Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature

Dispersion equation is analyzed for field aligned ion-cyclotron waves in a two-dimensional (2D) magnetospheric plasma with circular magnetic field lines. The steady-state bi-Maxwellian distribution function is used to model the energetic protons in a hydrogen plasma at the geostationary orbit. As in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2007
Автори: Grishanov, N.I., Azarenkov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/110410
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature / N.I. Grishanov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 78-80. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110410
record_format dspace
spelling Grishanov, N.I.
Azarenkov, N.A.
2017-01-04T12:11:03Z
2017-01-04T12:11:03Z
2007
Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature / N.I. Grishanov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 78-80. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 94.30.cq, 94.30.Hn
https://nasplib.isofts.kiev.ua/handle/123456789/110410
Dispersion equation is analyzed for field aligned ion-cyclotron waves in a two-dimensional (2D) magnetospheric plasma with circular magnetic field lines. The steady-state bi-Maxwellian distribution function is used to model the energetic protons in a hydrogen plasma at the geostationary orbit. As in the uniform magnetic field, the growth rate of the proton-cyclotron instability (PCI) in a 2D magnetospheric plasma is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. It is shown that the PCI growth rate in 2D axisymmetric magnetosphere can be significantly smaller than that is for the straight magnetic field case with the same macroscopic bulk parameters.
Проаналізовано дисперсійне рівняння для іонно-циклотронних хвиль, які поширюються вздовж геомагнітного поля у двовимірній (2D) магнітосферній плазмі з силовими лініями магнітного поля у вигляді кола. Бімаксвелівська функція розподілу використана при моделюванні розподілу енергійних протонів у водневій плазмі поблизу геостаціонарних орбіт. Як і у випадку однорідного магнітного поля, інкремент зростання протонно-циклотронної нестійкості (ПЦН) у 2D магнітосфері визначається внеском енергійних протонів в уявну частину поперечної діелектричної проникливості. Доведено, що інкремент ПЦН у 2D аксіально-симетричній магнітосфері може бути значно нижчим, ніж для плазми у прямому магнітному полі з тими ж самими макроскопічними параметрами.
Проанализировано дисперсионное уравнение ионно-циклотронных волн, распространяющихся параллельно геомагнитному полю в двумерной (2D) магнитосферной плазме с круговыми силовыми линиями удерживающего магнитного поля. Бимаксвелловская функция распределения использована при моделировании распределения энергичных протонов в водородной плазме вблизи геостационарных орбит. Как и в однородном магнитном поле, инкремент нарастания протонно-циклотронной неустойчивости (ПЦН) в 2D магнитосфере определяется вкладом энергичных протонов в мнимую часть поперечной диэлектрической проницаемости. Показано, что инкремент ПЦН в 2D аксиально-симметричной магнитосфере может быть значительно ниже, чем для плазмы в прямом магнитном поле с теми же макроскопическими параметрами.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Basic plasma physics
Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
Нестійкість іонно-циклотронних хвиль у 2D-магнітосферній плазмі з анізотропною температурою
Неустойчивость ионно-циклотронных волн в 2D-магнитосферной плазме с aнизотропной температурой
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
spellingShingle Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
Grishanov, N.I.
Azarenkov, N.A.
Basic plasma physics
title_short Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
title_full Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
title_fullStr Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
title_full_unstemmed Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature
title_sort instability of ion-cyclotron waves in a 2d magnetospheric plasma with anisotropic temperature
author Grishanov, N.I.
Azarenkov, N.A.
author_facet Grishanov, N.I.
Azarenkov, N.A.
topic Basic plasma physics
topic_facet Basic plasma physics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Нестійкість іонно-циклотронних хвиль у 2D-магнітосферній плазмі з анізотропною температурою
Неустойчивость ионно-циклотронных волн в 2D-магнитосферной плазме с aнизотропной температурой
description Dispersion equation is analyzed for field aligned ion-cyclotron waves in a two-dimensional (2D) magnetospheric plasma with circular magnetic field lines. The steady-state bi-Maxwellian distribution function is used to model the energetic protons in a hydrogen plasma at the geostationary orbit. As in the uniform magnetic field, the growth rate of the proton-cyclotron instability (PCI) in a 2D magnetospheric plasma is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. It is shown that the PCI growth rate in 2D axisymmetric magnetosphere can be significantly smaller than that is for the straight magnetic field case with the same macroscopic bulk parameters. Проаналізовано дисперсійне рівняння для іонно-циклотронних хвиль, які поширюються вздовж геомагнітного поля у двовимірній (2D) магнітосферній плазмі з силовими лініями магнітного поля у вигляді кола. Бімаксвелівська функція розподілу використана при моделюванні розподілу енергійних протонів у водневій плазмі поблизу геостаціонарних орбіт. Як і у випадку однорідного магнітного поля, інкремент зростання протонно-циклотронної нестійкості (ПЦН) у 2D магнітосфері визначається внеском енергійних протонів в уявну частину поперечної діелектричної проникливості. Доведено, що інкремент ПЦН у 2D аксіально-симетричній магнітосфері може бути значно нижчим, ніж для плазми у прямому магнітному полі з тими ж самими макроскопічними параметрами. Проанализировано дисперсионное уравнение ионно-циклотронных волн, распространяющихся параллельно геомагнитному полю в двумерной (2D) магнитосферной плазме с круговыми силовыми линиями удерживающего магнитного поля. Бимаксвелловская функция распределения использована при моделировании распределения энергичных протонов в водородной плазме вблизи геостационарных орбит. Как и в однородном магнитном поле, инкремент нарастания протонно-циклотронной неустойчивости (ПЦН) в 2D магнитосфере определяется вкладом энергичных протонов в мнимую часть поперечной диэлектрической проницаемости. Показано, что инкремент ПЦН в 2D аксиально-симметричной магнитосфере может быть значительно ниже, чем для плазмы в прямом магнитном поле с теми же макроскопическими параметрами.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110410
citation_txt Instability of ion-cyclotron waves in a 2D magnetospheric plasma with anisotropic temperature / N.I. Grishanov, N.A. Azarenkov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 78-80. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT grishanovni instabilityofioncyclotronwavesina2dmagnetosphericplasmawithanisotropictemperature
AT azarenkovna instabilityofioncyclotronwavesina2dmagnetosphericplasmawithanisotropictemperature
AT grishanovni nestíikístʹíonnociklotronnihhvilʹu2dmagnítosferníiplazmízanízotropnoûtemperaturoû
AT azarenkovna nestíikístʹíonnociklotronnihhvilʹu2dmagnítosferníiplazmízanízotropnoûtemperaturoû
AT grishanovni neustoičivostʹionnociklotronnyhvolnv2dmagnitosfernoiplazmesanizotropnoitemperaturoi
AT azarenkovna neustoičivostʹionnociklotronnyhvolnv2dmagnitosfernoiplazmesanizotropnoitemperaturoi
first_indexed 2025-11-25T15:37:13Z
last_indexed 2025-11-25T15:37:13Z
_version_ 1850516973671153664
fulltext 78 Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 78-80 INSTABILITY OF ION-CYCLOTRON WAVES IN A 2D MAGNETOSPHERIC PLASMA WITH ANISOTROPIC TEMPERATURE N.I. Grishanov, N.A. Azarenkov V.N. Karazin Kharkov National University, Department of Physics and Technology, Ukraine Dispersion equation is analyzed for field aligned ion-cyclotron waves in a two-dimensional (2D) magnetospheric plasma with circular magnetic field lines. The steady-state bi-Maxwellian distribution function is used to model the energetic protons in a hydrogen plasma at the geostationary orbit. As in the uniform magnetic field, the growth rate of the proton-cyclotron instability (PCI) in a 2D magnetospheric plasma is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. It is shown that the PCI growth rate in 2D axisymmetric magnetosphere can be significantly smaller than that is for the straight magnetic field case with the same macroscopic bulk parameters. PACS: 94.30.cq, 94.30.Hn 1. INTRODUCTION Cyclotron waves are an important constituent of plasmas in solar corona, solar wind and planetary magnetospheres. As it is known, energetic particles with anisotropic temperature can excite a wide class of cyclotron wave instabilities. Kinetic theory of such waves in the straight magnetic field plasmas is developed very well, see e.g. Refs. [1-6]. However, plasma models in the straight magnetic field are quite rough for planetary magnetospheres which are three-dimensional in the general case. As more suitable, the Earth’s magnetosphere can be considered as a two-dimensional (2D) dipole magnetic field configuration. Another interesting 2D magnetospheric plasma model is a configuration with circular magnetic field lines, which is artificial but simpler and helpful to describe the principal wave processes in the Earth’s magnetosphere. The dispersion equations for cyclotron waves in magnetospheric plasmas with dipole and circular magnetic field lines were derived in Ref. [7]. In this paper we analyze the dispersion characteristics of the electromagnetic ion-cyclotron (EMIC) waves in the hydrogen plasma confined in the last plasma model including the energetic protons with the bi-Maxwellian distribution function. 2. DISPERSION EQUATION FOR FIELD- ALIGNED CYCLOTRON WAVES According to Ref. [7], the dispersion equations for field aligned cyclotron waves in magnetospheric plasmas with circular magnetic field lines can be rewritten by analogy with the straight magnetic field case in the form: ∑+=      σ σε θω π )(21 , )(, 2 0 L LR cn nn l o , (1) where σ denotes the particle species (electron, proton, heavy ions); n is the mode number along the geomagnetic field; )cos/( 0 θRRL = is the non-dimensional L-shell parameter; θ is the geographical latitude; and the transverse permittivity elements are × − −= ∑∫ ∫ ∞ −∞= ∞ ⊥ p l n lp n lp To ponn l o Zpu YAu d Tv TLR ν ν νν θωπ ω ε 0 0 ' ,, 4 3 || 5.1 ||0 2 ', )( )21( 2 .1)21(1exp ||22 du T T u                       −−−−× ⊥ ν (2) Here we have used the following definitions: ×               −+ −− +− = ∫ − ⊥ ⊥ t t T T LR nuv b TTb uY o Tn lp θ θ θω π θν θ ν || 0 || 2 || , 1 )()21(1 /1)( ),( ,)()(2cos)1( )()(2cos || 2 0 || 2 0 θθ ω θτ τ π θ θ π θ ω θτ τ π θ θ π dC uvL lRpn C uvL lRpn T co bo p T co bo             ++−+     +         −−× )()21(1 )()()(2cos)1( )()(2cos),( 2 || 2 0 || 2 0 , θν θθ θ ω θτ τ π θ θ π θ ω θτ τ π θ θ π ν θ θ b dbC uvL lRpn C uvL lRpnuA T co bo p T co bo n lp t t −−            ++− +             −−= ∫ − ( ) ( ) 5.15.1 )21(2 ),(,),( )21( )1(2)( ν νθα ννθα ν ν θ − −Π − − = FC ,         −− − = θ θν ν θα sin sin)1(2 21arcsin)( 2 , ( )νθα ν ν ν ν θα ν ν νθτ ),( 2 21, 21 ),( 21 )1(2 ),( 2 F− −      − − Π − − =      Π−= νν π νντ ,2, 2 )21(8)(b , ∫ −− =Π α ηνηδ η νδα 0 22 sin1)sin1( ),,( d , ∫ − = α ην η να 0 2sin1 ),( dF , θ θ 4cos 1)( =b , θ θν θ τ θ d b bb t b ∫ −− = 0 2 )()21(1 )(4 , ||Tv vu = , ννθ 2arcsin)( =t , b T b LR v τ π ω 0 ||2 = , M Ne po 2 2 4π ω = ,       += b L lZ co b l 3 1)( ω ω ω ν , 2 2 2 1 L L o − =ν ,      = Lo 1arccosθ . Note, that Eq. (2) describes the contribution of any kind of the trapped particles to nn l , )(, σε . The corresponding expressions for electrons and ions can be obtained from (2) by replacing the temperatures ||T and ⊥T , density N, mass M, charge e by the electron Te, T⊥e, Ne, me, ee and ion Ti, T⊥i, Ni, Mi, ei parameters, respectively. 79 Our dispersion equation is suitable to analyze the instabilities of both the right-hand (if l=1) and left-hand (if l=-1) polarized waves. Further, Eq. (1) should be resolved numerically for the real and imaginary parts of the wave frequency, ω =Reω +i Imω, to define the instability conditions. As it is well known, in the straight magnetic field case, the squared refractive index of the EMIC waves (l = -1) in the hydrogen plasma is defined by the expression )Re(Re 00 22 || ωω −ΩΩ Ω ≈      cc ppck , (3) where pppp MeN /4 22 π=Ω is the squared proton plasma frequency, Np= Nc+Nh; Nc and Nh are the densities of the cold and hot protons, respectively; 30 )0,( LcM LeB co p c ω ==Ω is the cyclotron frequency of the L-shell protons at the equatorial plane. Since the parallel wavenumber ||k is connected with the mode numbers n as ]/[ 0|| oLRnk θπ= , for plasmasphere with circular magnetic field lines, so that the mode numbers can be estimated as )Re( Re 00 0 ωπ ωθ −ΩΩ Ω ≈ cc ppo c LR n . (4) Where as the increment (decrement) of the EMIC waves in a hydrogen plasma γ, if ωωγ ReIm <<= , is defined by the expression ( ) ( ) h cpp c c s ,1 0 2 2 0 0 Im Re2 ReRe 2 −−ΩΩ −Ω −≈ Ω ε ω ωωγ , (5) where                 Ω− −× ×                 −      Ω −− Ω ΩΩ = ⊥ − 2 |||| 0 ||00|||| 2 0 2 ,1 Reexp 1Re1Re )(Re2 Im hT c h h cchT cph h vk T T vk ω ωω ω π ε By index ’h’ we denote the plasma parameters for the resonant hot protons. As follows from Eqs. (3), the proton cyclotron instability (PCI) of EMIC waves, 0>γ , is possible if 0Im ,1 <− hε , i.e., if hh TT ||>⊥ . 3. NUMERICAL RESULTS Now, let us compare the PCI growth rates in the plasmas confined in the straight magnetic field γs, and in the 2D magnetosphere with circular magnetic field lines γc. For simplicity, there are considered the hydrogen plasmas at the geostationary orbit, L=6.6, including the cold electrons with Ne=11 cm-3, cold protons with Nc=10 cm-3, and energetic protons with Nh=1 cm-3. The parallel and transverse temperatures of the energetic protons are equal to 10|| =hT keV and 30=⊥hT keV, whereas the temperature of the cold particles is small and isotropic. In this case, the mode numbers n of the field aligned EMIC waves can be defined by Eqs. (3), (4); the corresponding dependence n(ω) is plotted in Fig. 1. Fig. 1. Dependence of the mode numbers on the wave frequency for EMIC waves in a hydrogen plasma The PCI growth rate γs for EMIC waves in the straight magnetic field plasma we estimate, as usually, by Eq. (5). As for γc, for EMIC waves in the magnetospheric-like plasma with circular magnetic field lines, we use the similar expression : ( ) ( ) nn h cpp c c c , ,1 0 2 2 0 0 Im Re2 ReRe 2 −−ΩΩ −Ω −≈ Ω ε ω ωωγ , (6) where ∑ ∫ ∞ = − − ⊥ −       − Ω = 1 0 ,1 1, 3 5 || ||0 2 , ,1 ,)21( 2 Im p hn p To phnn h o p Z A pTv TLR ν νν θπω ε ννν d T T p Z Z p Z Y h h hn p                       −−−−      × ⊥ − − − − ||2 2 2 ,14 ,1 ,1 1, 1)21(1exp, Fig. 2. The PCI growth rates versus ω for EMIC waves in the hydrogen plasmas confined in the straight uniform magnetic field (a) and in the 2D magnetosphere (b) The PCI growth rates versus ω are presented in Fig. 2a for EMIC waves in the straight magnetic field plasma by Eq. (5), and in Fig. 2b for EMIC waves in the 2D magnetosphere-like plasma with circular magnetic field lines. The computations of γc are carried out in the interval Hz7Hz2 ≤≤ ω , whereas the minimal gyrofrequency of the protons at L=6.6 is closed to Hz110 ≈Ωc . As shown in Fig. 2a and Fig. 2b, the instability of EMIC waves is possible for both plasma models in the frequency range 0cΩ<ω . It should be noted that the proton-cyclotron instability is impossible for EMIC waves in the frequency range )(00 occ b θω Ω<<Ω , where )(0 oc b θΩ is the maximal gyrofrequency of the protons at the given L-shell magnetic field line. 80 As one can see, the dependence γs(ω) and γc(ω) on the wave frequency ω are similar; however, γc(ω)<<γs(ω) under the same bulk parameters. The ratio 104/s ÷∝cγγ versus ω for considered magnetospheric-like plasmas is presented in Fig. 3. This dependence is not linear; the difference is very large (by factor 10) for EMIC waves in the range of Hz2~ω and is smaller (by factor 4) in the range of high frequencies Hz7~ω . Fig. 3. The ratio γ s/γ c versus ω for EMIC waves in the hydrogen plasmas The large difference between γs and γc is connected with the fact that the wave-particle interaction in the straight magnetic field plasma is more effective since the resonant particles move along the uniform magnetic field line with the constant parallel velocity and interact permanently (in time) with the wave according to the well known resonance condition ||||0 vkc =Ω−ω . As for 2D magnetospheric plasmas, since constv ≠|| for the trapped particles, there is another wave-particle resonance condition involving the particle energy, pitch angle, cyclotron and bounce frequencies. As a result, the trapped particle bouncing between the reflection points only part of the bounce-time can interact effectively with the wave. CONCLUSIONS Dispersion equation is analyzed for EMIC waves in a hydrogen magnetospheric plasma with circular B-field lines. As in the straight B-field plasmas, the growth rate of PCI is defined by the contribution of the resonant particles to the imaginary part of the transverse permittivity elements. The comparison of the growth rates is carried out for EMIC waves in the hydrogen plasmas with the straight and circular B-field lines under the same macroscopic bulk parameters at the geostationary orbit L=6.6. It is shown that the PCI growth rate in the 2D magnetosphere is much less than it is in the straight uniform B-field case. Of course, the similar approach can be used to analyze the dispersion characteristics of the EMIC waves in 2D magnetospheric multi-ions plasmas with dipole and circular magnetic field lines including the protons and heavy ions (He+, O+) with the temperature anisotropy. REFERENCES 1. J.M. Cornwall. Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges // J. Geophys. Res. 1965, v. 70, p. 61. 2. C.F. Kennel. H.E. Petschek. Limit on stably trapped particle fluxes // J. Geophys. Res. 1966, v. 71, p. 1. 3. S. Cuperman. Electromagnetic kinetic instabilities in multicomponent space plasmas. Theoretical predictions and computer simulation experiments // Rev. Geophys. 1981, v. 19, p. 307. 4. L. Gomberoff, R. Neira. Convective growth rate of ion cyclotron waves in a H+-He+ and H+-He+-O+ plasma// J. Geophys. Res. 1983, v. 88, p. 2170. 5. S.P. Gary. Theory of space plasma microinstabilities. Cambridge Univ. Press, 1993. 6. S. Xue, R.M. Thorne, D. Summers. Parametric study of electromagnetic ion cyclotron instability in the Earth magnetosphere // J. Geophys. Res. 1996, v. 101, N A7, p. 15, 467. 7. N.I. Grishanov, M.A. Raupp, A.F.D. Loula, J. Pereira Neto. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas // Annales Geaphysicae. 2006, v. 24, p. 589. 2D- A . , . , (2D) . . , ( ) 2D . , 2D , . 2D- .I. , . , (2D) . . , ( ) 2D . , 2D , .