Studies of thermonuclear neutron usage means for radioactive waste transmutation
Two variants of radwastes transmutation schemes using thermonuclear neutrons are considered. In the first case transuranium elements and fission products are not separated while in the second case these are irradiated separately. Advantages and drawbacks of both cases were analyzed. Simulation of ra...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/110798 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Studies of thermonuclear neutron usage means for radioactive waste transmutation / Y.V. Rudychev, R.P. Slabospitskiy, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 67-69. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110798 |
|---|---|
| record_format |
dspace |
| spelling |
Rudychev, Y.V. Slabospitskiy, R.P. Khazhmuradov, M.A. 2017-01-06T13:02:48Z 2017-01-06T13:02:48Z 2008 Studies of thermonuclear neutron usage means for radioactive waste transmutation / Y.V. Rudychev, R.P. Slabospitskiy, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 67-69. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 07.05.Dz https://nasplib.isofts.kiev.ua/handle/123456789/110798 Two variants of radwastes transmutation schemes using thermonuclear neutrons are considered. In the first case transuranium elements and fission products are not separated while in the second case these are irradiated separately. Advantages and drawbacks of both cases were analyzed. Simulation of radwastes transmutation systems was performed. Analysis of radwastes transmutation efficiency for all cases was carried out. Physical backgrounds for radwaste transmutation by thermonuclear neutrons were prepared. Рассматривается два варианта системы трансмутации радиоактивных отходов (РАО) с помощью термоядерных нейтронов. В одном – трансурановые элементы и продукты деления не отделены друг от друга, в другом варианте – облучаются раздельно. Проанализированы преимущества и недостатки каждого из вариантов. Выполнено моделирование систем трансмутации РАО. Проанализирована эффективность трансмутации РАО для каждого из вариантов. Подготовлено физическое обоснование для трансмутации РАО термоядерными нейтронами. Розглядається два варіанти системи трансмутації радіоактивних відходів (РАВ) за допомогою термоядерних нейтронів. В одному – трансуранові елементи і продукти ділення не відокремлені один від одного, в іншому варіанті – опромінюються роздільно. Проаналізовано переваги і недоліки кожного з варіантів. Виконано моделювання систем трансмутації РАВ. Проаналізовано ефективність трансмутації РАВ для кожного з варіантів. Підготовлено фізичне обґрунтування для трансмутації РАО термоядерними нейтронами. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Iter and fusion reactor aspects ITER and fusion reactor aspects Studies of thermonuclear neutron usage means for radioactive waste transmutation Дослідження можливості використання термоядерних нейтронів для трансмутації РАВ Исследование возможности использования термоядерных нейтронов для трансмутации РАО Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Studies of thermonuclear neutron usage means for radioactive waste transmutation |
| spellingShingle |
Studies of thermonuclear neutron usage means for radioactive waste transmutation Rudychev, Y.V. Slabospitskiy, R.P. Khazhmuradov, M.A. Iter and fusion reactor aspects ITER and fusion reactor aspects |
| title_short |
Studies of thermonuclear neutron usage means for radioactive waste transmutation |
| title_full |
Studies of thermonuclear neutron usage means for radioactive waste transmutation |
| title_fullStr |
Studies of thermonuclear neutron usage means for radioactive waste transmutation |
| title_full_unstemmed |
Studies of thermonuclear neutron usage means for radioactive waste transmutation |
| title_sort |
studies of thermonuclear neutron usage means for radioactive waste transmutation |
| author |
Rudychev, Y.V. Slabospitskiy, R.P. Khazhmuradov, M.A. |
| author_facet |
Rudychev, Y.V. Slabospitskiy, R.P. Khazhmuradov, M.A. |
| topic |
Iter and fusion reactor aspects ITER and fusion reactor aspects |
| topic_facet |
Iter and fusion reactor aspects ITER and fusion reactor aspects |
| publishDate |
2008 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Дослідження можливості використання термоядерних нейтронів для трансмутації РАВ Исследование возможности использования термоядерных нейтронов для трансмутации РАО |
| description |
Two variants of radwastes transmutation schemes using thermonuclear neutrons are considered. In the first case transuranium elements and fission products are not separated while in the second case these are irradiated separately. Advantages and drawbacks of both cases were analyzed. Simulation of radwastes transmutation systems was performed. Analysis of radwastes transmutation efficiency for all cases was carried out. Physical backgrounds for radwaste transmutation by thermonuclear neutrons were prepared.
Рассматривается два варианта системы трансмутации радиоактивных отходов (РАО) с помощью термоядерных нейтронов. В одном – трансурановые элементы и продукты деления не отделены друг от друга, в другом варианте – облучаются раздельно. Проанализированы преимущества и недостатки каждого из вариантов. Выполнено моделирование систем трансмутации РАО. Проанализирована эффективность трансмутации РАО для каждого из вариантов. Подготовлено физическое обоснование для трансмутации РАО термоядерными нейтронами.
Розглядається два варіанти системи трансмутації радіоактивних відходів (РАВ) за допомогою термоядерних нейтронів. В одному – трансуранові елементи і продукти ділення не відокремлені один від одного, в іншому варіанті – опромінюються роздільно. Проаналізовано переваги і недоліки кожного з варіантів. Виконано моделювання систем трансмутації РАВ. Проаналізовано ефективність трансмутації РАВ для кожного з варіантів. Підготовлено фізичне обґрунтування для трансмутації РАО термоядерними нейтронами.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110798 |
| citation_txt |
Studies of thermonuclear neutron usage means for radioactive waste transmutation / Y.V. Rudychev, R.P. Slabospitskiy, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 67-69. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT rudychevyv studiesofthermonuclearneutronusagemeansforradioactivewastetransmutation AT slabospitskiyrp studiesofthermonuclearneutronusagemeansforradioactivewastetransmutation AT khazhmuradovma studiesofthermonuclearneutronusagemeansforradioactivewastetransmutation AT rudychevyv doslídžennâmožlivostívikoristannâtermoâdernihneitronívdlâtransmutacíírav AT slabospitskiyrp doslídžennâmožlivostívikoristannâtermoâdernihneitronívdlâtransmutacíírav AT khazhmuradovma doslídžennâmožlivostívikoristannâtermoâdernihneitronívdlâtransmutacíírav AT rudychevyv issledovanievozmožnostiispolʹzovaniâtermoâdernyhneitronovdlâtransmutaciirao AT slabospitskiyrp issledovanievozmožnostiispolʹzovaniâtermoâdernyhneitronovdlâtransmutaciirao AT khazhmuradovma issledovanievozmožnostiispolʹzovaniâtermoâdernyhneitronovdlâtransmutaciirao |
| first_indexed |
2025-11-26T17:38:24Z |
| last_indexed |
2025-11-26T17:38:24Z |
| _version_ |
1850765929860825088 |
| fulltext |
STUDIES OF THERMONUCLEAR NEUTRON USAGE MEANS FOR
RADIOACTIVE WASTE TRANSMUTATION
Y.V. Rudychev, R.P. Slabospitskiy, M.A. Khazhmuradov
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine, e-mail: khazhm@kipt.kharkov.ua
Two variants of radwastes transmutation schemes using thermonuclear neutrons are considered. In the first case
transuranium elements and fission products are not separated while in the second case these are irradiated separately.
Advantages and drawbacks of both cases were analyzed. Simulation of radwastes transmutation systems was
performed. Analysis of radwastes transmutation efficiency for all cases was carried out. Physical backgrounds for
radwaste transmutation by thermonuclear neutrons were prepared.
PACS: 07.05.Dz
INTRODUCTION
Nowadays intensive thermonuclear neutron sources
with above 1014 n/s fluxes are developed in a number of
countries (France, Russia and etc.). Such neutron fluxes
could be used for efficient radwastes transmutation. This
is a topical problem because up to 2010 from the world
nuclear reactor fleet with total power of 400 GW above
300 thousand tons of spent fuel should be removed. The
problem is actual for Ukraine too. During radwastes
transmutation before burial transuranium elements (TRU)
and fission products (FP) with long half-decay periods
(hundreds and thousands years) are to be converted into
short-lived or stable isotopes. At present considerable
attention is paid to a problem of radwastes transmutation [1].
In the presented paper means of thermonuclear
neutron usage for radwastes transmutation were studied
employing mathematical simulation methods. Two cases
of transmutation systems were considered. In the first
case transuranium elements and fission products are not
separated and are irradiated together while in the second
case these are irradiated separately.
MATHEMATICAL SIMULATION
RESULTS
In our work we have studied transmutation of the
basic transuranium elements 237Np, 241Am, and 244Cm and
fission products 99Tc, 127I, 135Cs by the thermonuclear
neutron beam with 1015 n/cm2 flux density. Firstly, we
have used database [2] and have obtained fission (nf) and
capture (nγ) cross-sections versus neutron energies of the
above mentioned isotopes. Neutron energy range from
10-5 to 108 eV was considered.
In the Fig. 1 an example dependencies of fission
cross-section (nf) for transuranium element 241Am and
capture cross-section (nγ) for fission product 99Tc are
shown. For other elements cross-sections are similar but
differ in magnitude.
The figure reveals sharp difference in magnitude and
behavior of cross-section energy dependence for neutron
energies above 1 MeV [3]. While transuranium elements
undergo intense fission by neutrons with
En = 1...15 MeV, almost no transmutation of fission
products (99Tc) occur.
Neutron Energy, eV
C
ro
ss
-s
ec
tio
n,
b
ar
n
Fig. 1. 241Am fission cross-section (σf) and 99Tc capture
cross-section (σγ) versus neutron energy
This peculiarities lead to two cases of transmutation
systems (joined and separated irradiation). From Fig. 1 it
is evident that fission products will undergo intense
transmutation provided neutron energy decelerate down to
En = 10…10000 eV where resonance capture occur. In
this case capture probability is proportional to resonance
integral
( ) ( )∫
Ε
Ε
− ΕΕσ=ΕΕΙ
max
min
1
maxmin,рез .dny
Resonance integral for FP nuclei neutron capture is
significantly larger than thermonuclear neutrons cross-
sections. For instance for 99Tc nucleus Ires=300 barn while
cross-section is about 20 barn.
As a materials where non-separated TRU+FP
materials to be placed we have considered lead and
carbon, and for separated TRU and FP only carbon was
considered. We have simulated cells with various
radwastes components concentration in lead or carbon for
neutrons with initial energy of 14 MeV. Cell volume
averaged spectra for neutrons perform radioactive
isotopes transmutation were calculated. Calculations of
isotopes concentration variation in dependence of
irradiation time and mode were performed. For the
separated irradiation case we have determined parameters
of moderator placed between cells where TRU and FP are
irradiated separately in carbon matrices. Moderator
consists of three layers: 1 cm beryllium, 10 cm lithium
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. 67
Series: Plasma Physics (14), p. 67-69.
oxide and 20 cm carbon. Material with detailed
description of simulation method and results were sent to
“The Journal of Kharkov National University” [4]
After additional calculations the most significant
results could be presented as following. Firstly let us
consider the case of non-separated TRU and FP are
placed into two identical cells of 100 cm length and
50 cm diameter. In one cell 20% TRU (237Np – 44.5%,
241Am – 48.6%, 243Am – 6.9%) and 10% FP (99Tc –
57.7%, 135Cs – 28.9%, 129I – 13.4%) are placed into 70%
lead matrix, in another cell TRU + FP with the same
composition are placed into 70% carbon matrix. The
cell’s bottoms are targeted by 14 MeV neutron beam
6.9 cm in diameter. Volume averaged neutron spectra are
presented in the Fig. 2. From the figure it follows for
carbon matrix inside energy range 1 keV…1 MeV a
number of neutrons is larger than for lead matrix. This is
due to higher TRU fission efficiency in carbon matrix
compared to lead matrix.
Neutron Energy, MeV
Fl
ux
, n
/c
m
2
TRU
TRU
FP
FP
Fig. 2. Neutron spectra for (20% TRU + 10% FP + 70%
C) and (20% TRU + 10% FP + 70% Pb). Spectra are
averaged over cell volume
Comparison of spectra from Fig. 2 with similar
spectra for matrices contenting 100% lead or carbon
shows neutron number resulting from (nf) reaction on
TRU essentially exceeds number of initial 14 MeV
neutrons (more than 9 times for lead).
For transmutation calculations we have used
FISPACT code [5]. It provides solution of balance
equations using iteration methods and modern cross-
sections databases. Concentration change in time for
various isotopes, such as minor actinides and FP for
different matrices and varying radwastes content were
studied.
In the Fig. 3 concentration changes in time are shown
for 20% TRU and 10% FP placed inside 70% lead matrix.
Fig. 4 presents 99Tc concentration change versus
irradiation time for matrices with different carbon
content.
Irradiation time, days
C
on
ce
nt
ra
tio
n,
%
Fig. 3. Isotope concentration versus time
C
on
ce
nt
ra
tio
n
Tc
, %
99
TRU FP
TRU
TRU
TRU
TRU
TRU
TRU
FP
FP
FP
FP
FP
FP
Irradiation time, days
Fig. 4. 99Tc concentration change versus irradiation time
for different matrices
Evidently transmutation in carbon matrix (70% C) is
more intense than that in lead matrix (70% Pb). Also
increase of carbon concentration from 20% to 70%
provides more intensive 99Tc transmutation.
Concentration of 135Cs changes in a similar way while
for 129I there are some differences. For 129I concentration
change 70% lead matrix is same as in 70% carbon matrix.
These peculiarities rely on energy dependence of (nγ)
reactions for such isotopes.
From Fig. 2 follows for resonance region with neutron
energies En=10…10000 eV where resonance integrals for
FD neutron capture are essential a number of neutrons is
small. This impedes FP transmutation. We have
calculated averaged neutron spectrum inside cell with FP
in carbon matrix for separated TRU and FP irradiation
with moderator (Be, LiO and C) placed between cells
(Fig. 5).
Obviously a number of neutrons in resonance region
increase. One can expect this to be more suitable for FP
transmutation but due to neutron absorption in moderator
total number of neutrons hit FP cell in carbon decreases
by about hundred of times. Hence amount of FP isotopes
under transmutation will be lower than that for cell with
non-separated TRU+FP. It is clear from Fig. 6 where 99Tc
68
concentration change versus time is shown for various
irradiation conditions.
A
ve
ra
ge
fl
ux
, n
/c
m
2
Neutron Energy, MeV
Fig. 5. Neutron spectrum in carbon cell with FD
averaged over cell volume
C
on
ce
nt
ra
tio
n
Tc
, %
99
Irradiation time, days
FP C
RAW Pb
RAW PbRAW C
He
neutrons alter moderator
Fig. 6. 99Tc concentration change versus time for various
irradiation conditions
Evidently for separated irradiation (80% FP + 10% C+
10% He) 99Tc undergoes almost no transmutation. The
same dependencies were obtained for 129I and 135Cs.
CONCLUSIONS
For the given geometry and using mathematical
simulation we have determined optimal conditions for
minor actinides and FP transmutation under joined and
separated irradiation by 14 MeV neutrons. Further
investigations are necessary to find optimal conditions for
separated irradiation avoiding strong attenuation of
neutron flux.
REFERENCES
1. V.A. Mahova, I.D. Sokolova, N.A. Shulga. Studies
on fractioning and transmutation of long-lived
radionuclide. Review // Atomnaya tehnika za
rubezhom. 2003, №3, p. 3-10 (in Russian).
2. http://www.nea.fr/html/dbdata/eva/evaret.cgi.
3. R.P. Slabospitskiy, M.A Khazhmuradov. Calculation
of the transmutation of the radioactive wastes main
elements using the thermonuclear neutrons // Sbornik
nauchnyh trudov SNIYaEiP. 2007, 4(24), p. 207-215
(in Russian).
4. Y.V. Rudychev, R.P. Slabospitskiy,
M.A. Khazhmuradov. Physical background and
modeling of facility construction for transmutation of
some elements of radioactive waste using
thermonuclear neutrons // The Journal of Kharkiv
National University. Physical series “Nuclei,
Particles, Fields”. 2008, №604 (in Russian).
5. R.A. Forrest. FISPACT-2003: User manual, UKAEA
FUS 485, 2002.
Article received 22.09.08.
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ
ДЛЯ ТРАНСМУТАЦИИ РАО
Е.В. Рудычев, Р.П. Слабоспицкий, М.А. Хажмурадов
Рассматривается два варианта системы трансмутации радиоактивных отходов (РАО) с помощью термоядерных
нейтронов. В одном – трансурановые элементы и продукты деления не отделены друг от друга, в другом
варианте – облучаются раздельно. Проанализированы преимущества и недостатки каждого из вариантов.
Выполнено моделирование систем трансмутации РАО. Проанализирована эффективность трансмутации РАО
для каждого из вариантов. Подготовлено физическое обоснование для трансмутации РАО термоядерными
нейтронами.
ДОСЛІДЖЕННЯ МОЖЛИВОСТІ ВИКОРИСТАННЯ ТЕРМОЯДЕРНИХ НЕЙТРОНІВ
ДЛЯ ТРАНСМУТАЦІЇ РАВ
Є.В. Рудичев, Р.П. Слабоспицький, М.А. Хажмурадов
Розглядається два варіанти системи трансмутації радіоактивних відходів (РАВ) за допомогою термоядерних
нейтронів. В одному – трансуранові елементи і продукти ділення не відокремлені один від одного, в іншому
варіанті – опромінюються роздільно. Проаналізовано переваги і недоліки кожного з варіантів. Виконано
моделювання систем трансмутації РАВ. Проаналізовано ефективність трансмутації РАВ для кожного з
варіантів. Підготовлено фізичне обґрунтування для трансмутації РАО термоядерними нейтронами.
69
|