens2, A.C.-L. Chian3,4
1Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kyiv, Ukraine;
2Centre for Plasma Astrophysics, K.U. Leuven, Belgium;
3National Institute for Space Research-INPE, Brazil;
4World Institute for Space Research-WISER, University of Adelaide, Australia
We present a coherent nonlinear theory of three-wave coupling involving Langmuir, kinetic Alfvén and whistler
waves. The initial stage of the energy exchange among these modes and the following nonlinear temporal dynamics are
studied. The role of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics is analyzed.
Depending on the relative damping rates of the waves, the initial Langmuir waves can be nonlinearly transformed either
into whistlers, or into KAWs. The theory is applied to the Langmuir waves excited by electron beams in a diluted solar
corona where the local electron-cyclotron frequency is higher than the local electron plasma frequency.
PACS: 52.35.-g
1. INTRODUCTION
The nonlinear wave-wave interactions involving
electron-beam driven Langmuir wave have been widely
studied in context of generation mechanisms for the solar
radio bursts. Large amplitude Langmuir waves can
generate radio emission by nonlinear coupling to low-
frequency MHD waves such as ion sound wave, whistler
and shear Alfvén waves [1, 2]. We present here another
relevant nonlinear parametric process for beam-driven
Langmuir waves (L) in the solar corona, namely their
decay into whistler (W) and kinetic Alfvén wave (KAW).
Linear theory of parametric instability for
LDKAW+W has been investigated by Voitenko et al.
2003 [3]. In the linear theory the pump amplitude is
assumed constant. In this paper we develop a coherent
nonlinear theory of the process LDKAW+W, taking into
consideration the effect of pump depletion. In addition,
the roles played by dissipation and frequency mismatch in
the nonlinear wave dynamics are analyzed numerically.
2. COUPLED WAVE EQUATIONS
FOR LDKAW+W
We treat the nonlinear parametric coupling of three
waves: an oblique pump Langmuir wave with
frequency Lω and wave vector };0;{ LzLxL kkk =
r
; whistler
wave with frequency Wω and wave vector };0;0{ WzW kk =
r
and a kinetic Alfvén wave with frequency Aω and wave
vector };0;{ AzAxA kkk =
r
with AzAx kk >> . For a three-
wave coupling, the following resonant conditions should
be satisfied:
;AWL ωωω +≈ AWL kkk
rrr
+= . (1)
The resonant condition can be easily satisfied only when
the local electron plasma frequency is smaller than the
local electron-cyclotron frequency ( )epe Ω<ω , as we
choose in our plasma model.
We adopt the two-fluid plasma description. The nonlinear
system of coupled wave equations governing the three-
wave process LDKAW+W is given by
,
;
;
*
*
WxLLWAxA
AxLLAWxW
WxAxWALL
EEiCED
EEiCED
EEiCED
−=
−=
=
(2)
where the dispersion operators DL, DA, DW are
( )[
( ) ( )
.
,
,4
2
1
2222
2222
222
2
2
222222
22222
AAAAzAA
WW
eW
W
peWWW
TeLpe
L
Lz
eeTeLpe
eTeLpeLLLL
iKVkD
ikcD
Vk
k
k
Vk
VkiD
ωνω
ων
ω
ω
ωω
ωω
ωωων
+−=
+
Ω−
−−=
+Ω−Ω++−
−Ω++−+=
The damping frequencies are
( ) ;/ 22
eLpeL νωων = ( ) ;2
2
eW
epe
W Ω−
=
ω
νω
ν
;
1
25.0
8 e
e
e
Te
As
AA V
V
K χ
χ
ν
µ
ω
π
ν
+
+= .
Here νe electron damping, the dispersion function for the
KAW K determines the wave phase velocity
( ) ( )eTK χµ ++= 1/1 ,
and the dispersive variables for the KAW are
;22
TAxT k ρµ = ;22
eAxe k δχ = where ;/ pTT V Ω=ρ
;/ pee c ωχ = here VT, VA and c are slow wave velocity,
Alfvén velocity and velocity of light respectively.
The coupling coefficients for the kinetic Alfvén and
whistler wave and their detail derivation are given in [3].
The nonlinear dispersion equation for the pump Langmuir
wave can be derived using the Poisson’s law and
continuity equation. The coupling coefficient for the
electrostatic Langmuir wave is given by
85
{ ( )
( )
+
−
++
+−−
−+
−
+
×
+−−
−
=
T
W
W
Wz
Te
A
A
sA
Te
A
T
i
e
Te
A
A
W
Wz
i
s
We
LWA
b
bkK
V
VsZ
KV
V
z
s
m
m
z
bK
V
Vsk
z
b
bz
zb
b
z
dz
bz
Ym
ekC
µ
ω
ωµ
µβ
ω
β
µ
µ
ω
111
111
1
1
22
1
2
22
2
+
where
pe
e
pe
L
pe
W
WDeWzWz
AzAzADeLxDeLZDeL
bzkk
kkskXkZkY
ωω
ω
ω
ω
ωλ
λλλ
Ω
====
====
;;;
/,,,
3. INITIAL STAGE OF THE DECAY
The initial stage of the parametric decay process
LDKAW+W with the Langmuir wave acting as the pump
is governed by Eqs. (2), assuming νL,A,W=0,
=LE
r
constant and AWL EEE
rrr
,>> . The rate of the
exponential growth (growth rate), written in non-
dimensional form is:
( )( ) ,
24
1
22
2
L
p
NL W
zbbzzb
BCM
+−
=
Ω
γ
where
e
L
L Tn
E
W
0
2
4π
= ; ( ) ;
1
2
2
2
−
+
= Yf
b
z
Y
XB
Tµ
KZ
z
zb
V
V
M
bsXC
A
Te
A 3
223
2 −
−= .
Here pAf Ω= /ω , ei mmM /= .
The dependence of the nonlinear growth rate on the
wavenumbers of the Langmuir waves for antiparallel
propagating KAWs (sA=-1) is found numerically for
typical coronal parameters (see Fig. 1 and [3] for the
details).
Fig.1. Nonlinear growth rate of the decay LDKAW+W.
The normalized Langmuir wave energy is WL=10-4.
Parameter b=1.04(solid line); 1.1(dash line)
and 1.4(dot line)
The nonlinear growth rate strongly increases with
perpendicular wavenumber of the KA/Langmuir wave
and critically depends on the parameter b in range
DeLZk λ > 0.01: it is larger for b > 1, but quickly decreases
with increasing b. So, the general tendency is that the
faster electron beams in b>1 regions are most efficient for
producing of LAW events. However, even in the region
where b deviates significantly from 1, the decay is fast
when the parallel wavenumbers of Langmuir wave are
reduced. The reducing of the parallel wavenumbers can
occur due to the density variations along magnetic field
lines and/or to the presence of low-frequency waves.
4. NONLINEAR TEMPORAL DYNAMICS
OF THE COUPLED MODES
We now take into account the effect of pump
depletion and study the nonlinear temporal behavior of
Eqs. (2). Following the same steps as in [4] we get the
dynamical system for the process LDKAW+W:
( )
( )
( )
,sin
,cos2
,cos2
,cos2
2/12/12/1
/2/1
/2/1
/2/1
ϕδϕ
νϕ
νϕ
νϕ
τ
τ
τ
τ
+
+
−+=∂
−−=∂
−−=∂
−=∂
W
AL
A
WL
L
WA
WWWALW
AAWALA
LLWALL
F
FF
F
FF
F
FF
FFFFF
FFFFF
FFFFF
here the amplitude Fα and phase ϕα are real variables in
adopted polar representation ªα= ααα ϕη iF exp2/1 , τ =ωcht,
chωδ /∆= , ( )Dch ωααα ωωνν ∂= // , ϕ=ϕL-ϕA-ϕW. The
normalization parameters ηL,A,W are given by
,
2/1
∂∂
=
LALW
AW
chL cc
DD ωωωη ,
2/1
∂∂
=
LWWA
AL
chW cc
DD ωωωη
( ),exp
2/1
ti
cc
DD
WALA
WL
chA ∆−
∂∂
= ωωωη
where WAL ωωω −−=∆ is the frequency mismatch. In
nondissipative case with perfect frequency matching
(δ=0) the solution of system (3) has periodic wavetrain
form, therefore the decay process LDKAW+W represents
periodic conversion of the energy of Langmuir pump
wave into the energy of kinetic Alfvén and whistler wave.
The finite frequency mismatch (δ≠0) diminishes the
efficiency of energy transfer.
Fig.2. Nonlinear waveforms for the case of dissipative
waves ( ,01.0/ =Aν /
Lν =0.04, /
Wν =0.07) with finite
frequency mismatch (δ=0.01); ωch=1 s-1
(3)
86
Fig.3. Nonlinear waveforms for the case of dissipative
waves ( ,02.0/ =Aν /
Lν ≈1.2×10-6, /
Wν ≈2.1×10-6) with finite
frequency mismatch (δ=0.1); ωch=Ωp=3.3×104 s-1
Figs. 2, 3 gives the examples of numerical solutions of
Eqs. (3) with both dissipation and frequency mismatch for
the case of dissipation of the KAW due to electron-ion
collisions and due to Landau damping on Maxwellian
electrons, respectively. The plasma parameters are the
same as in Fig.1. It is seen that in the first case the two
high-frequency waves (Langmuir and whistler waves)
follow similar temporal damping profiles and the initial
energy of Langmuir wave is mostly converted into the
kinetic Alfvén wave. In case of dissipation of KAWs due
to Landau damping we observe a complete conversion of
the initial Langmuir wave into whistler wave.
CONCLUSIONS
In this paper we investigate the nonlinear three-wave
coupling involving Langmuir, kinetic Alfvén and whistler
wave. By accounting for the finite wave damping we find
a complete conversion of the initial Langmuir wave into
whistler (or into KAW for smaller ratio of the
KAW/whistler damping rates). The results are applied to
the beam-driven Langmuir waves deduced from the
observations. Our study suggests that the nonlinear decay
of Langmuir wave energy into KAWs and whistlers can
provide an efficient sink for low-dispersive Langmuir
waves excited by fast electron beams in the solar corona
when the electron plasma frequency is lower than the
electron gyrofrequency. Such conditions can be satisfied
in the thin (∼10km) underdense filaments guided by
magnetic filed lines which are connected to the low-
temperature patches at the coronal base. At the same time,
this nonlinear process may play a role also in the auroral
zone of the Earth’s magnetosphere, where Langmuir-Alfvén-
whistler events are registered in-situ by satellites [5].
REFERENCES
1. D.B. Melrose. The emission mechanisms for solar
radio bursts // Space Science Review. 1980, v.26, p.3.
2. A.C.-L Chian et al. Coherent generation of narrow
band circularly polarized radio bursts from the sun and
flare stars // Solar Physics. 1997, v.173, p.199-202.
3. Yu.M. Voitenko, M. Goossens et al. Nonlinear
excitation of kinetic Alfvén waves and whistler waves by
electron beam-driven Langmuir waves in the solar
corona// Astronomy and Astrophysics. 2003, v.409, p.331.
4. A.C.-L Chian and J.R. Abalde. Fundamental plasma
radiation generated by a trevelling Langmuir wave:
hybrid stimulated modulational instability // J. Plasma
Physics. 1997, v.57, p.753-763.
5. A.C.-L Chian, J.R. Abalde, M.V. Alves. Generation
of auroral whistler-mode radiation via nonlinear coupling
of Langmuir waves and Alfvén waves // Astronomy and
Astrophysics. 1994, v.290, p.L13.
E. . , . , . , .- .
,
.
. ,
.
,
. ,
, -
, .
. , . , . , .- .
, ,
.
. ,
. ,
, .
,
,
.
|