Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field

This report is devoted to the investigation of dispersion properties, attenuation coefficient and radial wave field structure of high-frequency electromagnetic wave that propagates in coaxial magnetized waveguide structure with non-uniform azimuth magnetic field, partially filled by radial non-unifo...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2007
Автори: Olefir, V.P., Sporov, A.E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/110413
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field / V.P. Olefir, A.E. Sporov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 69-71. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110413
record_format dspace
spelling Olefir, V.P.
Sporov, A.E.
2017-01-04T12:18:02Z
2017-01-04T12:18:02Z
2007
Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field / V.P. Olefir, A.E. Sporov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 69-71. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 52.35.-g, 52.50.Dg
https://nasplib.isofts.kiev.ua/handle/123456789/110413
This report is devoted to the investigation of dispersion properties, attenuation coefficient and radial wave field structure of high-frequency electromagnetic wave that propagates in coaxial magnetized waveguide structure with non-uniform azimuth magnetic field, partially filled by radial non-uniform collisional plasma. The influence of geometric parameters of waveguide structure, plasma non-uniformity, effective collision rate, direction and value of azimuth magnetic field on phase characteristics, attenuation coefficient and radial wave field structure of the considered wave is studied. It was shown that it is possible to control effectively the dispersion properties and spatial attenuation of the considered wave by varying the value and direction of external azimuth magnetic field.
Досліджено дисперсійні властивості, коефіцієнт просторового загасання та радіальну структуру поля високочастотної електромагнітної хвилі, що розповсюджується в коаксіальній магнітоактивній хвилевідній структурі з радіально неоднорідним азимутальним магнітним полем, частково заповненою радіально неоднорідною плазмою із зіткненнями. Вивчено вплив геометричних параметрів хвилевідної структури, радіальній неоднорідності густини плазми, ефективної частоти зіткнень електронів, напрямку та величини постійного току на фазові характеристики, коефіцієнт просторового загасання та радіальну структуру поля досліджуваної хвилі. Показано можливість ефективного керування дисперсійними властивостями та коефіцієнтом просторового загасання зміною величини та напрямку постійного струму.
Исследованы дисперсионные свойства, коэффициент пространственного затухания и радиальная структура поля высокочастотной электромагнитной волны, распространяющейся в коаксиальной волноводной структуре, частично заполненной радиально неоднородной столкновительной плазмой, которая находится в радиально неоднородном азимутальном магнитном поле. Изучено влияние геометрических параметров волноводной структуры, радиальной неоднородности плотности плазмы, эффективной частоты столкновений электронов, величины и направления постоянного тока на фазовые характеристики, коэффициент пространственного затухания и радиальную структуру поля рассматриваемой волны. Показана возможность эффективного управления дисперсионными свойствами и коэффициентом пространственного затухания путем изменения величины и направления постоянного тока.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Basic plasma physics
Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
Вплив зіткнень та радіальної неоднорідності плазми на електромагнітні хвилі в коаксіальній структурі з зовнішнім азимутальним магнітним полем
Влияние столкновений и радиальной неоднородности плазмы на электромагнитные волны в коаксиальной структуре с внешним азимутальным магнитным полем
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
spellingShingle Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
Olefir, V.P.
Sporov, A.E.
Basic plasma physics
title_short Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
title_full Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
title_fullStr Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
title_full_unstemmed Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
title_sort influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field
author Olefir, V.P.
Sporov, A.E.
author_facet Olefir, V.P.
Sporov, A.E.
topic Basic plasma physics
topic_facet Basic plasma physics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вплив зіткнень та радіальної неоднорідності плазми на електромагнітні хвилі в коаксіальній структурі з зовнішнім азимутальним магнітним полем
Влияние столкновений и радиальной неоднородности плазмы на электромагнитные волны в коаксиальной структуре с внешним азимутальным магнитным полем
description This report is devoted to the investigation of dispersion properties, attenuation coefficient and radial wave field structure of high-frequency electromagnetic wave that propagates in coaxial magnetized waveguide structure with non-uniform azimuth magnetic field, partially filled by radial non-uniform collisional plasma. The influence of geometric parameters of waveguide structure, plasma non-uniformity, effective collision rate, direction and value of azimuth magnetic field on phase characteristics, attenuation coefficient and radial wave field structure of the considered wave is studied. It was shown that it is possible to control effectively the dispersion properties and spatial attenuation of the considered wave by varying the value and direction of external azimuth magnetic field. Досліджено дисперсійні властивості, коефіцієнт просторового загасання та радіальну структуру поля високочастотної електромагнітної хвилі, що розповсюджується в коаксіальній магнітоактивній хвилевідній структурі з радіально неоднорідним азимутальним магнітним полем, частково заповненою радіально неоднорідною плазмою із зіткненнями. Вивчено вплив геометричних параметрів хвилевідної структури, радіальній неоднорідності густини плазми, ефективної частоти зіткнень електронів, напрямку та величини постійного току на фазові характеристики, коефіцієнт просторового загасання та радіальну структуру поля досліджуваної хвилі. Показано можливість ефективного керування дисперсійними властивостями та коефіцієнтом просторового загасання зміною величини та напрямку постійного струму. Исследованы дисперсионные свойства, коэффициент пространственного затухания и радиальная структура поля высокочастотной электромагнитной волны, распространяющейся в коаксиальной волноводной структуре, частично заполненной радиально неоднородной столкновительной плазмой, которая находится в радиально неоднородном азимутальном магнитном поле. Изучено влияние геометрических параметров волноводной структуры, радиальной неоднородности плотности плазмы, эффективной частоты столкновений электронов, величины и направления постоянного тока на фазовые характеристики, коэффициент пространственного затухания и радиальную структуру поля рассматриваемой волны. Показана возможность эффективного управления дисперсионными свойствами и коэффициентом пространственного затухания путем изменения величины и направления постоянного тока.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110413
citation_txt Influence of collisions and plasma radial non‑uniformity on electromagnetic wave in coaxial structure with azimuth external magnetic field / V.P. Olefir, A.E. Sporov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 69-71. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT olefirvp influenceofcollisionsandplasmaradialnonuniformityonelectromagneticwaveincoaxialstructurewithazimuthexternalmagneticfield
AT sporovae influenceofcollisionsandplasmaradialnonuniformityonelectromagneticwaveincoaxialstructurewithazimuthexternalmagneticfield
AT olefirvp vplivzítknenʹtaradíalʹnoíneodnorídnostíplazminaelektromagnítníhvilívkoaksíalʹníistrukturízzovníšnímazimutalʹnimmagnítnimpolem
AT sporovae vplivzítknenʹtaradíalʹnoíneodnorídnostíplazminaelektromagnítníhvilívkoaksíalʹníistrukturízzovníšnímazimutalʹnimmagnítnimpolem
AT olefirvp vliâniestolknoveniiiradialʹnoineodnorodnostiplazmynaélektromagnitnyevolnyvkoaksialʹnoistrukturesvnešnimazimutalʹnymmagnitnympolem
AT sporovae vliâniestolknoveniiiradialʹnoineodnorodnostiplazmynaélektromagnitnyevolnyvkoaksialʹnoistrukturesvnešnimazimutalʹnymmagnitnympolem
first_indexed 2025-11-25T20:29:31Z
last_indexed 2025-11-25T20:29:31Z
_version_ 1850521244966846464
fulltext Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 69-71 69 INFLUENCE OF COLLISIONS AND PLASMA RADIAL NON-UNIFORMITY ON ELECTROMAGNETIC WAVE IN COAXIAL STRUCTURE WITH AZIMUTH EXTERNAL MAGNETIC FIELD V.P. Olefir, A.E. Sporov V.N. Karazin Kharkov National University, Institute of High Technologies, Department of Physics and Technology, Kharkov, Ukraine, e-mail: olefir@pht.univer.kharkov.ua This report is devoted to the investigation of dispersion properties, attenuation coefficient and radial wave field structure of high-frequency electromagnetic wave that propagates in coaxial magnetized waveguide structure with non- uniform azimuth magnetic field, partially filled by radial non-uniform collisional plasma. The influence of geometric parameters of waveguide structure, plasma non-uniformity, effective collision rate, direction and value of azimuth magnetic field on phase characteristics, attenuation coefficient and radial wave field structure of the considered wave is studied. It was shown that it is possible to control effectively the dispersion properties and spatial attenuation of the considered wave by varying the value and direction of external azimuth magnetic field. PACS: 52.35.-g, 52.50.Dg 1. INTRODUCTION The study of eigen electromagnetic waves of plasma filled metal waveguide structures is of a great importance for plasma electronics, various plasma technologies, etc. Among different types of plasma filled waveguide structures it is possible to separate the cylindrical devices with coaxial elements. The realized experimental study of coaxial waveguide structures with central metallic rod have shown that properties of electromagnetic waves and gas discharge plasma maintained by these waves, differ considerably from the corresponding properties of cylindrical plasma – metal waveguide structures without central conductor [1]. Properties of plasma maintained in coaxial structure with dielectric rod inside have been study in paper [2]. It is necessary to note that in spite of perfect plasma parameters obtained in experimental devices with coaxial structures, theoretical study of eigen wave properties of coaxial waveguide structures and efficiency of such structure use in various applications is insufficient. This especially concerns the theoretical study of plasma density, radial non–uniformity and electron collision rate influence on the phase characteristics and spatial attenuation of electromagnetic eigen waves of coaxial structure with central metal conductor. These circumstances greatly determine the urgency of theoretical study of eigen wave properties of coaxial structures. 2. TASK SETTING Let us consider the axially–symmetric (azimuth wavenumber 0=m ) high–frequency electromagnetic wave that propagates in the cylindrical coaxial magnetized waveguide structure, partially filled by radial non–uniform dissipative plasma. Let suppose that the wave propagates along z – axis of cylindrical coordinate system ( r , ϕ , z ), which is directed along the axis of waveguide structure The waveguide structure consists of metal rod of radius 1R , which is placed at the axis of plasma column. The direct current zJ flows along this rod, creating radial non–uniform azimuth magnetic field )(0 rH . This rod is enclosed by the cylindrical plasma layer with radius 2R . The vacuum region ( 32 RrR << ) separates the cylindrical plasma layer from waveguide metal wall with radius 3R . It was supposed, that plasma density is radial non–uniform and possesses the bell– shaped profile of the following form: ( ) ( ) ( )( )22 maxmax exp −−−= δµ rrrrnrn . (1) Here, maxr – is the radius value where plasma density culminates its maximum, parameters δr and µ ( 10 ≤≤ µ ) describes the width and the slope of the bell– shaped profile, respectively. Plasma was considered in the hydrodynamic approach as cold medium with collisions, that were characterized by the effective collision rate ν . This quantity is constant in the whole volume of cylindrical plasma layer and is supposed to be small ( 1/ <ων , where ω is wave frequency). From the system of Maxwell equations one can find, that the electromagnetic field of considered axially symmetric E –wave consists of only three components zE , rE and ϕH . In the region of cylindrical plasma layer ( 21 RrR << ) the equations that govern these components of E –wave can be written in the form [3]:                 −+ − = +−= += ϕ ϕ ϕ ϕ ε ε ε εε ε κ ε ε ε ε ε H r kEik rd Hd H k iEk rd Ed EiH k kE z p z z zr 1 1 2 3 1 2 1 2 2 1 2 1 2 3 1 2 1 3 , (2) where ( ) ( ) ( )( )r r c p 22 2 1 1 ωωω ωω ε −′ ′ −= , ( ) ( ) ( ) ( )( )r rr c pc 22 2 2 ωωω ωω ε −′ = , ( ) ωω ω ε ′ −= rp 2 3 1 , νωω i+=′ , ( )rpω and ( )rcω are electron plasma and cyclotron frequencies, respectively, ( )rkkp 1 22 3 2 εκ −= , ck /ω= is the vacuum wavenumber, 3k is complex axial wavevector, real part of it determines the wavenumber and imaginary part determined wave attenuation coefficient. mailto:olefir@pht.univer.kharkov.ua 70 It is necessary to mention, that in spite of low value of effective electron collision frequency ( ων < ) it is necessary to keep imaginary terms in the expressions for components of permittivity tensor of magnetized plasma. This imaginary terms give the possibility to carry out numerical integration of the system (2) in the region where the conditions of upper hybrid resonance may take place [4]. In the cylindrical vacuum region ( 32 RrR << ) the wave components ( )rEz , ( )rEr and ( )rHϕ can be analytically expressed in terms of Bessel functions: ( ) ( ) ( ) ( )( )          = −−= += ϕ ϕ κκ κκ H k k E rKCrIC k kiH rKCrICE r vv v vvz 3 1211 0201 , (3) where 22 3 2 kkv −=κ , 1,0I , 1,0K are Bessel functions of the first kind and second kind, 1C and 2C are the wave field constants. The boundary conditions for ( )rEz and ( )rHϕ consisting in continuity of these quantities at plasma-vacuum interface ( 2Rr = ) give the linear system for the matching constants 1C and 2C . The boundary condition for ( )rEz wave field component at the waveguide metallic wall 3Rr = consisting in the vanishing ( )3REz gives the dispersion equation that can be written in the following form: ( ) ( ) 0302301 =+ RKCRIC vv κκ , (4) The initial conditions for integration of the system of ordinary differential equations (2) can be obtained from the conditions at the inner conductive rod. The obtained dispersion equation (4) is solved in complex algebra. For this purpose the system of ordinary differential equations was numerically solved with the help of Badler and Deuflhard version of semi-implicit extrapolation method [5]. This method gives the possibility to obtain accurately numerical solution even in the region where the conditions of upper hybrid resonance take place. The dispersion equation (4) was solved with the help of Muller method [5]. 3. MAIN RESULTS In the case when external current flows along the propagation direction of the considered wave the dispersion equation (4) possesses two solutions with different values of frequency for the fixed value of dimensionless wavenumber ( ) 13Re Rk . One of them with comparatively more high frequency will be called further high frequency (HF) wave, and other — low frequency (LF) wave. Properties of these waves substantially determined by the value and direction of direct current. Thus, in the limiting case, when the azimuth magnetic field ( )rH0 trends to zero the LF wave vanishes. The increase of the direct current leads to the decrease of the HF wave frequency and to the increase of the LF wave frequency. So, for rather high dimensionless direct current value ( 0.2)2/( 3 ≈= cmeJj ez ) the frequencies of HF and LF waves for rather high ( ) 13Re Rk values are close. The influence of parameter ων / value on the dispersion and attenuation properties of HF and LW waves was study for the case of radial uniform plasma ( 0=µ ). For rather small values of effective collision rate ( 1/ <ων ) the increase of ων / value leads to the increase of the LF dimensionless frequency pωω / and attenuation coefficient ( ) 13Im Rk . Dispersion and attenuation properties of HF wave depend on the ων / parameter much weaker. It is necessary to note that the attenuation coefficient value of LF wave is approximately of one order greater than the value of attenuation coefficient of LF wave. The influence of plasma density radial profile (non- uniformity parameter µ value) on the dimensionless frequency and attenuation coefficient for HF and LF wave at fixed point of dispersion curve (for ( ) 01.0Re 13 =Rk ) is shown on Fig. 1. Other external parameters were equal to 0.4/)( max11 == crRr pω , 0.5/)( max22 == crRr pω , 0.6/)( max33 == crRr pω , 001.0/ =ων , 5.4max =r , 1.0=δr , 0.2)2/( 3 == mceJj z . One can see that the increase of non–uniformity parameter µ leads to the increase of the dimensionless wave frequency of HF wave and to the decrease of the dimensionless wave frequency of LF wave. The wave attenuation coefficient shows more complicated behaviour (Fig. 2). The calculations carried out have shown that the spatial attenuation coefficient for HF wave possesses the maximum in the range of rather small µ values ( 2.0≈µ ). In contrast, the attenuation coefficient for LF possesses the minimum for approximately the same µ values. Such complicated dependence may be very important for the determination of the frequency range, where the considered wave can maintain the stable discharge [6]. 0,0 0,2 0,4 0,6 0,8 1,0 0,0004 0,0005 0,0006 0,0007 0,0017 0,0018 0,0019 0,0020 0,0021 0,0022 0,0023 0,0024 HF Wave LF Wave µ ω / ω p Fig. 1. The dependence of dimensionless wave frequency pωω / on the non–uniformity parameter µ for the fixed point on the dispersion curve ( ( ) 01.0Re 13 =Rk ) 71 0,0 0,2 0,4 0,6 0,8 1,0 0,0000 0,0001 0,0002 0,0003 0,0004 0,0055 0,0060 0,0065 0,0070 0,0075 0,0080 0,0085 0,0090 HF Wave LF Wave µ Im(k3) R1 Fig. 2. The dependence of attenuation coefficient ( ) 13Im Rk on the non–uniformity parameter µ for the fixed point on the dispersion curve ( ( ) 01.0Re 13 =Rk ) CONCLUSIONS The influence of plasma density radial non– uniformity, electron effective collision frequency, direction and direct current value on phase characteristics, attenuation coefficient and radial wave field structure of the considered wave was studied. It was shown that it is possible to control effectively the dispersion properties of E –wave by varying the value and direction of direct current. The influence of dimensionless collision rate on the dispersion and attenuation properties of HF and LF waves was studied as well. It was shown that LF wave attenuates more effectively than HF wave. It was shown also that in the case of bell–shaped radial plasma density profile the increase of plasma density radial non– uniformity results in the growth of wave frequency of HF wave and in the decrease of wave frequency of LF wave. REFERENCES 1. X.L. Zhang, P.M. Dias, C.M. Ferreira // Plasma Sources Sci. Technol. 1997, N 6, p. 101–110. 2. E. Rauchle. Duo-plasmaline, a surface wave sustained linearly extended discharge // International Workshop on Micrmtave Discharges: Fundamentals and Applications, Abbaye de Fomevraud, France, 1997. 3. Yu.A. Akimov, M.P. Azarenkov, V.P. Olefir, A.E. Sporov //Problems of Atomic Science and Technology. Ser.”Plasma Physics”(8). 2002, N5, p. 63. 4. N.A. Azarenkov, V.P. Olefir, A.E. Sporov. Gas Discharge Sustained by Potential Surface Waves in Magnetized Waveguide Structure Filled by Radially Non– Uniform Plasma // 29th EPS Conference on Plasma Phys. and Contr. Fusion, Montreux, Switzerland, 2002. 5. W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing/ Cambridge University Press, 2nd edition, Cambridge, 1996. 6. Z. Zakrzewski // Journal of Physics D: Applied Physics. 1983, v. 16, p. 171–180. . , . , , , , . , , , , . . . , . , , , . , , , , . .