Experimental study of secondary emission radioisotope current source prototype
The results of experimental investigations of prototype of secondary emission radioisotope current source are presented. Novel physical idea of nuclear particle energy conversion into electricity by means of secondary ion induced electron emission underlies this autonomous power supply. As primary p...
Збережено в:
| Дата: | 2008 |
|---|---|
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/110695 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Experimental study of secondary emission radioisotope current source prototype / S.I. Kononenko, O.V. Kalantaryan, V.P. Zhurenko, V.T. Kolesnik, V.I. Muratov, V.I. Karas’, V.E. Filippenko // Вопросы атомной науки и техники. — 2008. — № 4. — С. 294-297. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110695 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1106952025-02-09T10:16:31Z Experimental study of secondary emission radioisotope current source prototype Експериментальні дослідження прототипу вторинно-емісійного радіоізотопного джерела струму Экспериментальные исследования прототипа вторично-эмиссионного радиоизотопного источника тока Kononenko, S.I. Kalantaryan, O.V. Kolesnik, V.T. Muratov, V.I. Karas, V.I. Filippenko, V.E. Приложения и технологии The results of experimental investigations of prototype of secondary emission radioisotope current source are presented. Novel physical idea of nuclear particle energy conversion into electricity by means of secondary ion induced electron emission underlies this autonomous power supply. As primary particles we used H+ ion beam from Van de Graff accelerator with megaelectronvolt energy. Some possible regimes of the prototype operation were studied. It was shown that load curve of the prototype had maximum. Output power up to 10 mWatt was obtained. It was experimentally shown realizability of the energy conversion idea. Представлено результати експериментальних досліджень прототипу вторинно-емісійного радіоізотопного джерела струму. Це автономне джерело живлення базується на новітній фізичній ідеї перетворення енергії ядерних частинок в електричну енергію за допомогою вторинної іонно-електронної емісії. За первинні частинки ми використовували пучок іонів H+ мегаелектронвольтних енергій, який було отримано на прискорювачі Ван де Граафа. Було вивчено кілька можливих режимів роботи прототипу. Показано, що навантажувальна крива прототипу має максимум. Отримано вихідну потужність до 10 мкВт. Експериментально показана здійснюваність ідеї перетворення енергії. Представлены результаты экспериментальных исследований прототипа вторично-эмиссионного радиоизотопного источника тока. Этот автономный источник питания основан на новой физической идее преобразования энергии ядерных частиц в электрическую энергию с помощью вторичной ионно-электронной эмисии. В качестве первичных частиц мы использовали пучок ионов H+ мегаэлектронвольтных энергий, который был получен на ускорителе Ван де Граафа. Было изучено несколько возможных режимов работы прототипа. Показано, что нагрузочная кривая прототипа имеет максимум. Получена выходная мощность до 10 мкВт. Экспериментально показана осуществимость идеи преобразования энергии. The authors want to express great thanks to the staff of VG-5 accelerator (NSC KIPT) and personally to V.M. Mishchenko for arrangement of proper operation conditions. This work was supported by Science and Technology Center in the Ukraine (STCU) on projects №3473, №4368 2008 Article Experimental study of secondary emission radioisotope current source prototype / S.I. Kononenko, O.V. Kalantaryan, V.P. Zhurenko, V.T. Kolesnik, V.I. Muratov, V.I. Karas’, V.E. Filippenko // Вопросы атомной науки и техники. — 2008. — № 4. — С. 294-297. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 84.60.Rb https://nasplib.isofts.kiev.ua/handle/123456789/110695 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Приложения и технологии Приложения и технологии |
| spellingShingle |
Приложения и технологии Приложения и технологии Kononenko, S.I. Kalantaryan, O.V. Kolesnik, V.T. Muratov, V.I. Karas, V.I. Filippenko, V.E. Experimental study of secondary emission radioisotope current source prototype Вопросы атомной науки и техники |
| description |
The results of experimental investigations of prototype of secondary emission radioisotope current source are presented. Novel physical idea of nuclear particle energy conversion into electricity by means of secondary ion induced electron emission underlies this autonomous power supply. As primary particles we used H+ ion beam from Van de Graff accelerator with megaelectronvolt energy. Some possible regimes of the prototype operation were studied. It was shown that load curve of the prototype had maximum. Output power up to 10 mWatt was obtained. It was experimentally shown realizability of the energy conversion idea. |
| format |
Article |
| author |
Kononenko, S.I. Kalantaryan, O.V. Kolesnik, V.T. Muratov, V.I. Karas, V.I. Filippenko, V.E. |
| author_facet |
Kononenko, S.I. Kalantaryan, O.V. Kolesnik, V.T. Muratov, V.I. Karas, V.I. Filippenko, V.E. |
| author_sort |
Kononenko, S.I. |
| title |
Experimental study of secondary emission radioisotope current source prototype |
| title_short |
Experimental study of secondary emission radioisotope current source prototype |
| title_full |
Experimental study of secondary emission radioisotope current source prototype |
| title_fullStr |
Experimental study of secondary emission radioisotope current source prototype |
| title_full_unstemmed |
Experimental study of secondary emission radioisotope current source prototype |
| title_sort |
experimental study of secondary emission radioisotope current source prototype |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2008 |
| topic_facet |
Приложения и технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110695 |
| citation_txt |
Experimental study of secondary emission radioisotope current source prototype / S.I. Kononenko, O.V. Kalantaryan, V.P. Zhurenko, V.T. Kolesnik, V.I. Muratov, V.I. Karas’, V.E. Filippenko // Вопросы атомной науки и техники. — 2008. — № 4. — С. 294-297. — Бібліогр.: 8 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT kononenkosi experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT kalantaryanov experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT kolesnikvt experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT muratovvi experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT karasvi experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT filippenkove experimentalstudyofsecondaryemissionradioisotopecurrentsourceprototype AT kononenkosi eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT kalantaryanov eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT kolesnikvt eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT muratovvi eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT karasvi eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT filippenkove eksperimentalʹnídoslídžennâprototipuvtorinnoemísíjnogoradíoízotopnogodžerelastrumu AT kononenkosi éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka AT kalantaryanov éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka AT kolesnikvt éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka AT muratovvi éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka AT karasvi éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka AT filippenkove éksperimentalʹnyeissledovaniâprototipavtoričnoémissionnogoradioizotopnogoistočnikatoka |
| first_indexed |
2025-11-25T18:16:48Z |
| last_indexed |
2025-11-25T18:16:48Z |
| _version_ |
1849787269526847488 |
| fulltext |
EXPERIMENTAL STUDY OF SECONDARY EMISSION RADIOISOTOPE
CURRENT SOURCE PROTOTYPE
S.I. Kononenko1, O.V. Kalantaryan1, V.P. Zhurenko1, V.T. Kolesnik1, V.I. Muratov1,
V.I. Karas’2, V.E. Filippenko1
1Kharkov National University named by V.N. Karazin, Ukraine
2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: zhurenko@htuni.kharkov.ua
The results of experimental investigations of prototype of secondary emission radioisotope current source are
presented. Novel physical idea of nuclear particle energy conversion into electricity by means of secondary ion in-
duced electron emission underlies this autonomous power supply. As primary particles we used H+ ion beam from
Van de Graff accelerator with megaelectronvolt energy. Some possible regimes of the prototype operation were stu-
died. It was shown that load curve of the prototype had maximum. Output power up to 10 μWatt was obtained. It
was experimentally shown realizability of the energy conversion idea.
PACS: 84.60.Rb
1. INTRODUCTION
Fast ions passing through a substance loss the en-
ergy due to processes of atom ionization [1]. At that part
of substance electrons can leave the surface leading to a
secondary ion-induced electron emission [2-4]. The
integral characteristic of the emission is coefficient γ
frequently termed in the literature as an electronic yield
[2-4]. Emission coefficient is defined as a relation of a
number of secondary electrons Ne emitted to a number
of primary incident ions Ni:
γ=Ne/Ni. (1)
Coefficient γ can change depending on ion energy,
target substance and a number of other parameters [2-4].
Fig.1. Schematic diagram of SERICS: 1 – vacuum
container, 2 - α-radioisotope, 3 and 4 – emitting
thin layers with different emission coefficients
By using α-particles emitted by radioisotope as pro-
jectiles and pair of thin emitting layers (insulated from
each other) with different coefficients γ it is possible to
convert energy of nuclear particles into electricity. This
idea underlies secondary emission radioisotope current
source (SERICS) [5-7].
SERICS schematic diagram is presented on Fig.1.
Radioisotope 2 emitting α-particles towards two half-
spheres is situated in vacuum container 1. Two emitters
of electrons are located on both sides of the radioiso-
tope. Each emitter is a set of some pairs of thin emitting
layers (so-called binary cells) of two different materials
3 and 4. One of the materials should have high emission
coefficient, whereas the other should have low one. All
of the layers are parallel and insulated with each other.
Layers from one material electrically connected in par-
allel and have own contact. As α-particle passes through
emitter, difference of charges between the layers of bi-
nary cell arises. By close the circuit with useful load it is
possible to use the charge difference as a source of cur-
rent. Effectiveness of energy conversion is proportional
to the number of emitting pairs N and difference of the
emission coefficients [5].
The paper deals with the results of experimental
study of SERICS prototype, which consisted of one
emitter with 5 binary cells. The experiments were car-
ried out with H+ ion beam because we have studied
normal incident of primary particles. Dependences of
emission parameters on incident angles are well known
[3, 4]. In electrical engineering when some cells are in
parallel connection, important question is internal resis-
tance matching. In SERICS internal resistance of the
binary cells are not defined. Mismatch of binary cells
can give rise to low efficiency of the device. Thus, the
first purpose of the study was to clear up a question of
electron current growth in the prototype by means of
increase of binary cell quantity (hereinafter referred to
as current additivity). The second purpose was study
and optimization of load characteristics of this electric-
ity source.
2. PROTOTYPE DEVELOPMENT AND
MEASUREMENT PROCEDURE
Doubled SERICS prototype containing two convert-
ers was developed. The converters were identical in
construction but differ in composition (Al-Ni and Al-
Cu). The prototype was mount on sector-shaped metal
plate where two mentioned above emitters were ar-
ranged down arc of circle. The construction enabled to
put one of the converters to the beam without vacuum
failure and to measure beam current at the entry of con-
verter before each experiment. When ion path length in
the materials being used was greater than total thickness
of foils in the set, transmitted ion beam was collected by
Faraday cup.
Each converter included 5 binary cells, i.e. 10 paral-
lel emitting layers (thin foils of 13 mm effective diame-
ter) made from two consecutively alternate materials
_______________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 4.
Серия: Плазменная электроника и новые методы ускорения (6), с.294-297. 294
“A” and “B”. For the first converter “A” is aluminum
and “B” is nickel, for the second - aluminum and nickel,
correspondently. All of the foils were electrically insu-
late from each other and the other constructional ele-
ments and each of them was fixed in separated holder
with reliable electric and heat contact. Distance between
foils was 4 mm.
The experiment were performed on Van de Graf ac-
celerator at NSC “KIPT” with H+ ions of 1.5, 1.7 and
1.96 MeV energy. Ion beam of 3 mm diameter im-
pinged on converter. Beam current varied in the range
of 0.14…1.21 μA. Residual gas pressure was no more
than 10-4 Pa.
We used program SRIM 2003 [8] for simulation
processes which take place in the converters under pas-
sage of protons with different primary energy. Having
analyzed proton path lengths in the materials under
study we calculated necessary foil thickness for both
variants of converter so that minimal primary energy of
protons would be 1.5 MeV. Thus foil thickness varied in
the range of 0.58…6 μm, at that nearly all ions for pri-
mary energy of 1.5 MeV would slow down by the last
foil of the set (about 99.3%). For 1.7 and 1.96 MeV
energy almost all of ions pass through the last foil (for
1.7 MeV – 98.85%, 1.96 MeV – 99.85%).
Fig.2. Simulation of H+ ion scattering in the prototype
multilayer structure
Simulation showed that nearly 99.81% of ion energy
was connected with electronic stopping power, while
energy losses for recoil atoms, phonon excitation and
sputtering of the foils were negligible. 1.5 MeV proton
trajectories in Al-Ni converter are shown on Fig.2.
Fig.3. Electric circuit for study of current additivity in
the SERICS prototype
Prototype study was performed in two main directions:
1. Current additivity. At first we measured current
of each separated foil, while the others were grounded
(see Fig.3). Then current measurements of two, three
and so on foils connected in parallel were carried out,
while vacant foils were grounded.
2. Electrophysical characteristics. Output charac-
teristics such as current, voltage, power depending on
load resistance were measured.
We used Keithley 6487 picoammeter and digital
voltmeter for electrical measurements. Measuring cir-
cuits were electrometric. Resistance set overlapped
range of 10 kΩ…500GΩ.
Three operating modes of the prototype were exam-
ined.
a b c
Fig.4. Electric circuits for load curve measurements:
a - the first operating mode;
b – the second mode (floating scheme);
c – the third mode (unipolar circuit)
At the first operating mode “A”-foils were con-
nected in parallel and loaded by resistance R (Fig.4,a).
One pole of picoammeter and “B”-foils were grounded.
The second mode is a floating scheme (Fig.4,b). In
this case “A”-foils were connected in parallel as well as
“B”-foils. “A” and “B” connection terminals were closed
by resistance R, picoammeter operated in floating mode.
The third operating mode (unipolar circuit) repeated
the first scheme but “A”-foils were connected in parallel
and ungrounded, i.e. “A” connection terminal was under
floating potential (Fig. 4c).
All of the operating modes were realized twice, it
means symmetry with regard to “A”- and “B”-foils.
3. RESULTS AND DISCUSSION
The experiments showed that total current of each
converter was exact sum of each separated foil currents
independently of ion energy and beam current. Thus
current additivity was observed. By the example of Al-
Ni converter with aluminum current-carrying foils the
current dependence of a set on the number of binary
cells are shown on Fig.5 for 0.91 μA beam current and
1.7 MeV ion energy. As it can be seen from the Fig.5,
strong additivity are fulfilled.
1 2 3 4 5
0,5
1,0
1,5
2,0
2,5
3,0
I, μA
the number of binary cells
measured current of the set of foils;
sum of each separated foil currents.
295
Fig.5. Al-Ni prototype current as a function of the num-
ber of binary cells for 1.7 MeV ions and 0.91 μA beam
current
One of the basic characteristics of electricity source
is a load curve. Power developed across the load by
Al-Ni converter under the first operating mode as a
function of load resistance is presented on Fig.6 for
1.5 MeV ions and different beam currents. As it can be
seen, the power has maximum, i.e. there is optimal val-
ue of load resistance. For all of ion energy and beam
currents as well as for both variants of load connection
(Al grounded or Ni grounded) the optimal load resis-
tance is equal to 300…500 kΩ. The output power of the
prototype is proportional to beam current.
0 1000 2000 3000 4000 5000
0,0
0,1
0,2
0,3
0,4
0,5
0,6
P, μWatt
R, kΩ
1.5 MeV; 1.12 μA;
1.5 MeV; 0.14 μA;
1.7 MeV; 0.91 μA.
Fig.6. Load curve of Al-Ni prototype under the first op-
erating mode for 1.5 MeV ions and different beam cur-
rents
Fig.7 shows load voltage dependence on resistance
value for the first operating mode. Voltage does not
exceed 0.5 V at the power maximum point and is no
more than 0.7 V at R=5 MΩ.
0 1000 2000 3000 4000 5000
0,0
0,2
0,4
0,6
0,8
U, V
R, kΩ
1.5 MeV; 1.12 μA;
1.5 MeV; 0.43 μA;
1.5 MeV; 0.14 μA.
Fig.7. Load voltage dependence of Al-Ni prototype un-
der the first operating mode on resistance for 1.5 MeV
ions and different beam currents
For the second operating mode it was found that
load curve and load voltage dependence on resistance
were similar to the ones observed for the first operating
mode (taking into account normalization to beam cur-
rent).
Having studied the third mode with various beam
currents and ion energy we found that sign and value of
prototype current did not depend on fact what sort of
foils (“A” or “B”) was under floating potential. Load
curves obtained for the unipolar circuit of Al-Ni SER-
ICS prototype operation (Ni foils were under floating
potential) are presented on Fig.8.
First of all let us give attention to the 1.5 MeV load
curves on Fig.8. As we mentioned above, passing
through the set of foils, practically all ions with such
primary energy slowed down in the last foil. In this
case, as it can be seen, the power is proportional to
beam current. The power is monotonically grows along
the whole range of load resistance. The load curve for
1.12 μA beam current reaches 9 μWatt value at 5 MΩ
resistance. For such resistance value load voltage
amounts 6.5 V.
0 1000 2000 3000 4000 5000 300000 600000
0
2
4
6
8
10
P, μWatt
R, kΩ
1.5 MeV; 1.12 μA; 1.7 MeV; 0.91 μA;
1.5 MeV; 0.43 μA; 1.96 MeV; 1.21 μA.
Fig.8. Load curve of Al-Ni prototype under unipolar
mode (Ni under floating potential) for different beam
currents and ion energy (1.7 and 1.96 MeV curves are
normalized to 1.12 μA beam current)
When ions pass through emitter and hit the Faraday
cup (load curves for 1.7 and 1.96 MeV) power has
maximum. For 1.7 MeV ions the power maximum cor-
responds to resistance value of some tens MΩ (for such
energy part of ions pass through the last foil, but not all
of that). For 1.96 MeV (almost all ions pass through the
last foil) the power maximum shifts to lower part of the
resistance range.
The SERICS construction should include a large
amount of consecutive elementary cells. Therefore, pri-
mary energy of α-particles inducing electron emission
would be different for each consecutive emitter layer in
real SERICS. As it was shown above, power maximum
in load curve depended on ion energy. In this connec-
tion, it is necessarily that load resistance for real SER-
ICS construction would be optimized.
CONCLUSIONS
Realizability of idea of the energy conversion by
means of secondary ion induced electron emission has
been demonstrated. Two variants of the prototype Al-Ni
and Al-Cu were experimentally studied with
MeV energy proton beam. Current additivity of binary
cell operation in the prototype was verified. Presence of
this effect enables to enlarge output power of the source
significantly by means of increase of emitting pair quan-
tity (foils).
It was found that the prototype could work on load
under two operating mode:
296
297
1) one pole (i.e. all of emitting layers of one sort
with high or low emission coefficient) is grounded;
2) one pole is under floating potential.
The highest output electrical power (up to 10 μWatt)
of the prototype was reached under the latter operating
mode.
ACKNOWLEDGEMENT
The authors want to express great thanks to the staff
of VG-5 accelerator (NSC KIPT) and personally to
V.M. Mishchenko for arrangement of proper operation
conditions. This work was supported by Science and
Technology Center in the Ukraine (STCU) on projects
№3473, №4368.
REFERENCES
1. N. Kalashnikov, V. Remizovich, M. Ryazanov. Col-
lisions of fast charged particles in solids. Мoscow:
“Atomizdat”, 1980, 272 р. (in Russian).
2. D. Hasselkamp. Secondary emission of electrons by
ion impact on surfaces // Comments At. Mol. Phys.
1988, v. 21, p. 241-255.
3. B.A. Brusilovskiy. Kinetic ion-electron emission.
Moscow: “Atomizdat”, 1990, 184 р. (in Russian).
4. V.P. Kovalev. Secondary electrons. Moscow: “En-
ergoatomizdat”, 1987, 175 р. (in Russian).
5. V.M. Balebanov, et al. Secondary emission radioiso-
tope current source // Atomnaya energiya. 1998,
v. 84, №5, p. 398-403 (in Russian).
6. V.M. Balebanov, et al. Secondary emission radioiso-
tope current source. Inventors certificate.
№ 1737559 USSR. 1992.
7. V.M. Balebanov, et al. Secondary emission radioiso-
tope current source. Patent of Russian Federation.
№ 2050625. 1993.
8. J.F. Ziegler, J.P. Biersack, U. Littmark. Software
SRIM2003. The Stopping and Ranges of Ions in Sol-
ids. New York: “Pergamon Press”, 2003.
Статья поступила в редакцию 09.06.2008 г.
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОТОТИПА ВТОРИЧНО-ЭМИССИОННОГО
РАДИОИЗОТОПНОГО ИСТОЧНИКА ТОКА
С.И. Кононенко, О.В. Калантарьян, В.П. Журенко, В.Т. Колесник, В.И. Муратов, В.И. Карась,
В.Е. Филиппенко
Представлены результаты экспериментальных исследований прототипа вторично-эмиссионного
радиоизотопного источника тока. Этот автономный источник питания основан на новой физической идее
преобразования энергии ядерных частиц в электрическую энергию с помощью вторичной ионно-
электронной эмисии. В качестве первичных частиц мы использовали пучок ионов H+ мегаэлектронвольтных
энергий, который был получен на ускорителе Ван де Граафа. Было изучено несколько возможных режимов
работы прототипа. Показано, что нагрузочная кривая прототипа имеет максимум. Получена выходная
мощность до 10 мкВт. Экспериментально показана осуществимость идеи преобразования энергии.
ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ПРОТОТИПУ ВТОРИННО-ЕМІСІЙНОГО
РАДІОІЗОТОПНОГО ДЖЕРЕЛА СТРУМУ
С.І. Кононенко, О.В. Калантар’ян, В.П. Журенко, В.Т. Колесник, В.І. Муратов, В.І. Карась,
В.Ю. Филиппенко
Представлено результати експериментальних досліджень прототипу вторинно-емісійного
радіоізотопного джерела струму. Це автономне джерело живлення базується на новітній фізичній ідеї
перетворення енергії ядерних частинок в електричну енергію за допомогою вторинної іонно-електронної
емісії. За первинні частинки ми використовували пучок іонів H+ мегаелектронвольтних енергій, який було
отримано на прискорювачі Ван де Граафа. Було вивчено кілька можливих режимів роботи прототипу.
Показано, що навантажувальна крива прототипу має максимум. Отримано вихідну потужність до 10 мкВт.
Експериментально показана здійснюваність ідеї перетворення енергії.
2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
PACS: 84.60.Rb
3. RESULTS AND DISCUSSION
CONCLUSIONS
ACKNOWLEDGEMENT
REFERENCES
С.И. Кононенко, О.В. Калантарьян, В.П. Журенко, В.Т. Колесник, В.И. Муратов, В.И. Карась, В.Е. Филиппенко
|