The electron accelerator for technological purposes with a secondary-emission electron source as the basis
Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2007 |
| Main Authors: | , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/110596 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110596 |
|---|---|
| record_format |
dspace |
| spelling |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Chertishchev, I.A. Dovbnya, N.A. Lavrinenko, S.D. 2017-01-05T17:33:20Z 2017-01-05T17:33:20Z 2007 The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/110596 621.384.6 Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target surface being ~ 2 MW/cm². Targets from various materials were exposed to radiation. Приведені результати дослідження параметрів електронного пучка прискорювача на основі вторинно-еміссійного джерела. Прискорювач формує електронний пучок з енергіею електронів до 100 кеВ, струмом до 110 A, тривалисттю імпульса 10…20 мкс с частотою слідування 3…5 Гц, щільністю потужності на мішені 2 МВт/см². Проведено опромінення мішеней з різних матеріалів. Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично-эмиссионного источника. Ускоритель формирует электронный пучок с энергией электронов до 100 кэВ, длительностью импульса 10…20 мкс с частотой следования 3…5 Гц и плотностью мощности на мишени 2 МВт/см². Проведено облучение мишеней из различных материалов. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок The electron accelerator for technological purposes with a secondary-emission electron source as the basis Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів Электронный ускоритель для технологических целей на основе вторичноэмиссионного источника электронов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| spellingShingle |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Chertishchev, I.A. Dovbnya, N.A. Lavrinenko, S.D. Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок |
| title_short |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| title_full |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| title_fullStr |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| title_full_unstemmed |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| title_sort |
electron accelerator for technological purposes with a secondary-emission electron source as the basis |
| author |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Chertishchev, I.A. Dovbnya, N.A. Lavrinenko, S.D. |
| author_facet |
Dovbnya, A.N. Zakutin, V.V. Reshetnyak, N.G. Romas’ko, V.P. Chertishchev, I.A. Dovbnya, N.A. Lavrinenko, S.D. |
| topic |
Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок |
| topic_facet |
Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів Электронный ускоритель для технологических целей на основе вторичноэмиссионного источника электронов |
| description |
Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target surface being ~ 2 MW/cm². Targets from various materials were exposed to radiation.
Приведені результати дослідження параметрів електронного пучка прискорювача на основі вторинно-еміссійного джерела. Прискорювач формує електронний пучок з енергіею електронів до 100 кеВ, струмом до 110 A, тривалисттю імпульса 10…20 мкс с частотою слідування 3…5 Гц, щільністю потужності на мішені 2 МВт/см². Проведено опромінення мішеней з різних матеріалів.
Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично-эмиссионного источника. Ускоритель формирует электронный пучок с энергией электронов до 100 кэВ, длительностью импульса 10…20 мкс с частотой следования 3…5 Гц и плотностью мощности на мишени 2 МВт/см². Проведено облучение мишеней из различных материалов.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110596 |
| citation_txt |
The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT dovbnyaan theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT zakutinvv theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT reshetnyakng theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT romaskovp theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT chertishchevia theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT dovbnyana theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT lavrinenkosd theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT dovbnyaan elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT zakutinvv elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT reshetnyakng elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT romaskovp elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT chertishchevia elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT dovbnyana elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT lavrinenkosd elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív AT dovbnyaan élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT zakutinvv élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT reshetnyakng élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT romaskovp élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT chertishchevia élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT dovbnyana élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT lavrinenkosd élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov AT dovbnyaan electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT zakutinvv electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT reshetnyakng electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT romaskovp electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT chertishchevia electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT dovbnyana electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis AT lavrinenkosd electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis |
| first_indexed |
2025-11-27T00:33:38Z |
| last_indexed |
2025-11-27T00:33:38Z |
| _version_ |
1850788798724571136 |
| fulltext |
УДК 621.384.6
THE ELECTRON ACCELERATOR FOR TECHNOLOGICAL PURPOSES
WITH A SECONDARY-EMISSION ELECTRON SOURCE AS THE BASIS
A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev,
N.A. Dovbnya, S.D. Lavrinenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary
emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to
110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target
surface being ~ 2 MW/cm2. Targets from various materials were exposed to radiation.
INTRODUCTION
Powerful electron beams present one of the efficient
methods for modifying surface properties of materials.
This is currently central for increasing the strength,
wear resistance and corrosion resistance of structural
reactor materials, for lengthening the service life of
reactor components, aircraft and car engines, for
removing spent coatings, etc. It has been demonstrated
in [1] that the following electron beam parameters are
optimum for material surface modification: electron
energy 50…150 keV, energy density 15…80 J/cm2,
power density on the material surface under treatment
1…5 MW/cm2, pulse length 5…50 μs.
The reliability and service life of accelerating devices
are to a wide extent determined by the lifetime of the
electron source. In the accelerator under study, a
magnetron gun with cold secondary-emission cathodes
in crossed fields is used as an electron source. These
guns are simple in design, hold down emission after a
multiple letting-to-air, their service life may attain 100
000 hours. In the present work the parameters of the
electron beam on the target are investigated as functions
of magnetic-field amplitude and distribution.
THE EXPERIMENTAL FACILITY
AND RESEARCH TECHNIQUES
The electron accelerator (Fig. 1) comprises the
following main units: a HV pulse generator 1; an electron
source with a secondary-emission cathode 6 and anode 7
placed in a vacuum chamber 3; a solenoid 4, which
generates a longitudinal magnetic field, with a power
supply 5; a target device with a Faraday cup 8; a
computer-aided measuring system 9 to measure the beam
parameters.
To energize the electron source of the accelerator, it
is necessary to have a pulse generator providing voltage
pulses of great duration [2]. The voltage bump
amplitude ranges between 30…160 kV, the bump decay
duration is about 0.3 μs, the amplitude of the pulse flat-
top part makes about 20…100 kV, the pulse duration is
between 30 and 15 μs, and the pulse-recurrence rate is
3…5 Hz (Fig. 2).
The electron source is a coaxial system with a
secondary-emission cathode 6 in crossed fields. The
anode 7 is connected to the earth through the resistor
R5. The system has the following dimensions: the
cathode diameter is 40 mm, the inner diameter of the
anode is 78 mm, the lengths of the cathode and anode
are 85 and 140 mm, respectively. The cathode and the
anode are made from copper and stainless steel,
correspondingly. The electron source was placed in a
vacuum volume 3, where the pressure was measured to
be
~10 - 6 Torr.
Fig. 1. Accelerator circuit. 1 – pulse generator;
2 – insulator; 3 – vacuum chamber; 4 – solenoid;
5 – power supply of the solenoid; 6 – cathode;
7 – anode; 8 – Faraday cup; 9 – computer-aided meas-
uring system
Fig. 2. Oscillograms of cathode voltage (U) and beam
current (I) pulses
The magnetic field for electron beam generation and
transport was created by the solenoid 4 consisting of 4
sections, which were energized by dc sources 5. The
amplitude and longitudinal distribution of the magnetic
field could be regulated by varying the current value in
the solenoid sections.
______________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105.
103
The target device was arranged on the end part of the
stainless steel Faraday cup, which was cooled with water
and was at a distance of 100 mm from the gun. The cup
surface carried the fixed targets exposed to radiation.
The measurement data on the voltage pulse, the beam
current at the Faraday cup, the anode current and the
stability of their values were processed by a computer-
aided measuring system 9 [3]. The measurement error
makes 1…2%. The transverse beam size and the radial
beam-current distribution were determined with the use of
imprints on the targets made from different materials.
EXPERIMENTAL RESULTS
AND DISCUSSION
In the present experiments, the electron beam
parameters of the accelerator were investigated at a
cathode voltage between 20 and 100 kV.
The beam current from the Faraday cup was
investigated as a function of the magnetic field
distribution along the transport channel. Fig. 3 shows
the longitudinal magnetic field distributions along the
axis of the magnetron gun and the beam transport
channel to the Faraday. The same figure schematically
shows the layout of magnetron gun components and the
Faraday cup.
As demonstrated by the experiments, in the
decreasing magnetic fields (Fig. 3, curves 1 and 2) at a
cathode voltage of ~ 100 kV, the magnetron gun forms
the electron beam with a current of 110 A at a pulse
length of 15 μs, and the anode current makes about
0.3 % of the beam current. In the case of an increasing
magnetic field in the transport region (Fig. 3, curve 3,
when the magnetic field amplitude in the cathode region
remained practically the same), the beam current
decreased by 15…20 %. Typical oscillograms of
cathode voltage pulses and of the beam current are
shown in Fig. 2.
Fig. 3. Three cases of longitudinal magnetic field distri-
bution and the layout of components: A – anode;
K – cathode; FC – Faraday cup
It should be noted that the formation of the beam and
its parameters in falling magnetic fields with the same
diameter of the cathode but with a smaller diameter of the
anode (70 mm) were described in ref. [4]. From
thoseresults it follows that the optimum magnetic field
distribution for beam generation should fall from the
cathode to the Faraday cup. In this case, the beam current
is maximum, and the coefficient of azimuthal beam
inhomogeneity is minimum and makes K= 1,1. At a
cathode voltage of 50 kV a beam current of 50 A was
obtained, the power density on the target was
~0.6 MW/cm2. The beam size on the target was measured
to be 50 mm in outer diameter and 44 mm in inner
diameter.
The beam current to the Faraday cup was investigated
as a function of the cathode voltage in the falling magnetic
field. The function is found to obey the 3/2 law in the
voltage range between 20 and 110 kV. In this case, in the
process of measurements for each fixed voltage value there
was the optimum magnetic field value, at which the beam
current amplitude was maximum.
The width of electron beam generation zone in the
magnetic field ΔH (where ΔH = Hmax- Hmin, Hmax and
Hmin being, respectively, the maximum and minimum
magnetic field values for the beam generation) was
measured at different cathode voltages and different
forms of magnetic field distribution. The measurement
results show that the generation zone width ΔH is
dependent on the form of the magnetic field
distribution. In the case of homogeneous or increasing-
towards-the-Faraday cup magnetic field, the zone width
is wider and is found to be within ΔH = 400 … 800 Oe,
while in the falling magnetic field we have
ΔH = 200 … 300 Oe. Experiments were made to obtain
the maximum parameters of the electron beam in the
falling magnetic field at a voltage amplitude of ~
100 kV. It is shown that the beam formation begins at a
magnetic field of ~1700 Oe at the cathode (Fig. 3, curve
1), and continues until the magnetic field amplitude
increases up to ~2000 Oe, i.e., the beam generation zone
in the magnetic field makes ΔH ~ 300 Oe (Fig. 3,
curve 2), and the beam current reaches ~ 110 A. Note
that in this case the amplitude and shape of the beam
current pulse change but little (~ 2…3 %) at the
generation zone boundaries. A considerable beam
generation zone width ΔH is very important in the use
of the magnetron gun-based accelerator for
technological purposes as the accelerator is being tuned.
Measurements of the electron beam size were carried
out on targets made from different materials (aluminum,
copper, stainless steel). With a magnetic field strength of
~ 1500 Oe at the cathode and its rise towards the Faraday
cup up to 1750 Oe (that leads to a reduction in the beam
thickness) and at a cathode voltage of 75 kV, the
magnetron gun forms an annular electron beam with a
current of ~ 60 A (power density on the target
~2 MW/cm2), the inner diameter being ~ 37 mm and a
wall thickness ≈ 2 mm . As is seen from the figure, the
beam has a rather high azimuthal homogeneity, this being
in agreement with the results of ref. [4]. Beam imprint on
the target from different materials show on fig. 4.
______________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105.
104
Fig. 4. Beam imprint on the target from the different
materials
Fig. 5 shows the radial electron density distribution
of the beam in relative units (the plot was obtained from
computer-aided processing of the imprint in one of the
modes). It can be seen from the figure that the
homogeneity of the electron density makes ± 17 %.
Targets made from different materials were exposed
to radiation. Among the materials, there were titanium
(Table) and tool steel (U12M, KhVG, Kh12N) having
the surface hardening property.
Fig. 5. Radial electron density distribution of Beam
The irradiation of targets was performed under the
same conditions, in one experiment, with all 4
specimens fixed on the target device. It is obvious from
the table that approximately a two-fold increase in the
microhardness of steel takes place.
Results of Tests
Material
under
treatment
Electron
energy,
keV
Power
density
on the
target,
MW/cm2
Micro-
hardness
before
treatment,
kg/mm2
Micro-
hardness
after
treatment,
kg/mm2
KhVG ~ 75 ~1.6 232 473
U12M ~ 75 ~1.6 232 550
Kh12N ~ 75 ~1.6 192 412
Titanium ~ 75 ~1.6 148 210
CONCLUSIONS
Thus, the investigations of the beam formed by the
electron accelerator with the magnetron gun as the basis
have resulted in attaining the maximum parameters, at
which the beam current on the target makes ~ 110 A, the
electron energy is ~ 100 keV at a pulse duration of
~15 μs. At these parameters, the specific beam power
reaches ~ 2 MW/cm2, this permitting the use of the
electron beam of the accelerator in technological
processes for modifying the material surfaces and for
conducting research investigations.
REFERENCES
1. V. Ehngel’ko, G. Mueller, A. Andreyev et al.
Pulsed electron beam facilities (GESA) for surface
treatment of materials. Tenth International
Conference on Applied Charged Particle
Accelerators in Medicine and Industry.
Proceedings. Russia, Sant-Petersburg, 1-4 October,
2001, p. 412–417.
2. A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak et al
A pulsed modulator to energize the secondary
emission electron source of the technological
accelerator: Abstract RUPAC2006, 10-14
September. Novosibirsk, Russia.
3. V.N. Boriskin, N.I. Ayzatsky, V.A. Gurin et al.
Multichannel system for research of secondary-
emission pulse electron beam generation. Abstract
PCaPAC2002, INFN-LNF Frascati (Rome) Italy.
October, 2002, p. 30.
4. A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak et al.
Investigation of azimuthal electron-beam
homogeneity in the magnetron gun with a
secondary-emission cathode (in Russian) //Vestnik
Khar’kovskogo Natsional’nogo universiteta, seriya
fiz. “Yadra, chastitsy, polya”. 2004, N 642, iss.3
(25), p. 91–96.
ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ ДЛЯ ТЕХНОЛОГИЧЕСКИХ ЦЕЛЕЙ
НА ОСНОВЕ ВТОРИЧНОЭМИССИОННОГО ИСТОЧНИКА ЭЛЕКТРОНОВ
. . , . . , . . , . . , . . , . . , . . А Н Довбня В В Закутин Н Г Решетняк В П Ромасько И А Чертищев Н А Довбня С Д Лавриненко
- .Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично эмиссионного источника
100Ускоритель формирует электронный пучок с энергией электронов до , 10…20кэВ длительностью импульса мкс с частотой
3…5следования 2Гц и плотностьюмощности на мишени /МВт см2. . Проведенооблучениемишенейиз различных материалов
ЕЛЕКТРОННИЙ ПРИСКОРЮВАЧ ДЛЯ ТЕХНОЛОГИЧНІХ ЦІЛЕЙ НА БАЗІ ВТОРИННО-ЕМІССІЙНОГО
ДЖЕРЕЛА ЕЛЕКТРОНІВ
А.М. Довбня, В.В. Закутін, М.Г. Решетняк, В.П. Ромасько, І.А. Чертіщев, Н.А. Довбня, С.Д. Лавріненко
Приведені результати - .дослідження параметрів електронного пучка прискорювача на основі вторинно еміссійного джерела
100Прискорювач формує електронний пучок з енергіею електронів до , 110кеВ струмом до , А тривалисттю імпульса 10…20 мкс с
3…5частотоюслідування ., 2Гц щільністю потужності на мішені /МВт см2. Проведеноопроміненнямішеней з різних матеріалів.
______________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105.
105
удк 621.384.6
THE ELECTRON ACCELERATOR FOR Technological purposes with a SECONDARY-EMISSION ELECTRON SOURCE As the basis
INTRODUCTION
THE EXPERIMENTAL FACILITY
AND RESEARCH TECHNIQUES
EXPERIMENTAL RESULTS
AND DISCUSSION
CONCLUSIONS
REFERENCES
Электронный ускоритель для технологических целей
на основе вторичноэмиссионного источника электронов
Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів
|