The electron accelerator for technological purposes with a secondary-emission electron source as the basis

Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2007
Main Authors: Dovbnya, A.N., Zakutin, V.V., Reshetnyak, N.G., Romas’ko, V.P., Chertishchev, I.A., Dovbnya, N.A., Lavrinenko, S.D.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/110596
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110596
record_format dspace
spelling Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Chertishchev, I.A.
Dovbnya, N.A.
Lavrinenko, S.D.
2017-01-05T17:33:20Z
2017-01-05T17:33:20Z
2007
The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/110596
621.384.6
Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target surface being ~ 2 MW/cm². Targets from various materials were exposed to radiation.
Приведені результати дослідження параметрів електронного пучка прискорювача на основі вторинно-еміссійного джерела. Прискорювач формує електронний пучок з енергіею електронів до 100 кеВ, струмом до 110 A, тривалисттю імпульса 10…20 мкс с частотою слідування 3…5 Гц, щільністю потужності на мішені 2 МВт/см². Проведено опромінення мішеней з різних матеріалів.
Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично-эмиссионного источника. Ускоритель формирует электронный пучок с энергией электронов до 100 кэВ, длительностью импульса 10…20 мкс с частотой следования 3…5 Гц и плотностью мощности на мишени 2 МВт/см². Проведено облучение мишеней из различных материалов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок
The electron accelerator for technological purposes with a secondary-emission electron source as the basis
Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів
Электронный ускоритель для технологических целей на основе вторичноэмиссионного источника электронов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The electron accelerator for technological purposes with a secondary-emission electron source as the basis
spellingShingle The electron accelerator for technological purposes with a secondary-emission electron source as the basis
Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Chertishchev, I.A.
Dovbnya, N.A.
Lavrinenko, S.D.
Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок
title_short The electron accelerator for technological purposes with a secondary-emission electron source as the basis
title_full The electron accelerator for technological purposes with a secondary-emission electron source as the basis
title_fullStr The electron accelerator for technological purposes with a secondary-emission electron source as the basis
title_full_unstemmed The electron accelerator for technological purposes with a secondary-emission electron source as the basis
title_sort electron accelerator for technological purposes with a secondary-emission electron source as the basis
author Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Chertishchev, I.A.
Dovbnya, N.A.
Lavrinenko, S.D.
author_facet Dovbnya, A.N.
Zakutin, V.V.
Reshetnyak, N.G.
Romas’ko, V.P.
Chertishchev, I.A.
Dovbnya, N.A.
Lavrinenko, S.D.
topic Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок
topic_facet Конструкционные материалы реакторов новых поколений, реакторов на быстрых нейтронах и термоядерных установок
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів
Электронный ускоритель для технологических целей на основе вторичноэмиссионного источника электронов
description Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target surface being ~ 2 MW/cm². Targets from various materials were exposed to radiation. Приведені результати дослідження параметрів електронного пучка прискорювача на основі вторинно-еміссійного джерела. Прискорювач формує електронний пучок з енергіею електронів до 100 кеВ, струмом до 110 A, тривалисттю імпульса 10…20 мкс с частотою слідування 3…5 Гц, щільністю потужності на мішені 2 МВт/см². Проведено опромінення мішеней з різних матеріалів. Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично-эмиссионного источника. Ускоритель формирует электронный пучок с энергией электронов до 100 кэВ, длительностью импульса 10…20 мкс с частотой следования 3…5 Гц и плотностью мощности на мишени 2 МВт/см². Проведено облучение мишеней из различных материалов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110596
citation_txt The electron accelerator for technological purposes with a secondary-emission electron source as the basis / A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko // Вопросы атомной науки и техники. — 2007. — № 6. — С. 103-105. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT dovbnyaan theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT zakutinvv theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT reshetnyakng theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT romaskovp theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT chertishchevia theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT dovbnyana theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT lavrinenkosd theelectronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT dovbnyaan elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT zakutinvv elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT reshetnyakng elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT romaskovp elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT chertishchevia elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT dovbnyana elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT lavrinenkosd elektronniipriskorûvačdlâtehnologičníhcíleinabazívtorinnoemíssíinogodžerelaelektronív
AT dovbnyaan élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT zakutinvv élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT reshetnyakng élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT romaskovp élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT chertishchevia élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT dovbnyana élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT lavrinenkosd élektronnyiuskoritelʹdlâtehnologičeskihceleinaosnovevtoričnoémissionnogoistočnikaélektronov
AT dovbnyaan electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT zakutinvv electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT reshetnyakng electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT romaskovp electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT chertishchevia electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT dovbnyana electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
AT lavrinenkosd electronacceleratorfortechnologicalpurposeswithasecondaryemissionelectronsourceasthebasis
first_indexed 2025-11-27T00:33:38Z
last_indexed 2025-11-27T00:33:38Z
_version_ 1850788798724571136
fulltext УДК 621.384.6 THE ELECTRON ACCELERATOR FOR TECHNOLOGICAL PURPOSES WITH A SECONDARY-EMISSION ELECTRON SOURCE AS THE BASIS A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak, V.P. Romas’ko, I.A. Chertishchev, N.A. Dovbnya, S.D. Lavrinenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Results are reported from the studies on the electron beam parameters of the accelerator based on a secondary emission source. The accelerator forms the electron beam with an electron energy of up to 100 keV, a current up to 110 A, a pulse duration between 10 and 20 μs with a repetition rate of 3 to 5 Hz, the power density on the target surface being ~ 2 MW/cm2. Targets from various materials were exposed to radiation. INTRODUCTION Powerful electron beams present one of the efficient methods for modifying surface properties of materials. This is currently central for increasing the strength, wear resistance and corrosion resistance of structural reactor materials, for lengthening the service life of reactor components, aircraft and car engines, for removing spent coatings, etc. It has been demonstrated in [1] that the following electron beam parameters are optimum for material surface modification: electron energy 50…150 keV, energy density 15…80 J/cm2, power density on the material surface under treatment 1…5 MW/cm2, pulse length 5…50 μs. The reliability and service life of accelerating devices are to a wide extent determined by the lifetime of the electron source. In the accelerator under study, a magnetron gun with cold secondary-emission cathodes in crossed fields is used as an electron source. These guns are simple in design, hold down emission after a multiple letting-to-air, their service life may attain 100 000 hours. In the present work the parameters of the electron beam on the target are investigated as functions of magnetic-field amplitude and distribution. THE EXPERIMENTAL FACILITY AND RESEARCH TECHNIQUES The electron accelerator (Fig. 1) comprises the following main units: a HV pulse generator 1; an electron source with a secondary-emission cathode 6 and anode 7 placed in a vacuum chamber 3; a solenoid 4, which generates a longitudinal magnetic field, with a power supply 5; a target device with a Faraday cup 8; a computer-aided measuring system 9 to measure the beam parameters. To energize the electron source of the accelerator, it is necessary to have a pulse generator providing voltage pulses of great duration [2]. The voltage bump amplitude ranges between 30…160 kV, the bump decay duration is about 0.3 μs, the amplitude of the pulse flat- top part makes about 20…100 kV, the pulse duration is between 30 and 15 μs, and the pulse-recurrence rate is 3…5 Hz (Fig. 2). The electron source is a coaxial system with a secondary-emission cathode 6 in crossed fields. The anode 7 is connected to the earth through the resistor R5. The system has the following dimensions: the cathode diameter is 40 mm, the inner diameter of the anode is 78 mm, the lengths of the cathode and anode are 85 and 140 mm, respectively. The cathode and the anode are made from copper and stainless steel, correspondingly. The electron source was placed in a vacuum volume 3, where the pressure was measured to be ~10 - 6 Torr. Fig. 1. Accelerator circuit. 1 – pulse generator; 2 – insulator; 3 – vacuum chamber; 4 – solenoid; 5 – power supply of the solenoid; 6 – cathode; 7 – anode; 8 – Faraday cup; 9 – computer-aided meas- uring system Fig. 2. Oscillograms of cathode voltage (U) and beam current (I) pulses The magnetic field for electron beam generation and transport was created by the solenoid 4 consisting of 4 sections, which were energized by dc sources 5. The amplitude and longitudinal distribution of the magnetic field could be regulated by varying the current value in the solenoid sections. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6. Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105. 103 The target device was arranged on the end part of the stainless steel Faraday cup, which was cooled with water and was at a distance of 100 mm from the gun. The cup surface carried the fixed targets exposed to radiation. The measurement data on the voltage pulse, the beam current at the Faraday cup, the anode current and the stability of their values were processed by a computer- aided measuring system 9 [3]. The measurement error makes 1…2%. The transverse beam size and the radial beam-current distribution were determined with the use of imprints on the targets made from different materials. EXPERIMENTAL RESULTS AND DISCUSSION In the present experiments, the electron beam parameters of the accelerator were investigated at a cathode voltage between 20 and 100 kV. The beam current from the Faraday cup was investigated as a function of the magnetic field distribution along the transport channel. Fig. 3 shows the longitudinal magnetic field distributions along the axis of the magnetron gun and the beam transport channel to the Faraday. The same figure schematically shows the layout of magnetron gun components and the Faraday cup. As demonstrated by the experiments, in the decreasing magnetic fields (Fig. 3, curves 1 and 2) at a cathode voltage of ~ 100 kV, the magnetron gun forms the electron beam with a current of 110 A at a pulse length of 15 μs, and the anode current makes about 0.3 % of the beam current. In the case of an increasing magnetic field in the transport region (Fig. 3, curve 3, when the magnetic field amplitude in the cathode region remained practically the same), the beam current decreased by 15…20 %. Typical oscillograms of cathode voltage pulses and of the beam current are shown in Fig. 2. Fig. 3. Three cases of longitudinal magnetic field distri- bution and the layout of components: A – anode; K – cathode; FC – Faraday cup It should be noted that the formation of the beam and its parameters in falling magnetic fields with the same diameter of the cathode but with a smaller diameter of the anode (70 mm) were described in ref. [4]. From thoseresults it follows that the optimum magnetic field distribution for beam generation should fall from the cathode to the Faraday cup. In this case, the beam current is maximum, and the coefficient of azimuthal beam inhomogeneity is minimum and makes K= 1,1. At a cathode voltage of 50 kV a beam current of 50 A was obtained, the power density on the target was ~0.6 MW/cm2. The beam size on the target was measured to be 50 mm in outer diameter and 44 mm in inner diameter. The beam current to the Faraday cup was investigated as a function of the cathode voltage in the falling magnetic field. The function is found to obey the 3/2 law in the voltage range between 20 and 110 kV. In this case, in the process of measurements for each fixed voltage value there was the optimum magnetic field value, at which the beam current amplitude was maximum. The width of electron beam generation zone in the magnetic field ΔH (where ΔH = Hmax- Hmin, Hmax and Hmin being, respectively, the maximum and minimum magnetic field values for the beam generation) was measured at different cathode voltages and different forms of magnetic field distribution. The measurement results show that the generation zone width ΔH is dependent on the form of the magnetic field distribution. In the case of homogeneous or increasing- towards-the-Faraday cup magnetic field, the zone width is wider and is found to be within ΔH = 400 … 800 Oe, while in the falling magnetic field we have ΔH = 200 … 300 Oe. Experiments were made to obtain the maximum parameters of the electron beam in the falling magnetic field at a voltage amplitude of ~ 100 kV. It is shown that the beam formation begins at a magnetic field of ~1700 Oe at the cathode (Fig. 3, curve 1), and continues until the magnetic field amplitude increases up to ~2000 Oe, i.e., the beam generation zone in the magnetic field makes ΔH ~ 300 Oe (Fig. 3, curve 2), and the beam current reaches ~ 110 A. Note that in this case the amplitude and shape of the beam current pulse change but little (~ 2…3 %) at the generation zone boundaries. A considerable beam generation zone width ΔH is very important in the use of the magnetron gun-based accelerator for technological purposes as the accelerator is being tuned. Measurements of the electron beam size were carried out on targets made from different materials (aluminum, copper, stainless steel). With a magnetic field strength of ~ 1500 Oe at the cathode and its rise towards the Faraday cup up to 1750 Oe (that leads to a reduction in the beam thickness) and at a cathode voltage of 75 kV, the magnetron gun forms an annular electron beam with a current of ~ 60 A (power density on the target ~2 MW/cm2), the inner diameter being ~ 37 mm and a wall thickness ≈ 2 mm . As is seen from the figure, the beam has a rather high azimuthal homogeneity, this being in agreement with the results of ref. [4]. Beam imprint on the target from different materials show on fig. 4. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6. Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105. 104 Fig. 4. Beam imprint on the target from the different materials Fig. 5 shows the radial electron density distribution of the beam in relative units (the plot was obtained from computer-aided processing of the imprint in one of the modes). It can be seen from the figure that the homogeneity of the electron density makes ± 17 %. Targets made from different materials were exposed to radiation. Among the materials, there were titanium (Table) and tool steel (U12M, KhVG, Kh12N) having the surface hardening property. Fig. 5. Radial electron density distribution of Beam The irradiation of targets was performed under the same conditions, in one experiment, with all 4 specimens fixed on the target device. It is obvious from the table that approximately a two-fold increase in the microhardness of steel takes place. Results of Tests Material under treatment Electron energy, keV Power density on the target, MW/cm2 Micro- hardness before treatment, kg/mm2 Micro- hardness after treatment, kg/mm2 KhVG ~ 75 ~1.6 232 473 U12M ~ 75 ~1.6 232 550 Kh12N ~ 75 ~1.6 192 412 Titanium ~ 75 ~1.6 148 210 CONCLUSIONS Thus, the investigations of the beam formed by the electron accelerator with the magnetron gun as the basis have resulted in attaining the maximum parameters, at which the beam current on the target makes ~ 110 A, the electron energy is ~ 100 keV at a pulse duration of ~15 μs. At these parameters, the specific beam power reaches ~ 2 MW/cm2, this permitting the use of the electron beam of the accelerator in technological processes for modifying the material surfaces and for conducting research investigations. REFERENCES 1. V. Ehngel’ko, G. Mueller, A. Andreyev et al. Pulsed electron beam facilities (GESA) for surface treatment of materials. Tenth International Conference on Applied Charged Particle Accelerators in Medicine and Industry. Proceedings. Russia, Sant-Petersburg, 1-4 October, 2001, p. 412–417. 2. A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak et al A pulsed modulator to energize the secondary emission electron source of the technological accelerator: Abstract RUPAC2006, 10-14 September. Novosibirsk, Russia. 3. V.N. Boriskin, N.I. Ayzatsky, V.A. Gurin et al. Multichannel system for research of secondary- emission pulse electron beam generation. Abstract PCaPAC2002, INFN-LNF Frascati (Rome) Italy. October, 2002, p. 30. 4. A.N. Dovbnya, V.V. Zakutin, N.G. Reshetnyak et al. Investigation of azimuthal electron-beam homogeneity in the magnetron gun with a secondary-emission cathode (in Russian) //Vestnik Khar’kovskogo Natsional’nogo universiteta, seriya fiz. “Yadra, chastitsy, polya”. 2004, N 642, iss.3 (25), p. 91–96. ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ ДЛЯ ТЕХНОЛОГИЧЕСКИХ ЦЕЛЕЙ НА ОСНОВЕ ВТОРИЧНОЭМИССИОННОГО ИСТОЧНИКА ЭЛЕКТРОНОВ . . , . . , . . , . . , . . , . . , . . А Н Довбня В В Закутин Н Г Решетняк В П Ромасько И А Чертищев Н А Довбня С Д Лавриненко - .Приведены результаты исследования параметров электронного пучка ускорителя на основе вторично эмиссионного источника 100Ускоритель формирует электронный пучок с энергией электронов до , 10…20кэВ длительностью импульса мкс с частотой 3…5следования 2Гц и плотностьюмощности на мишени /МВт см2. . Проведенооблучениемишенейиз различных материалов ЕЛЕКТРОННИЙ ПРИСКОРЮВАЧ ДЛЯ ТЕХНОЛОГИЧНІХ ЦІЛЕЙ НА БАЗІ ВТОРИННО-ЕМІССІЙНОГО ДЖЕРЕЛА ЕЛЕКТРОНІВ А.М. Довбня, В.В. Закутін, М.Г. Решетняк, В.П. Ромасько, І.А. Чертіщев, Н.А. Довбня, С.Д. Лавріненко Приведені результати - .дослідження параметрів електронного пучка прискорювача на основі вторинно еміссійного джерела 100Прискорювач формує електронний пучок з енергіею електронів до , 110кеВ струмом до , А тривалисттю імпульса 10…20 мкс с 3…5частотоюслідування ., 2Гц щільністю потужності на мішені /МВт см2. Проведеноопроміненнямішеней з різних матеріалів. ______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6. Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 103-105. 105 удк 621.384.6 THE ELECTRON ACCELERATOR FOR Technological purposes with a SECONDARY-EMISSION ELECTRON SOURCE As the basis INTRODUCTION THE EXPERIMENTAL FACILITY AND RESEARCH TECHNIQUES EXPERIMENTAL RESULTS AND DISCUSSION CONCLUSIONS REFERENCES Электронный ускоритель для технологических целей на основе вторичноэмиссионного источника электронов Електронний прискорювач для технологичніх цілей на базі вторинно-еміссійного джерела електронів