Sourcewise represented Green’s function of the circular waveguide
Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a problem for diffraction of potential and rotational components el...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2007 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/110417 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Sourcewise represented Green’s function of the circular waveguide / S.D. Prijmenko, L.A. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 137-140. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a problem for diffraction of potential and rotational components electric field intensity of a point current source on the circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source enables to develop an effective algorithm of Green’s function calculation at any distance between the source point and observation point in a circular waveguide.
Cінгулярна частина функції Гріна круглого хвилеводу у формі функції Гріна необмеженого простору виділена в явному вигляді й містить всі особливості, включаючи дельта-подібну особливість. Задача побудови функції Гріна для поля розв'яза як задача дифракції потенційної й вихрової частин напруженості електричного поля крапкового джерела струму на стінках круглого хвилеводу. Виділення особливості напруженості електричного поля в явному вигляді в околиці джерела дозволило розробити ефективний алгоритм розрахунку електричної функції Гріна при довільній відстані між крапками джерела й спостереження в круглому хвилеводі.
Cингулярная часть функции Грина круглого волновода в форме функции Грина неограниченного пространства выделена в явном виде и содержит все особенности, включая дельта-образную особенность. Задача построения функции Грина для поля решена как задача дифракции потенциальной и вихревой частей напряженности электрического поля точечного источника тока на стенках круглого волновода. Выделение особенности напряженности электрического поля в явном виде в окрестности источника позволило разработать эффективный алгоритм расчета электрической функции Грина при произвольном расстоянии между точками источника и наблюдения в круглом волноводе.
|
|---|---|
| ISSN: | 1562-6016 |