Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects

Evolution of the modulated electron beam moving through the inhomogeneous plasma barrier with parameters corresponding to experimental conditions [1-2] is studied via computer simulation using PIC method. Electrons’ energy distribution function of the initially density modulated electron beam moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2008
Hauptverfasser: Anisimov, I.O., Soloviova, M.J.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110771
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects / I.O. Anisimov, M.J. Soloviova // Вопросы атомной науки и техники. — 2008. — № 6. — С. 129-131. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110771
record_format dspace
spelling Anisimov, I.O.
Soloviova, M.J.
2017-01-06T11:47:12Z
2017-01-06T11:47:12Z
2008
Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects / I.O. Anisimov, M.J. Soloviova // Вопросы атомной науки и техники. — 2008. — № 6. — С. 129-131. — Бібліогр.: 11 назв. — англ.
1562-6016
PACS: 52.35.-g, 52.65.Rr, 52.35.Mw
https://nasplib.isofts.kiev.ua/handle/123456789/110771
Evolution of the modulated electron beam moving through the inhomogeneous plasma barrier with parameters corresponding to experimental conditions [1-2] is studied via computer simulation using PIC method. Electrons’ energy distribution function of the initially density modulated electron beam moving through the barrier with Gaussian plasma density profile is studied. Initial-boundary problem is solved, and results obtained are compared with results of experiments and previous simulations.
Досліджено еволюцію модульованого електронного пучка в плазмовому бар’єрі шляхом комп’ютерного моделювання методом крупних частинок. Розглядається неоднорідний плазмовий бар’єр, що відповідає умовам лабораторного експерименту. Вивчається функція розподілу електронів пучка за швидкостями. Отримані результати розв’язку початково-гранично задачі порівнюються з результатами експериментів та висновками попередніх моделювань.
Исследуется эволюция модулированного электронного пучка в плазменном барьере с помощью компьютерного моделирования методом крупных частиц. Рассматривается неоднородный плазменный барьер, соответствующий условиям лабораторного эксперимента. Изучается функция распределения электронов пучка по скоростям. Полученные результаты решения начально-граничной задачи сравниваются с результатами экспериментов и выводами предыдущих моделирований.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Plasma electronics
Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
Динаміка модульованого електронного пучка в неоднорідному плазмовому бар’єрі: кінетичні ефекти
Динамика модулированного электронного пучка в неоднородном плазменном барьере: кинетические эффекты
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
spellingShingle Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
Anisimov, I.O.
Soloviova, M.J.
Plasma electronics
title_short Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
title_full Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
title_fullStr Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
title_full_unstemmed Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
title_sort dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects
author Anisimov, I.O.
Soloviova, M.J.
author_facet Anisimov, I.O.
Soloviova, M.J.
topic Plasma electronics
topic_facet Plasma electronics
publishDate 2008
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Динаміка модульованого електронного пучка в неоднорідному плазмовому бар’єрі: кінетичні ефекти
Динамика модулированного электронного пучка в неоднородном плазменном барьере: кинетические эффекты
description Evolution of the modulated electron beam moving through the inhomogeneous plasma barrier with parameters corresponding to experimental conditions [1-2] is studied via computer simulation using PIC method. Electrons’ energy distribution function of the initially density modulated electron beam moving through the barrier with Gaussian plasma density profile is studied. Initial-boundary problem is solved, and results obtained are compared with results of experiments and previous simulations. Досліджено еволюцію модульованого електронного пучка в плазмовому бар’єрі шляхом комп’ютерного моделювання методом крупних частинок. Розглядається неоднорідний плазмовий бар’єр, що відповідає умовам лабораторного експерименту. Вивчається функція розподілу електронів пучка за швидкостями. Отримані результати розв’язку початково-гранично задачі порівнюються з результатами експериментів та висновками попередніх моделювань. Исследуется эволюция модулированного электронного пучка в плазменном барьере с помощью компьютерного моделирования методом крупных частиц. Рассматривается неоднородный плазменный барьер, соответствующий условиям лабораторного эксперимента. Изучается функция распределения электронов пучка по скоростям. Полученные результаты решения начально-граничной задачи сравниваются с результатами экспериментов и выводами предыдущих моделирований.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110771
citation_txt Dynamics of the modulated electron beam in the inhomogeneous plasma barrier: kinetic effects / I.O. Anisimov, M.J. Soloviova // Вопросы атомной науки и техники. — 2008. — № 6. — С. 129-131. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT anisimovio dynamicsofthemodulatedelectronbeamintheinhomogeneousplasmabarrierkineticeffects
AT soloviovamj dynamicsofthemodulatedelectronbeamintheinhomogeneousplasmabarrierkineticeffects
AT anisimovio dinamíkamodulʹovanogoelektronnogopučkavneodnorídnomuplazmovomubarêríkínetičníefekti
AT soloviovamj dinamíkamodulʹovanogoelektronnogopučkavneodnorídnomuplazmovomubarêríkínetičníefekti
AT anisimovio dinamikamodulirovannogoélektronnogopučkavneodnorodnomplazmennombarʹerekinetičeskieéffekty
AT soloviovamj dinamikamodulirovannogoélektronnogopučkavneodnorodnomplazmennombarʹerekinetičeskieéffekty
first_indexed 2025-11-26T16:26:47Z
last_indexed 2025-11-26T16:26:47Z
_version_ 1850627999276204032
fulltext DYNAMICS OF THE MODULATED ELECTRON BEAM IN THE INHOMOGENEOUS PLASMA BARRIER: KINETIC EFFECTS I.O. Anisimov, M.J. Soloviova Taras Shevchenko National University of Kyiv, Radio Physics Faculty, 64 Volodymyrs'ka St., 01033, Kyiv, Ukraine, E-mail: ioa@univ.kiev.ua Evolution of the modulated electron beam moving through the inhomogeneous plasma barrier with parameters corresponding to experimental conditions [1-2] is studied via computer simulation using PIC method. Electrons’ energy distribution function of the initially density modulated electron beam moving through the barrier with Gaussian plasma density profile is studied. Initial-boundary problem is solved, and results obtained are compared with results of experiments and previous simulations. PACS: 52.35.-g, 52.65.Rr, 52.35.Mw 1. INTRODUCTION Study of dynamics of electron beam in plasma was started as far back as 1930-th by Langmuir. The last works devoted to this problem use computer simulation [3-4] as well as laboratory experiments [5]. But in the most cases only non-modulated beams were treated. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. 129 Series: Plasma Physics (14), p. 129-131. Evolution of the modulated electron beam in super- critical plasma barrier was studied experimentally in [1-2]. In our previous works [6-9] evolution of the modulated electron beam in plasma for the initial- boundary problem was investigated via computer simulation using PIC method. But homogeneous plasma barrier in [6-8] doesn’t correspond to the experimental one that is close to Gaussian shape [1-2]. The first simulation results for such barriers were presented in [9]. In this paper electrons’ energy distribution function of the initially density modulated electron beam moving through the barrier with Gaussian plasma density profile is studied. Initial-boundary problem is solved, and results obtained are compared with results of experiments and previous simulations. 2. MODEL DESCRIPTION, SIMULATION METHOD AND PARAMETERS Warm isotropic collisionless plasma with initial Gaus- sian density profile is studied. Simulation is carried out via particle-in-cell method using modified program pack- age PDP1 [10]. 1D region between two electrodes is simulated. Interelectrode space is filled with fully ionized hydrogen plasma. Initial plasma density profile is obtained by the approximation of experimental axial plasma density profile [1-2] by Gaussian function. So initial electron and ion plasma density is set as 2 0 0( ) exp 2m x xn x n n ⎡ ⎤−⎛ ⎞= + −⎢ ⎥⎜ ⎟Δ⎝ ⎠⎢ ⎥⎣ ⎦ , (1) where n0 is the plasma density for x→∞, n0 + nm is the peak plasma density inside the barrier at x=x0, and Δ is half-width of the plasma density profile. Simulation parameters are presented in the Table. Electron beam is injected into plasma barrier from the left electrode. It moves to the right one. Electrodes absorb both plasma and beam particles. Initially electron beam is density-modulated: 0( ) (1 cos )t m tρ = ρ + ω , (2) where m is the modulation depth. Modulation frequency was selected in the range ωp(n0)<ω<ωp(n0+nm), where ωp(n) is electron plasma frequency corresponding to the plasma density n. Two local plasma resonance regions are located inside the barrier at the modulation frequency. The simulation was carried out during the time interval of approximately 200 electron plasma periods or 5 ion plasma periods. During this time electron beam reached the opposite electrode, and quasi-stationary regime was settled. Simulation parameters n0 5.5·1010 cm-3 nm 2.04·1011 cm-3 x0 10 cm Δ 3.87 cm Simulation region length 20 cm Plasma electrons' thermal velocity 6⋅107 cm/s Plasma ions' thermal velocity 2,33⋅106 cm/s Beam electrons velocity 2⋅109 cm/s Electron beam modulation frequency 2.77 GHz Electron beam modulation depth 0.01 – 0.3 with the step 0.01 Simulation time step 10-13 s a b c d e f Fig. 1 Velocity distribution functions of beam electrons for weak-modulated (m=0.05 – a, b, c) and strong-modulated (m=0.28 – d, e, f) electron beam at the time points: t=10 -8s (a, d), t=2·10 -8s (b, e), t=4·10 -8s (c, f) 3. SIMULATION RESULTS Fig. 1 presents velocity distribution functions of beam electrons for weakly modulated (m=0.05) and strongly modulated (m=0.28) electron beam for various time moments. In x-v plane these figures present phase portraits of the electron beam. For the first time points these distribution functions are similar to sinusoids. In comparison with the case of homogeneous barrier [7] these sinusoids are more smeared. This fact can be explained by excitation of quazi-continuous spectrum at the frequencies ωp(z) in the electron beam during it’s propagation inside the barrier. 3.1 SMALL INITIAL MODULATION DEPTH OF THE BEAM All dependencies discussed in this section correspond to the initial modulation depth m=0.05. The width of the beam electrons’ velocity distribution function slightly decreases at the late stage of the simulation in comparison with the case of non-modulated beam. Two time intervals with characteristic behavior of the velocity distribution function can be marked out from Fig. 1,a-c: (i) t = 9−30 ns - one can see gradual beam electrons’ velocity smearing in the direction of energy decrease in the space region of plasma density recession; (ii) t = 35−45 ns - beam electrons’ velocity spread decreases. This fact can be connected with electric field strength reduction caused by deformation of the ion density profile (Fig. 2). This deformation is characterized by strong irregularity. This effect can be explained by l-s decay of the resonant mode that results in ion-acoustic waves’ excitation [6-8]. 3.2 LARGE INITIAL MODULATION DEPTH OF THE BEAM 130 All dependencies discussed in this section correspond to the initial modulation depth m=0.28. Deep initial beam modulation leads to the noticeable suppressing of the resonant instability development [11] just as in the case of homogeneous barriers [7]. This effect is connected with beam electrons’ trapping by non-resonant mode (at the modulation frequency) [6-8]. Fig. 2 Deformation of the ion concentration profile for initial modulation depth m=0.05 For the case of large initial beam modulation depths behavior of the velocity distribution function differs from one described in section 3.1 (Fig. 1, d-f). In the time interval t = 9−30 ns beam electrons’ velocity smearing is noticeably smaller than for small initial modulation. Simultaneously in the region of plasma density decrease electric field strength amplitude is twice 131 Electrons’ ene of the initially de plasma ime points spread of the beam el no a CES 1. I.A. Anisimov, O.V. Opanasenko, . Kotlyarov, S.M. Levitsky, olar ko. Dynamics and allaqua, of the . Soroka, Inter dula e , M.J. Soloviova. Dynamics of the . y Article received 22.09.08. smaller than for small modulation. Accordingly non- linear plasma density deformation decreases noticeably. As a result in the time interval t = 35−45 ns beam electrons’ velocity distribution function spreads distinctly more than for small initial modulation depth. But even in this case at the time point t = 50 ns width of the beam electrons’ velocity distribution function decreases in comparison with previous time moments. As in previous case this result can be connected with the non-linear deformation of the plasma density profile. 4. CONCLUSIONS rgy distribution function nsity modulated electron beam moving through the barrier with Gaussian plasma density profile was studied. 1. Effect of the suppression of the resonant beam- instability by the deep initial beam modulation takes place as in the case of homogeneous barrier. This leads to smaller spreading of beam electrons’ velocity distribution function. 2. At the late t ectrons’ velocity distribution function decreases due to the deformation of the plasma density profile. This deformation can be explained by ion-acoustic waves excitation caused by l-s decay of the resonant mode [6-8]. 3. Deformation of the plasma density profile is more tice ble in the case of small initial modulation depth and becomes more valuable in the region of plasma density decrease where resonant mode’s electric field strength increases distinctly [9]. REFEREN S.M. Levitsky, L.I. Romanyuk. Experimental observation of the plasma wave barrier transillumination via electron beam // JTPh. 1991, v.61, N.3, p.59-63. 2. I.O. Anisimov, I.Yu O.V. Opanasenko, D.B. Palets, L.I. Romanyuk. The investigation of the transillumination of the plasma barriers for electromagnetic waves using electron beams. 2. Evolution of the space charge waves in the barrier // Ukr. Fiz. Zhurn. 1996, v.41. N 3, p.164-170. 3. E.P. Kontar. Dynamics of electron beams in the s corona plasma with density fluctuations // Astronomy & Astrophysics. 2001, v. 375, p.629-637. 4. G. Lizunov, A. Volokitin, I. Blazh relaxation of an artificial electron beam // Advances in Space Research. 2002, v. 29, N 9, p. 1391-1396. 5. F.do Prado, M.V. Alves, R.S. D D.M. Karfidov. Measurements of beam relaxation length in an electron beam plasma experiment // Brasilian Journal of Physics. 1997, v. 27, N 4, p. 481-487. 6. I.O. Anisimov, M.J. Kiyanchuk. Evolution modulated electron beam in supercritical plasma: simulation of initial-boundary problem // Probl. of Atomic Sci. and Techn. Series “Plasma electronics and new acceleration methods” (5). 2006, N 5, p. 24-27. 7. I.O. Anisimov, M.J. Kiyanchuk, S.V D.M. Velykanets’. action of the mo ted electron beam with plasma: kinetic effects // Probl. of Atomic Sci. and Techn. Ser. “Plasma physics” (13). 2007, N1, p. 113-115. 8. I.O.Anisimov, M.J.Kiyanchuk. Evolution of th modulated electron beam in plasma for different modes of beam-plasma turbulence // Ukr. Fiz. Zhurn. 2008, v. 53. N4, p. 382-388. 9. I.O. Anisimov modulated electron beam in the inhomogeneous plasma barrier: one-dimensional simulation using PIC method // Probl. of Atomic Sci. and Techn. Ser. “Plasma electronics and new acceleration methods”(6). 2008, N4, p.209-213. 10. Ch.K. Birdsall, A.B. Langdon. Plasma Physics via Co- mputer Simulation. “McGraw-Hill Book Company”. 1985. 11. A.K. Berezin, Ya.B. Fainberg, I.A. Bezjazichniy Experimental stud of the possibility to control beam instability via modulation // Pis’ma v ZhETF. 1968, v. 7, N5, p. 156-160. ДИНАМИКА МОДУЛИРОВАННОГО ЭЛЕКТРОННОГО ПУЧКА В НЕОДНОРОДНОМ ПЛАЗМЕННОМ БАРЬЕРЕ: КИНЕТИЧЕСКИЕ ЭФФЕКТЫ И.А. Анисимов, М.И. Соловьёва Исследуется эволюция модулированного электронного пучка в плазменном барьере с помощью компьютерного моделирования методом крупных частиц. Рассматривается неоднородный плазменный барьер, соответствующий условиям лабораторного эксперимента. Изучается функция распределения электронов пучка по скоростям. Полученные результаты решения начально-граничной задачи сравниваются с результатами экспериментов и выводами предыдущих моделирований. ДИНАМІКА МОДУЛЬОВАНОГО ЕЛЕКТРОННОГО ПУЧКА В НЕОДНОРІДНОМУ ПЛАЗМОВОМУ БАР’ЄРІ: КІНЕТИЧНІ ЕФЕКТИ І.О. Анісімов, М.Й. Соловйова Досліджено еволюцію модульованого електронного пучка в плазмовому бар’єрі шляхом комп’ютерного моделювання методом крупних частинок. Розглядається неоднорідний плазмовий бар’єр, що відповідає умовам лабораторного експерименту. Вивчається функція розподілу електронів пучка за швидкостями. Отримані результати розв’язку початково-гранично задачі порівнюються з результатами експериментів та висновками попередніх моделювань. http://www.sciencedirect.com/science/journal/02731177 http://www.sciencedirect.com/science/journal/02731177