RF-cavity for the X-ray generator NESTOR
In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development. The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2007 |
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/110565 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | RF-cavity for the X-ray generator NESTOR / V.P. Androsov, K.N. Chernov, A.M. Gvozd, I.M. Karnaukhov, G.N. Ostreyko, I.K. Sedlyarov, Y.N. Telegin // Вопросы атомной науки и техники. — 2007. — № 5. — С. 151-155. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110565 |
|---|---|
| record_format |
dspace |
| spelling |
Androsov, V.P. Chernov, K.N. Gvozd, A.M. Karnaukhov, I.M. Ostreyko, G.N. Sedlyarov, I.K. Telegin, Y.N. 2017-01-04T19:37:20Z 2017-01-04T19:37:20Z 2007 RF-cavity for the X-ray generator NESTOR / V.P. Androsov, K.N. Chernov, A.M. Gvozd, I.M. Karnaukhov, G.N. Ostreyko, I.K. Sedlyarov, Y.N. Telegin // Вопросы атомной науки и техники. — 2007. — № 5. — С. 151-155. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 29.20.Dh, 29.27.Bd https://nasplib.isofts.kiev.ua/handle/123456789/110565 In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development. The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at BINP. We present here the results of 3D simulations of the cavity with ANSYS code. The problem of multibunch instabilities in NESTOR is also discussed. В ННЦ ХФТІ споруджується електронне накопичувальне кільце НЕСТОР на енергію 225 МеВ. У роботі описується конструкція та приводяться параметри резонатора на 700 МГц, виготовленого в ІЯФ СВ РАН ім. Будкера для ВЧ-системи накопичувача. У дійсний час резонатор проходить вакуумні випробування та радіотехнічні вимірювання в ІЯФ. У роботі також приводяться результати 3D моделювання резонатору за допомогою програми ANSYS. Обговорюється також проблема багатозгусткових нестійкостей у накопичувачі НЕСТОР. В ННЦ ХФТИ сооружается электронное накопительное кольцо НЕСТОР на энергию 225 МэВ. В работе описывается конструкция и приводятся параметры резонатора на 700 МГц, изготовленного в ИЯФ СО РАН им. Будкера для ВЧ-системы накопителя. В настоящее время резонатор проходит вакуумные испытания и радиотехнические измерения в ИЯФ. В работе также приводятся результаты 3D моделирования резонатора с помошью программы ANSYS. Обсуждается также проблема много- сгустковых неустойчивостей в накопителе НЕСТОР. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Теория и техника ускорения частиц RF-cavity for the X-ray generator NESTOR ВЧ-резонатор для генератора рентгенівського випромінювання НЕСТОР ВЧ-резонатор для генератора рентгеновского излучения НЕСТОР Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
RF-cavity for the X-ray generator NESTOR |
| spellingShingle |
RF-cavity for the X-ray generator NESTOR Androsov, V.P. Chernov, K.N. Gvozd, A.M. Karnaukhov, I.M. Ostreyko, G.N. Sedlyarov, I.K. Telegin, Y.N. Теория и техника ускорения частиц |
| title_short |
RF-cavity for the X-ray generator NESTOR |
| title_full |
RF-cavity for the X-ray generator NESTOR |
| title_fullStr |
RF-cavity for the X-ray generator NESTOR |
| title_full_unstemmed |
RF-cavity for the X-ray generator NESTOR |
| title_sort |
rf-cavity for the x-ray generator nestor |
| author |
Androsov, V.P. Chernov, K.N. Gvozd, A.M. Karnaukhov, I.M. Ostreyko, G.N. Sedlyarov, I.K. Telegin, Y.N. |
| author_facet |
Androsov, V.P. Chernov, K.N. Gvozd, A.M. Karnaukhov, I.M. Ostreyko, G.N. Sedlyarov, I.K. Telegin, Y.N. |
| topic |
Теория и техника ускорения частиц |
| topic_facet |
Теория и техника ускорения частиц |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
ВЧ-резонатор для генератора рентгенівського випромінювання НЕСТОР ВЧ-резонатор для генератора рентгеновского излучения НЕСТОР |
| description |
In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development. The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at BINP. We present here the results of 3D simulations of the cavity with ANSYS code. The problem of multibunch instabilities in NESTOR is also discussed.
В ННЦ ХФТІ споруджується електронне накопичувальне кільце НЕСТОР на енергію 225 МеВ. У роботі описується конструкція та приводяться параметри резонатора на 700 МГц, виготовленого в ІЯФ СВ РАН ім. Будкера для ВЧ-системи накопичувача. У дійсний час резонатор проходить вакуумні випробування та радіотехнічні вимірювання в ІЯФ. У роботі також приводяться результати 3D моделювання резонатору за допомогою програми ANSYS. Обговорюється також проблема багатозгусткових нестійкостей у накопичувачі НЕСТОР.
В ННЦ ХФТИ сооружается электронное накопительное кольцо НЕСТОР на энергию 225 МэВ. В работе описывается конструкция и приводятся параметры резонатора на 700 МГц, изготовленного в ИЯФ СО РАН им. Будкера для ВЧ-системы накопителя. В настоящее время резонатор проходит вакуумные испытания и радиотехнические измерения в ИЯФ. В работе также приводятся результаты 3D моделирования резонатора с помошью программы ANSYS. Обсуждается также проблема много- сгустковых неустойчивостей в накопителе НЕСТОР.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110565 |
| citation_txt |
RF-cavity for the X-ray generator NESTOR / V.P. Androsov, K.N. Chernov, A.M. Gvozd, I.M. Karnaukhov, G.N. Ostreyko, I.K. Sedlyarov, Y.N. Telegin // Вопросы атомной науки и техники. — 2007. — № 5. — С. 151-155. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT androsovvp rfcavityforthexraygeneratornestor AT chernovkn rfcavityforthexraygeneratornestor AT gvozdam rfcavityforthexraygeneratornestor AT karnaukhovim rfcavityforthexraygeneratornestor AT ostreykogn rfcavityforthexraygeneratornestor AT sedlyarovik rfcavityforthexraygeneratornestor AT teleginyn rfcavityforthexraygeneratornestor AT androsovvp včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT chernovkn včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT gvozdam včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT karnaukhovim včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT ostreykogn včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT sedlyarovik včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT teleginyn včrezonatordlâgeneratorarentgenívsʹkogovipromínûvannânestor AT androsovvp včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT chernovkn včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT gvozdam včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT karnaukhovim včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT ostreykogn včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT sedlyarovik včrezonatordlâgeneratorarentgenovskogoizlučeniânestor AT teleginyn včrezonatordlâgeneratorarentgenovskogoizlučeniânestor |
| first_indexed |
2025-11-25T22:46:28Z |
| last_indexed |
2025-11-25T22:46:28Z |
| _version_ |
1850572928707461120 |
| fulltext |
RF-CAVITY FOR THE X-RAY GENERATOR NESTOR
V.P. Androsov1, K.N. Chernov2, A.M. Gvozd1, I.M. Karnaukhov1,
G.N. Ostreyko2, I.K. Sedlyarov2, Yu.N. Telegin1∗
1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
(Received March 13, 2007)
In the Kharkov Institute of Physics and Technology 225 MeV electron storage ring NESTOR is under development.
The paper describes the design and parameters of a 700 MHz cavity that has been fabricated at BINP for the
NESTOR RF-system. Now the low-power and vacuum tests of the cavity are under way at BINP. We present here
the results of 3D simulations of the cavity with ANSYS code. The problem of multibunch instabilities in NESTOR
is also discussed.
PACS: 29.20.Dh, 29.27.Bd
1. INTRODUCTION
Beam dynamics simulations in NESTOR, Comp-
ton scattering considered [1], have shown that for col-
lision angle α=1700 and Nd laser (λlaser=1.06µm)
beam parameters available in the nearest future
(Elaser= 20µJ/pulse, frep=350 MHz) an impact of
Compton scattering on the electron beam is negli-
gible and the electron beam parameters are domi-
nated by intrabeam scattering and turbulent bunch
lengthening. To overcome these effects and to obtain
a bunch length which would match a pulse width
of the commercially available Nd mode-locked laser
(∼7ps) one has to apply the accelerating voltage of
∼300 kV. This voltage will be provided with a single
cell 700 MHz cavity.
In order to eliminate troubles concerned multi-
bunch instabilities it would be reasonable to use a
HOM-damped cavity like that designed for VEPP-5
damping ring project [2]. But from financial lim-
itations we had to restrict ourselves to a common
undamped cavity. The cavity shape and design are
similar to that of the HOM-damped one. For the
present time this cavity is under low-power and vac-
uum tests at BINP.
Fig.1. Cross sectional view of the cavity
2. CAVITY DESIGN AND PARAMETERS
Cavity design is presented in Fig.1. It is a cylin-
drical cavity with wide flat nosecones and short
beam-pipes to meet stringent requirements to the
cavity length (30 cm). It has three ports placed
equidistantly around the outer wall. The piston tuner
moved with a step-motor is attached to the upper
port. The coaxial coupler (70x20 mm, 75 Ω) with in-
∗Corresponding author. E-mail address: telegin@kipt.kharkov.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5.
Series: Nuclear Physics Investigations (48), p.151-155.
151
ductive loop is connected to the cavity through one of
the lower ports. The third port houses a field probe
and a sleeve for connecting a fore-pumping unit. On
the cavity bottom the fourth port without body-size
hole but with pumping slots for ion pump is located.
Cavity beam-pipes have an elliptical cross section,
80mm x 29mm, that matches that of the vacuum
chamber, and they end with membranes, 180 mm di-
ameter and 1mm thick, for welding.
Each sidewall is cooled through four concentric
channels with rectangular cross section, 10x5 mm2,
machined into the wall and covered with a lid by
brazing. The outer wall is cooled via two exter-
nal circumferential channels which present the flat
pipes brazed to the wall. Each port and the recipro-
cal flange are also provided with an external round
channel. Additional cooling is provided for the tuner
and coaxial coupler.
Fig.2. View of the cavity
The view of the cavity (with a mounted tuner) at
fabrication stage before brazing the second side wall
is given in Fig.2.
The main cavity parameters are presented in Ta-
ble 1.
Table 1. RF-cavity parameters
Parameter Value
Frequency, frf , MHz 699.3
Frequency range, ∆f , MHz ± 0.8
Q-factor, Q ∼ 20000
Shunt impedance, Rsh, MΩ ∼ 4.5
Transit time factor, T 0.72
RF–voltage, V0, kV 250
Dissipated power, Pc, kW 15
Coupling factor, β 1.05−1.08
3. CAVITY SIMULATIONS
The preliminary simulations with SUPERFISH
[3] of the axially-symmetric cavity with a cell shape
similar to that of the real one have revealed 8
monopole modes below 2.8 GHz (the cut-off fre-
quency of the 80 mm circular beam-pipe), which
were easily identified as TM010 (fundamental mode),
TM011, TM012, TM020, TM021, TM013, TM022 and
TM030 modes. Changing of the beam-pipe radius
from 40 to 15 mm (the major and minor semiaxes of
the beam-pipe cross section) led to the shift of fun-
damental mode frequency of about 10 MHz and to
shifts of HOM frequencies in the range of 0 – 30 MHz.
It should be noted that, at the same time, shunt
impedance of the fundamental mode was increased
by 20 percents; HOM impedances did not changed
essentially except that of TM021 mode. Longitudi-
nal impedance of this mode was increased tree times
and reached 1.86 MΩ (1/4 of the fundamental mode
shunt impedance).
The 3D simulations were performed with AN-
SYS code [4] by using the cavity model presented
in Fig.3. Considering cavity symmetry relative to
the median plane, only half-cell was modelled. The
model includes a tuner port with a piston in neutral
position, a coupler port and a probe/forepumping
port. The last two ports have different lengths
in the model according to the design of corre-
sponding joints. The pumping slots at the bot-
tom of the cavity were not taken into account.
Fig.3. The NESTOR cavity model (half-cell) for
3D simulations with applied mesh
The ANSYS postprocessor outputs the following
cavity parameters: mode frequency -f , Q-factor -Q
and surface power losses -Pc. By using ’path oper-
ation’ option one can calculate the following quanti-
ties:
152
– voltage drop along the beam axis:
V0 =
∣∣∣
∫ l/2
−l/2
Exdx
∣∣∣ , (1)
– transit time factor:
T =
1
V0
∣∣∣
∫ l/2
−l/2
Ex exp jkxdx
∣∣∣ , (2)
– longitudinal (shunt) impedance:
R‖ = ZT 2 =
V 2
0
Pc
T 2 . (3)
Transverse impedances - R⊥ were calculated by us-
ing the following equation that is usually applied for
derivation of R⊥ from experimental data in cold mea-
surements [5]:
R⊥= QZ0
j
∫
V
E⊥exp(jkx)dx−
∫
V
H⊥exp(jkx)dx
2
,
(4)
where k = 2πf and Z0 = (µ0/ε0)1/2 is characteris-
tic vacuum impedance. Sixty three resonances were
found in the frequency range below 2.5 GHz. Pa-
rameters of the modes that can be of interest are
presented in Table 2. The cavity model was built
on basis of design drawings which take into account
fabrication process with in-between frequency mea-
surements and dimension corrections, so the funda-
mental frequency was found to be lower than the
design value. Boundary conditions, presented in the
second column, correspond to electric (E) or mag-
netic (M) wall on symmetry plane and beam-pipe
flank.
Table 2. Cavity modes
f , BC Q R‖, R⊥, Mode
MHz ·104 MΩ MΩ/m origin
695.0 EE 2.96 7.31 TM010
1008.3 ME 3.07 0.05 0.1 TE
(v)
111
1022.1 ME 3.16 1.2 TE
(h)
111
1017.9 ME 2.51 0.94 TM011
1183.7 EE 3.95 2.7(v) TM
(1)
110
5.5(h)
1185.6 EE 4.16 0.7(v) TM
(2)
110
20.4(h)
1234.8 ME 3.55 TE
(1)
211
1257.5 ME 3.68 TE
(2)
211
1458.7 ME 3.04 43.3 TM
(v)
111
1491.0 ME 3.54 20.3 TM
(h)
111
1572.6 ME 3.40 TE311
1606.7 EE 4.26 TM
(1)
210
1627.8 EE 4.65 TM
(2)
210
1668.3 EE 3.42 TM012
1700.5 EE 3.41 0.02 5.5 TE
(h)
112
1717.2 EE 3.63 0.11 12.9 TE
(v)
112
1760.0 EE 4.60 0.24 TM020
2009.5 ME 3.28 1.68 TM021
The general notes are the following:
– each dipole mode splits into two modes - hori-
zontal and vertical, as a rule;
– quadrupole modes split too, giving pairs with a
similar field pattern but turned around the X-axis by
450;
– the pairs of modes with 3 azimuth variations
and some other exotic modes appear;
– the longitudinal HOM-impedances well agree
with SUPERFISH results, both reveal TM021 mode
with R‖=1.7 MΩ will be potentially dangerous.
The examples of calculated field patterns are
given in Fig. 4 which illustrates dipole mode split-
ting when an azimuthal field pattern is influenced by
the cavity ports (modes can not be defined as vertical
and horizontal). For these modes two components of
R⊥, horizontal (h) and vertical (v), are presented in
the tables.
In the Table 3 the obtained values R‖/Q and
R⊥/Q for the most dangerous monopole and dipole
modes are compared with those for the room-
temperature cavities exploited in the course of many
years in well-known electron storage rings. The table
shows that NESTOR cavity has the highest R‖/Q
value of the fundamental mode (due to low cross sec-
tion of beam-pipes). It has also the lowest R‖/Q
value of TM011 mode while the highest R‖/Q value
of TM021.
Fig.4. Azimuthal distribution of the electric field
for dipole modes 1183.7 MHz and 1185.6 MHz
153
Table 3. A comparison of the calculated factors R‖/Q (R⊥/Q) for the most prominent monopole
(dipole) modes in different cavities
SRS [6] KEK-PF [7] ATF DR [8] a NESTOR
(MAFIA 3D) (URMEL 2D) (MAFIA 3D) (ANSYS 3D)
f, R‖/Q(R⊥/Q), f, b R‖/Q(R⊥/Q), f, R‖/Q(R⊥/Q), f, R‖/Q(R⊥/Q),
MHz Ω (Ω/m) MHz Ω (Ω/m) MHz Ω (Ω/m) MHz Ω (Ω/m)
Monopole modes
TM010 498.8 195 500.1 175 724.7 169 695.0 247
TM011 809.5 68 793.0 52 1044 62 1017.9 37
TM021 1333.0 11 1371.0 9 1959 7 2009.5 51
Dipole modes
TM
(1)
110 791.5 220 789.7 248 1152 263 1183.7 68(v)
139(h)
TM
(2)
110 797.1 255 792.6 1185.6 17(v)
490(h)
TM
(v)
111 1059.2 566 988.8 449 1349 726 1458.7 1424
TM
(h)
111 1059.3 568 989.8 1491.0 573
aHOM-damped cavity, HOM-waveguides shorted.
bExperimental values.
It should be noted that though the calculations for
the ATF DR HOM-damped cavity were performed
with 3D code MAFIA, the axially symmetric cav-
ity was considered (if not taking into account HOM
waveguides), so dipole mode splitting is not present
in the table, like in the case of KEK PF cavity, sim-
ulated with 2D code URMEL. The comparison of
R⊥/Q for the dipole modes show that results for
NESTOR cavity averaged over a number of split
modes are within the range of R⊥/Q values given
for other cavities except that for TM
(h)
111 mode. The
analysis of the axial field distribution shows that the
large value of R⊥/Q for this mode is accounted for
by penetration of the field into a beam-pipe (verti-
cal component of the electric field is high along the
beam-pipe axis).
In the view of multibunch instabilities only modes
trapped in the cavity are dangerous. Because the
cavity shape is close to a pill-box and the beam-
pipe cross section is elliptical, it isn’t easy to calcu-
late a cut-off frequency for beam-pipes. Simulations
show that a number of trapped modes is large, and
the problem of multibunch instabilities is vital for
NESTOR ring.
The conservative estimates for coupled-bunch in-
stabilities in NESTOR, obtained with traditional
rigid-bunch approximation formulas [5], give the
threshold bunch currents in the microampere range.
These values are much lower than the designed value
of 10 mA/bunch. We suppose to use the HOM tuning
technique based on variation of cavity temperature [9]
to cure these instabilities.
4. CONCLUSION
The 700 MHz accelerating cavity for the RF-
system of electron storage ring NESTOR has been
fabricated in BINP. Cavity simulations show that
a large number of trapped modes with perceptible
coupling impedances can essentially complicate beam
storing in NESTOR. The most dangerous are dipole
modes (TM110-like and TM111-like).
REFERENCES
1. P. Gladkikh, I. Karnaukhov, A. Mytsykov et al.
The Operation Modes of Kharkov X-ray Gen-
erator based on Compton Scattering NESTOR
// European Particle Accelerator Conf. Luzern,
Switzerland, 2004, p. 1428 – 1430.
2. N. Alinovsky, D. Bolkhovityanov, V. Dolgashev
et al. RF system for VEPP-5 damping ring //
European Particle Accelerator Conf. Stockholm,
Sweden, 1998, p. 1799 – 1801.
3. J.H. Billen and L.M. Young. POISSON/ SUPER-
FISH on PC Compatibles // Particle Accelerator
Conf. Washington, USA, 1993, p. 790 – 792.
4. http://www.ansys.com
5. Y. Yamazaki, K. Takata, S. Tokumoto. Damping
test of the higher-order modes of the re-entrant
accelerating cavity // IEEE Trans., 1981, NS28,
p.2915–2917.
6. J.N. Corlett. Higher order modes in the SRS 500
MHz accelerating cavities: Preprint. Daresbury
Laboratory, DL/SCI/P627A, 1989, 3 p.
7. N. Koseki, M. Izawa and Y. Kamiya. Develop-
ment of a damped cavity with SiC beam duct
// Particle Accelerator Conf. Dallas, USA, 1995,
p.1791 - 1793.
8. S. Sakanaka, K. Kubo and T. Higo. Design of
HOM damped cavity for the ATF damping ring
// Particle Accelerator Conf. Dallas, USA, 1995,
p.1027 - 1729.
154
9. H. Kobayakawa, M. Izagawa, S. Sakanaka
and S.Tokumoto. Suppression of beam insta-
bilities induced by accelerating cavities //
Rev.Sci.Instrum., 1989, v.60, p.1732–1735.
ВЧ-РЕЗОНАТОР ДЛЯ ГЕНЕРАТОРА РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ НЕСТОР
В.П. Андросов, К.Н. Чернов, А.М. Гвоздь, И.М. Карнаухов, Г.Н. Острейко,
И.К. Седляров, Ю.Н. Телегин
В ННЦ ХФТИ сооружается электронное накопительное кольцо НЕСТОР на энергию 225 МэВ.
В работе описывается конструкция и приводятся параметры резонатора на 700 МГц, изготовленного
в ИЯФ СО РАН им. Будкера для ВЧ-системы накопителя. В настоящее время резонатор проходит
вакуумные испытания и радиотехнические измерения в ИЯФ. В работе также приводятся результаты
3D моделирования резонатора с помошью программы ANSYS. Обсуждается также проблема много-
сгустковых неустойчивостей в накопителе НЕСТОР.
ВЧ-РЕЗОНАТОР ДЛЯ ГЕНЕРАТОРА РЕНТГЕНIВСЬКОГО ВИПРОМIНЮВАННЯ
НЕСТОР
В.П. Андросов, К.М. Чернов, А.М. Гвоздь, I.М. Карнаухов, Г.М. Острейко,
I.К. Седляров, Ю.М. Телегiн
В ННЦ ХФТI споруджується електронне накопичувальне кiльце НЕСТОР на енергiю 225 МеВ.
У роботi описується конструкцiя та приводяться параметри резонатора на 700 МГц, виготовленого в
IЯФ СВ РАН iм. Будкера для ВЧ-системи накопичувача. У дiйсний час резонатор проходить ваку-
умнi випробування та радiотехнiчнi вимiрювання в IЯФ. У роботi також приводяться результати 3D
моделювання резонатору за допомогою програми ANSYS. Обговорюється також проблема багатозгуст-
кових нестiйкостей у накопичувачi НЕСТОР.
155
|