The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests
The surface of an implant plays a basic role in determining biocompatibility and integration due to its direct contact with the adjacent tissues. There is now the good understanding that life time of orthopedic implants and the design of the novel tissue-engineering medical products may be associate...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2007 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/110581 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests / A. Zykova, V. Safonov, V. Luk’yanchenko, J. Walkowicz, R. Rogowska // Вопросы атомной науки и техники. — 2007. — № 1. — С. 200-202. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110581 |
|---|---|
| record_format |
dspace |
| spelling |
Zykova, A. Safonov, V. Luk’yanchenko, V. Walkowicz, J. Rogowska, R. 2017-01-04T20:07:54Z 2017-01-04T20:07:54Z 2007 The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests / A. Zykova, V. Safonov, V. Luk’yanchenko, J. Walkowicz, R. Rogowska // Вопросы атомной науки и техники. — 2007. — № 1. — С. 200-202. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 87.80 Rb https://nasplib.isofts.kiev.ua/handle/123456789/110581 The surface of an implant plays a basic role in determining biocompatibility and integration due to its direct contact with the adjacent tissues. There is now the good understanding that life time of orthopedic implants and the design of the novel tissue-engineering medical products may be associated with local and remote biological tissue response and cell-material interaction. Material properties such as implant surface composition, roughness, topography can influence events at bone –implant interfaces and cell response to implant material. Поверхневі властивості функціональних покриттів, що широко застосовані у сучасній медицині, мають визначне значення при оцінці їх біосумісності. Термін використання існуючих ендопротезів та дизайн нових біоінженерних розробок безпосередньо зв’язані з локальним та віддаленим впливом взаємодії біоматеріалів та біологічних тканин. Поверхневі характеристики, такі як склад, шорсткість, поверхнева енергія мають прямий вплив на процеси взаємодії з тканинами організму на клітинному рівні. Поверхностные свойства функциональных покрытий, широко применяемых в современной медицине, играют определяющую роль при оценке их биосовместимости. Срок службы существующих эндопротезов и дизайн новых биоинженерных разработок непосредственно связаны с локальными и отдаленными последствиями взаимодействия биоматериалов и биологических тканей. Поверхностные характеристики, такие как состав, шероховатость, поверхностная энергия оказывают прямое воздействие на процесс взаимодействия с тканями организма на клеточном уровне. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Low temperature plasma and plasma technologies The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests Вплив поверхневих властивостей покриттів, що нанесені різними вакуум-плазмовими методами, на процес їх взаємодії з клітинними структурами in vitro Влияние поверхностных свойств покрытий, наносимых различными вакуум-плазменными методами, на процесс их взаимодействия с клеточными структурами in vitro Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| spellingShingle |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests Zykova, A. Safonov, V. Luk’yanchenko, V. Walkowicz, J. Rogowska, R. Low temperature plasma and plasma technologies |
| title_short |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| title_full |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| title_fullStr |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| title_full_unstemmed |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| title_sort |
influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests |
| author |
Zykova, A. Safonov, V. Luk’yanchenko, V. Walkowicz, J. Rogowska, R. |
| author_facet |
Zykova, A. Safonov, V. Luk’yanchenko, V. Walkowicz, J. Rogowska, R. |
| topic |
Low temperature plasma and plasma technologies |
| topic_facet |
Low temperature plasma and plasma technologies |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив поверхневих властивостей покриттів, що нанесені різними вакуум-плазмовими методами, на процес їх взаємодії з клітинними структурами in vitro Влияние поверхностных свойств покрытий, наносимых различными вакуум-плазменными методами, на процесс их взаимодействия с клеточными структурами in vitro |
| description |
The surface of an implant plays a basic role in determining biocompatibility and integration due to its direct contact with the adjacent tissues. There is now the good understanding that life time of orthopedic implants and the design of the novel tissue-engineering medical products may be associated with local and remote biological tissue response and cell-material interaction. Material properties such as implant surface composition, roughness, topography can influence events at bone –implant interfaces and cell response to implant material.
Поверхневі властивості функціональних покриттів, що широко застосовані у сучасній медицині, мають визначне значення при оцінці їх біосумісності. Термін використання існуючих ендопротезів та дизайн нових біоінженерних розробок безпосередньо зв’язані з локальним та віддаленим впливом взаємодії біоматеріалів та біологічних тканин. Поверхневі характеристики, такі як склад, шорсткість, поверхнева енергія мають прямий вплив на процеси взаємодії з тканинами організму на клітинному рівні.
Поверхностные свойства функциональных покрытий, широко применяемых в современной медицине, играют определяющую роль при оценке их биосовместимости. Срок службы существующих эндопротезов и дизайн новых биоинженерных разработок непосредственно связаны с локальными и отдаленными последствиями взаимодействия биоматериалов и биологических тканей. Поверхностные характеристики, такие как состав, шероховатость, поверхностная энергия оказывают прямое воздействие на процесс взаимодействия с тканями организма на клеточном уровне.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110581 |
| citation_txt |
The influence of surface parameters of coatings deposited by various vacuum-plasma methods on the cell/material interaction in vitro tests / A. Zykova, V. Safonov, V. Luk’yanchenko, J. Walkowicz, R. Rogowska // Вопросы атомной науки и техники. — 2007. — № 1. — С. 200-202. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT zykovaa theinfluenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT safonovv theinfluenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT lukyanchenkov theinfluenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT walkowiczj theinfluenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT rogowskar theinfluenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT zykovaa vplivpoverhnevihvlastivosteipokrittívŝonaneseníríznimivakuumplazmovimimetodaminaprocesíhvzaêmodíízklítinnimistrukturamiinvitro AT safonovv vplivpoverhnevihvlastivosteipokrittívŝonaneseníríznimivakuumplazmovimimetodaminaprocesíhvzaêmodíízklítinnimistrukturamiinvitro AT lukyanchenkov vplivpoverhnevihvlastivosteipokrittívŝonaneseníríznimivakuumplazmovimimetodaminaprocesíhvzaêmodíízklítinnimistrukturamiinvitro AT walkowiczj vplivpoverhnevihvlastivosteipokrittívŝonaneseníríznimivakuumplazmovimimetodaminaprocesíhvzaêmodíízklítinnimistrukturamiinvitro AT rogowskar vplivpoverhnevihvlastivosteipokrittívŝonaneseníríznimivakuumplazmovimimetodaminaprocesíhvzaêmodíízklítinnimistrukturamiinvitro AT zykovaa vliâniepoverhnostnyhsvoistvpokrytiinanosimyhrazličnymivakuumplazmennymimetodaminaprocessihvzaimodeistviâskletočnymistrukturamiinvitro AT safonovv vliâniepoverhnostnyhsvoistvpokrytiinanosimyhrazličnymivakuumplazmennymimetodaminaprocessihvzaimodeistviâskletočnymistrukturamiinvitro AT lukyanchenkov vliâniepoverhnostnyhsvoistvpokrytiinanosimyhrazličnymivakuumplazmennymimetodaminaprocessihvzaimodeistviâskletočnymistrukturamiinvitro AT walkowiczj vliâniepoverhnostnyhsvoistvpokrytiinanosimyhrazličnymivakuumplazmennymimetodaminaprocessihvzaimodeistviâskletočnymistrukturamiinvitro AT rogowskar vliâniepoverhnostnyhsvoistvpokrytiinanosimyhrazličnymivakuumplazmennymimetodaminaprocessihvzaimodeistviâskletočnymistrukturamiinvitro AT zykovaa influenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT safonovv influenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT lukyanchenkov influenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT walkowiczj influenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests AT rogowskar influenceofsurfaceparametersofcoatingsdepositedbyvariousvacuumplasmamethodsonthecellmaterialinteractioninvitrotests |
| first_indexed |
2025-11-27T03:06:02Z |
| last_indexed |
2025-11-27T03:06:02Z |
| _version_ |
1850793622166831104 |
| fulltext |
200 Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 200-202
THE INFLUENCE OF SURFACE PARAMETERS OF COATINGS
DEPOSITED BY VARIOUS VACUUM-PLASMA METHODS
ON THE CELL/MATERIAL INTERACTION IN VITRO TESTS
A. Zykova, V. Safonov1, V. Luk’yanchenko2, J. Walkowicz3, R. Rogowska3
Institute of Surface Engineering, Kharkov, Ukraine, e-mail: zykov@bi.com.ua;
1NSC “Kharkov Institute of Physics and Technology“, Kharkov, Ukraine;
2N.I.Sitenko Orthopedy and Trauma Surgery Institute Design Bureau, Kharkov, Ukraine;
3Institute for Sustainable Technologies, National Research Institute, Radom, Poland
The surface of an implant plays a basic role in determining biocompatibility and integration due to its direct contact
with the adjacent tissues. There is now the good understanding that life time of orthopedic implants and the design of
the novel tissue-engineering medical products may be associated with local and remote biological tissue response and
cell-material interaction. Material properties such as implant surface composition, roughness, topography can influence
events at bone –implant interfaces and cell response to implant material.
PACS: 87.80 Rb
1. INTRODUCTION
In order to accelerate tissue-engineering research and to
obtain artificial implants with enhanced physical,
chemical, mechanical properties it’s necessary to combine
the advantages of materials nature with biocompatibility,
bioactivity, high wear and corrosion resistance, low
elastic modulus and friction coefficient. The way to the
solution of the problem of load-bearing prosthesis
producing is the deposition of multifunctional coatings on
their working parts. TiO2 titanium dioxide is widely used
in biomedical application because its excellent
biocompatibility [1]. TiN titanium nitride has been used
for orthopedic and dental implants due to its high
hardness, wear and corrosion resistance [2]. In vitro
studies of cell adhesion on various material and coating
surfaces are the basic tools to determine the material
surface/ tissue response on a cellular level [3,4]. The
effects of materials composition, surface chemistry and
surface topography on cell adhesion and proliferation
have been largely studied [5].The material composition
always influences cell attachment [6]. The roughness of
substrate also significantly effects on cell attachment,
adhesion, proliferation and differentiation [7]. Attachment
is generally increased on rough surfaces compared to
smooth ones [8] but sometimes no effects are shown [9].
The surface energy is also the fundamental material
property that can influence on cell behavior [10]. The aim
of the present study was the comparative analysis of cell
adhesion on the surface of load bearing metal materials
with ceramic coatings in vitro tests.
2. MATERIALS AND METHODS
The substrates for deposited coatings were titanium
(Ti, Fe- 0,2% Si- 0,1%) samples. The substrates were
cleaned in ultrasonic bath with standard technology.
Various types of coatings were deposited: a) nitride
coatings TiN, b) oxide Al2O3 by Plasma Spray Method
(PS), c) oxide- films TiO2 by electrochemical method, d)
oxide Al2O3 by means of Magnetron Sputtering Method
(MS). The TiN coatings were deposited by means Arc-
PVD Method. The main parameters of the process were
described in our previous study [11]. The method of
ceramic Al2O3 (PS) coating deposition was typical: on the
treated by means of sand-blasting and anodized methods
titanium surface the corundum powder was sprayed at
room temperature. The electrochemical treatment of
titanium samples in salt solution of disubstititued sodium
sulphate medium at different stabilize voltage values from
10 to 100 V in DC regime was made. Al2O3 (MS) coating
deposition was performed in high vacuum pumping
system with the base pressure about 10-5 mBar. A
schematic description of the magnetron and ion source in
the sputtering chamber is shown in Fig.1.
Fig.1. Scheme of the magnetron installation: 1-coil of the
magnetic field; 2 – target; 3- permanent magnet;
4- magnetic force lines; 5-protective screen;
6- magnetron plasma; 7- swivel damper; 8- RF-ECR
plasma; 9- substrate holder; 10- DC voltage source;
11-RF generator; 12- inductive coil
The analyses of surface parameters such as surface
roughness, wettability, surface free energy were made.
The surface roughness was measured by means of
profilometer Hommel T-2000. Advancing water contact
13.56
MHz
1
2
3
4
56
7
8
9
11
12
13.56
MHz
11
22
33
44
5566
77
88
99
1111
1212
mailto:zykov@bi.com.ua
201
angle was measured by Wilhelm’s method in Kruss K12
Tensiometer at temperature 20o C [12]. For next
calculations of surface free energy (SFE) were used the
values of advancing water contact angle by Roberson
equation [13,14], which is in a good agreement with
values obtained by means of Owens-Wendt-Rabel-
Kaeble’ and Van Oss’ methods for TiN surfaces [12].
The experiments on study of cell/material
interaction in vitro – in culture of fibroblasts were carried
out. Rat hypodermic cellular tissue was extracted for
initial fibroblast culture obtaining. The suspension of
extracted cells was centrifuged at 750 orb/min during
15 min. The estimation of the total cell number and
detached cell number was made by means of 0,1% trypan
solution. Sowing cell area was 2x104 cell/ml density of
cultural medium. The fibroblast cultivation was made by
methods of mono layer culture at thermostat condition
(temperature 37o C) during 7 days. The isolated cells were
seeded onto the sample surface after sterilization. After
incubation for 1,3,5,7 days samples were removed and
assayed for next cell account study. The terms 5-7 days
are the step from fibroblast stabile culture growth to
culture degeneration stage. After cultivation the adhered
cells were trypsinized using trypsin- EDTA. The data
were elaborated by standard variation statistical methods.
Experiments were independently triplicate.
3. RESULTS AND DISCUSSION
3.1. SURFACE STRUCTURE AND PROPERTIES
The characteristic features of coating roughness were
presented at Fig .2 for TiN and Al2O3 (MS) coatings. The
roughness data for all samples are presented in the table
bellow. The increasing of oxidation potential from 20 V
to 100 V for TiO2 coatings results in the roughness
parameter rise.
a b
Fig.2. Surface roughness coatings of:
a) TiN (Arc PVD), b) Al2O3
Advancing water contact angle was measured by
Wilhelm’s method at temperature 20o C [12]. For next
calculations of surface free energy (SFE) were used the
values of advancing water contact angle by Roberson
equation [13,14], which is a good approximation for
hydrophobic surfaces. The advancing water contact
angles of the samples were in the range 60-70 degrees at
standard condition and surface energies values change
from 40-50 mN/m according to the material and surface
properties (see the table).
3.2. CYTOCOMPATIBILITY IN VITRO
The adhesive activity of cells in vitro test was
investigated for next modeling cell /coating interaction.
The surface properties of TiO2, TiN, Al2O3
coatings and glass
Coating properties Surface propertiesCoatings
type Thick-
ness,
m
Rough-
ness,
Ra, m
Water
contact
angle,
degree
Surface
free
energy,
SFE,
N/m
TiO2 (20 V) 0,5 0,1 65.91 42,12
TiO2 (30 V) 0,8 0,15 64,80 42,80
TiO2 (50 V) 1,0 0,22 58,44 46,58
TiO2 (70 V) 1,2 0,26 57,85 46,91
TiO2 (100 V) 1,5 0,3 55,85 48,07
Glass 0,02 84,8 29,9
TiN 1,5 0,09 67,15 41,43
TiN 1,8 0,12 69,50 39,98
Al2O3 (PS) 35 2,4 76,74 35,31
Al2O3 (PS) 30 2,2 77,85 34,5
Al2O3 (MS) 2,2 0,04 58,7 46,42
Al2O3 (MS) 1,9 0,03 61,15 44,98
The ratio of the detached cell number Nd to the total
cell number Nt may be approximated by equation ctb,
(where t- time in culture, c – scale coefficient and b-
kinetic coefficient b 0,5). The model of cell/material
interaction and the analytical expression for td (time taken
by the trypsin to detach the cell) which finally describes
the adhesion of cells on biomaterials after a time t in
culture (without proliferation) was proposed in [15].
Fig. 3 shows the proliferation kinetics of fibroblast
cells. The proliferation ratio (PR, number of cells after 7
days in culture/ number of cells after 1day) was used for
most statistical analysis. The best results were obtained in
the case of oxide coatings: TiO2 at 100V, Al2O3 (PS) and
Al2O3 (MS).
4. CONCLUSIONS
The initial cell behavior on the biomaterial interface will
influence the cell differentiation, proliferation and extra
cellular matrix formation. The surface topography,
1 2 3 4 5 6 7 8
0
2
4
6
8
10
12
14
16
N
um
be
r o
f d
et
ac
he
d
ce
lls
/
to
ta
l c
el
l n
um
be
r %
Number of the samples
3 days cultivation
5 days cultivation
prolifiration ratio (PR)
Fig.3. Ratio of the number of detached cell to the total
cell number after 3 and 5 days cultivation (%) and cell
proliferation ratio PR (the total cell number after 5 days
cultivation/the total cell number after 1 day cultivation)
for the samples 1,2,3 –TiO2 20V,50V,100V, 4,5- TiN
(PVD), 6 Al2O3 (PS),7-Al2O3 (MS),8 –glass
202
roughness, energy and chemistry are the main factors
which adjust cell growth and function. The analysis of
cell adhesion on the surface of the samples with ceramic
coatings and study of surface parameter influence on cell/
material interaction in vitro tests was made.
The results show some correlation between the surface
properties and cell adhesion. The best biological response
parameters (total cell number, PR) were obtained in the
case of oxide coatings deposited by various methods in
comparison with TiO2 at 20V potential and TiN coatings
(Fig. 4). The dependence between surface parameters
(roughness, SFE) and adhesive behavior has been
observed only in the case of oxidation process parameter
changes. The increasing of the process potential from 20
to 100 V leads to roughness and SFE parameter rise (see
the table above). The greater surface roughness, higher
surface energy results in greater total number of attached
fibroblast cells , higher cell activity and proliferation ratio
(Fig. 3)
Use of modern advancing methods of multifunctional
coating deposition allows improving the biocompatibility
of implanted materials and prolonging prosthesis service
life in the patient organism.
REFERENCES
1. C. Lin, S. Yen //J. Electrochem. Soc. 2004, v.51, p.127-133.
2. S. Mandl, B. Rauchenbach // Surf. & Coating Technol. 2002,
v.156, p.583-589.
3. U. Meyer, A. Bushter, H.P. Wiesmann, U. Joos, D.B. Jones //
Eur. Cells Mater . 2005, N 9, p.39-49.
4. K. Anselme // Biomaterials. 2000, v. 21, p.667-681.
5. A. Hunter, C.W. Archer, P.S. Walker, G.W. Blunn.
Attachment and prolifiration of osteoblasts and fibroblasts on
biomaterials for orthopedic use // Biomaterials. 1995, v.16,
p.287-295.
6. R.K. Sinha, F. Morris, S.A. Shah, R.S. Tuan. Surface
composition orthopedic implant metals regulates cell
attachment, spreading and cytoskeletal organization of primary
human osteoblasts in vitro // Clin. Orthop. Relat. Res. 1994,
v. 305, p.258-272.
7. J. Links, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu,
D.I. Cochran et al. Responce of MG63 osteoblast-like cells to
titanium and titanium alloy is dependedon surface roughness
and composition // Biomaterials. 1998, v. 19, p.2219-2232.
8. S.P. Xavier, P.S. Carvalho, M.M. Beloti, A.L. Rosa.
Response of rat bone marrow cells to commercially pure
titanium submitted to different surface treatments // J. Dent.
2003, v. 31, p.173-180.
9. K. Mustafa, J. Wroblewski, K. Hultenby et al. Effect of
titanium surfaces blasted with TiO2 particles on the initial
attachment of cells derived from human mandibular bone //
Clin. Oral Implant Res. 2000, N 11, p.116-128.
10. P. Van der Valk, A.W.J. van Pelt, H.J. Busscher, H.P. de
Long et al. Interaction of fibroblasts and polymer surfaces,
relation between surface free energy and fibroblast spreading //
J. Biomed. Mater. Res. 1983, v. 17, p.807-817.
11. A.V.Zykova, V.V. Luk’yanchenko, V.I. Safonov. The
corrosion properties of implanted materials with protective
coatings in isotonic physiological solution // Surf. & Coating
Technol. 2005, v. 200, p.90-93.
12. R. Rogowska. Surface free energy of thin-layer coatngs
deposited by means of the arc-vacuum method // Problemy
Eksploatacji (Maintenance Problems). 2006, v. 61, N2, p.193.
13. S.B. Kennedy, R.N. Washburn, C.G. Simon, E.J. Amis.
Combinatorial screen of effect of surface energy on fibronectin-
mediated osteoblast adhesion, spreading and proliferation //
Biomaterials. 2006, v. 27, p.3817-3824.
14. S.V. Roberson, A.J. Fahey, A. Sehgal, A. Karim.
Multifunctional ToF-SIMS combinatorial mapping of gradient
energy substrates // Appl. Surf. Sci. 2002, v. 200, p.150-164.
15. K. Anselme, M. Bigerelle. Modelling approach in
cell/material interaction studies // Biomaterials. 2006, v. 27,
p.1187-1199.
, -
,
IN VITRO
A. , . , . , . , .
, ,
.
. ,
, ,
.
, -
,
IN VITRO
. , . , . , . , .
, ,
.
. , , ,
.
1 2 3 4 5 6
2
4
6
8
10
12
14
16
T
he
ra
tio
(n
um
be
r o
f d
et
ac
he
d
ce
lls
to
th
e
to
ta
l c
el
l n
um
be
r,%
)
Time of the cultivation (days)
20 V
30 V
50 V
70 V
100 V
Fig.4. The ratio of the detached cell number to the
total cell number (%) for the TiO2 coatings after
cultivation time (days)
|