Energy confinement in the torsatron Uragan-3M during the RF-heating mode
Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is propose...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/110805 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110805 |
|---|---|
| record_format |
dspace |
| spelling |
Pashnev, V.K. Burchenko, P.Ya. Lozin, A.V. Kotsubanov, V.D. Kulaga, A.Ye. Krasnyj, V.V. Mironov, Yu.K. Nikol’skii, I.K. Petrushenya, A.A. Romanov, V.S. Sitnikov, D.A. Sorokovoy, Ed.L. Tsybenko, S.A. Zamanov, N.V. 2017-01-06T13:14:44Z 2017-01-06T13:14:44Z 2008 Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.55.Dy, 52.55.Hc https://nasplib.isofts.kiev.ua/handle/123456789/110805 Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is proposed. Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку щільності плазми в області утримання. Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ- разряда и при выключении ВЧ-разряда в торсатроне У-3М. Оценена доля мощности, излучаемой ВЧ-антенной, которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий поведение плотности плазмы в области удержания. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Magnetic confinement Energy confinement in the torsatron Uragan-3M during the RF-heating mode Утримання енергії в торсатроні Ураган-3M в режимі ВЧ-нагріву Удержание энергии в торсатроне Ураган-3M в режиме ВЧ-нагрева Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode |
| spellingShingle |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode Pashnev, V.K. Burchenko, P.Ya. Lozin, A.V. Kotsubanov, V.D. Kulaga, A.Ye. Krasnyj, V.V. Mironov, Yu.K. Nikol’skii, I.K. Petrushenya, A.A. Romanov, V.S. Sitnikov, D.A. Sorokovoy, Ed.L. Tsybenko, S.A. Zamanov, N.V. Magnetic confinement |
| title_short |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode |
| title_full |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode |
| title_fullStr |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode |
| title_full_unstemmed |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode |
| title_sort |
energy confinement in the torsatron uragan-3m during the rf-heating mode |
| author |
Pashnev, V.K. Burchenko, P.Ya. Lozin, A.V. Kotsubanov, V.D. Kulaga, A.Ye. Krasnyj, V.V. Mironov, Yu.K. Nikol’skii, I.K. Petrushenya, A.A. Romanov, V.S. Sitnikov, D.A. Sorokovoy, Ed.L. Tsybenko, S.A. Zamanov, N.V. |
| author_facet |
Pashnev, V.K. Burchenko, P.Ya. Lozin, A.V. Kotsubanov, V.D. Kulaga, A.Ye. Krasnyj, V.V. Mironov, Yu.K. Nikol’skii, I.K. Petrushenya, A.A. Romanov, V.S. Sitnikov, D.A. Sorokovoy, Ed.L. Tsybenko, S.A. Zamanov, N.V. |
| topic |
Magnetic confinement |
| topic_facet |
Magnetic confinement |
| publishDate |
2008 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Утримання енергії в торсатроні Ураган-3M в режимі ВЧ-нагріву Удержание энергии в торсатроне Ураган-3M в режиме ВЧ-нагрева |
| description |
Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is proposed.
Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку щільності плазми в області утримання.
Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ- разряда и при выключении ВЧ-разряда в торсатроне У-3М. Оценена доля мощности, излучаемой ВЧ-антенной, которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий поведение плотности плазмы в области удержания.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110805 |
| citation_txt |
Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT pashnevvk energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT burchenkopya energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT lozinav energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT kotsubanovvd energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT kulagaaye energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT krasnyjvv energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT mironovyuk energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT nikolskiiik energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT petrushenyaaa energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT romanovvs energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT sitnikovda energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT sorokovoyedl energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT tsybenkosa energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT zamanovnv energyconfinementinthetorsatronuragan3mduringtherfheatingmode AT pashnevvk utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT burchenkopya utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT lozinav utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT kotsubanovvd utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT kulagaaye utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT krasnyjvv utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT mironovyuk utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT nikolskiiik utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT petrushenyaaa utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT romanovvs utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT sitnikovda utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT sorokovoyedl utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT tsybenkosa utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT zamanovnv utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu AT pashnevvk uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT burchenkopya uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT lozinav uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT kotsubanovvd uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT kulagaaye uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT krasnyjvv uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT mironovyuk uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT nikolskiiik uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT petrushenyaaa uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT romanovvs uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT sitnikovda uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT sorokovoyedl uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT tsybenkosa uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva AT zamanovnv uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva |
| first_indexed |
2025-11-25T23:52:45Z |
| last_indexed |
2025-11-25T23:52:45Z |
| _version_ |
1850588803889102848 |
| fulltext |
ENERGY CONFINEMENT IN THE TORSATRON URAGAN-3M
DURING THE RF-HEATING MODE
V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj,
Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov,
Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov
IPP, National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-
discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A
mechanism which explain the plasma density behavior in the confinement region is proposed.
PACS: 52.55.Dy, 52.55.Hc
INTRODUCTION
The integral characteristic describing the energy
confinement in toroidal helical traps is the plasma energy
confinement time τE. Under the stationary conditions τE is
determined by the expression: τE=
W2
3Γ
, where Γ =
∫ ∑
+ dVTnTn
i
iiee – is the plasma energy content, W-is
the plasma-absorbed power, ne - is the electron density, ni
- is the ion density, Te and Ti - are the electron and ion
temperature correspondingly. However, in some cases it
is difficult to determine the value of the plasma-absorbed
power. Such a situation is observed during the RF-plasma
heating in the torsatron U-3M. It is caused by the RF-
heating features in this facility [1].
Paper [2] presents the results of τE determination by the
plasma energy content decrease after RF-power switching-
off. But in this case the influence of the RF-heating on the
energy confinement in this facility is not clear.
In paper [3] one offers the method for τE determining
under the stationary conditions which is based on the fast
and insignificant increase of the RF-power introduced
into the plasma (δW<<W). An advantage of this technique
is that there in no need to carry out absolute
measurements of plasma parameters for τE determination.
The goal of the present paper is to determine the
plasma energy confinement time in the torsatron U-3M
during the RF-heating. For this purpose we will use the
results of [3], compare the results obtained with the data
of stellarator scaling and explain the previous results
obtained at the torsatrons U-3 and U-3M.
EXPERIMENTAL RESULTS
AND THEIR DISCUSSION
Experiments were carried out at the torsatron U-3M
using the RF-heating mode with a quasi-stationary
behavior of discharge parameters [1]. The working gas
was hydrogen. It was injected into the vacuum chamber
continuously. The magnetic field value on the magnetic
axis was Bo= 0.72 T. The average plasma density was
determined by means of a 2 mm interferometer.
Distributions of the electron temperature Te over the
plasma column cross-section was determined by the
intensity of plasma cyclotron radiation.
To determine τE the method described in [3] was
applied. According to this method, for the case of
insignificant increase of the RF-power introduced into the
plasma the plasma energy confinement time behavior is
described by the expression: )1()( 0
E
t
et τδδ
−
−Γ=Γ . (1)
From here it follows:
0
0
→
Γ
∂
∂
Γ
=
t
E
t
δ
τ
.
(2)
For the case of the RF-power switching-off, the
plasma energy confinement time is determined by the
relationship:
V
t
n
t
e
t
E
∂
∂−Γ
∂
∂
Γ
−=
→
ε
τ
0
0
2
3
2
3
,
(3)
where 0Γδ - is the maximum gain of the plasma energy
content, Г0 – is the plasma energy content in the time of
RF-power change (t → 0), ε - is the energy consumed by
every act of working gas atom ionization. In expression
(3) growth of plasma density and additional loss of
plasma energy in the volume, due to ionization of
working gas, is taken into account.
-1600
-1200
-800
-400
0
0
500
1000
0 10 20 30 40 50 60
0
100
200
300
400
500
1
2
3
τ E=2 ms
τ E=1.6 ms
0
1
2
3
t, ms
I,
A
I RF
, a
.u
.
4
t=27 ms (a)
(b)
(c)
(d)
nT
, e
rg
/c
m
3
__
n e
,1
012
c
m
-3
_
Fig.1. Time dependence: (a) – of the RF-antenna current
IRF, (b) – of the average plasma density en , (c) – of the
longitudinal plasma current I, (d) curve 1 – term (I),
28 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6.
Series: Plasma Physics (14), p. 28-30.
a
b
c
d
curve 2 – term (II), curve 3(III), curve 4 - nT , calculated
basing on expression (4)
According to [4,5] the expression for plasma energy
confinement is written in the following form:
drdxr
r
j
c
B
c
RIRB r
st
a
∂
∂−−∆ Φ=Γ ∫∫
0
2
0
0
0
2
0 22
2
ιππ
. (4)
(I) (II) (III)
Here R – is the major plasma radius, c – is the light
velocity. Term (I) in expression (4) is related with the
diamagnetic flux change ∆Φ, term (II) is the tokamak
term related with the longitudinal current I in the plasma,
term (III) is determined by the interaction between the
longitudinal plasma current of a density j0 and the helical
magnetic field described by the rotational transformation
angle ιst (“stellarator effect”).
Fig.1 shows the change in time of the RF-antenna
current (Fig.1a), of the average density of plasma
electrons en (Fig.1b), of the longitudinal plasma current
I (Fig.1c) and of the value iiee TnTnnT += (Fig.1d)
which was determined from expression (4). From Fig.1a
it is seen that the sharp increase of the RF-antenna current
and, respectively, of the antenna-irradiated RF-power
(t=27 ms), causes the increase of the longitudinal plasma
current I (Fig.1c), of the plasma energy content nT
(Fig.1d, curve 4) and the decrease of the density en
(Fig.1b). Curve 1 in Fig.1d describes the behavior of term
(I) in expression (4), curve 2 – of term (II) and curve 3 –
of term (III), respectively. From comparison of curves
presented on fig.1d it’s evidently, that a value of term
(III), describing a “stellarator effect”, is the most for
determination of plasma energy content.
It should be noted that values nT on fig.1d, curve 4,
are close to the values nT , which were obtained on the
basis of measuring of saddle coil [2]. The good
coincidence of results of the diamagnetic measuring is
also observed with nT value, which was calculated on
the basis of average plasma density and average plasma
electronic temperature. eT was calculated from the profile
of electronic temperature on the cross-section of plasma
column. Distributing of electronic temperature eT in
radial direction on the cross-section of plasma column is
showed on fig. 2.
100 104 108 112 116
0
200
400
600
800
1000
R, cm
T e
, e
V
Fig. 2. Distribution of electrons temperature Te in radial
direction
On the basis of expressions (2) and (3), the values of
plasma energy confinement time were determine during
the stationary stage of discharge in the moment of sharp
insignificant increase of RF-power and after the shutdown
of RF-power, accordingly. In the first case Eτ ≅ 2 ms and
in the second case Eτ ≅ 1.6 ms. The difference in the
values obtained arises due to the additional energy losses
(not taken into account in (3)), as a result of the process of
charge exchange on neutral atoms being enhanced by the
plasma density increase after RF-power switching-off
(Fig.1b).
The value of the energy confinement time Eτ in the
torsatron U-3M was compared with the data of the
stellarator scaling ISS95 [6]. The energy confinement
time calculated from the stellarator scaling 95ISS
Eτ = 2.5 ms.
This value is close to the experimental one of Eτ ≅ 2 ms.
Similar values of the plasma energy confinement time at
the quasi-stationary stage of the RF-discharge ( Eτ ≅ 2 ms)
and after RF-power switching-off ( Eτ ≅ 1.6 ms) show that
the RF-plasma heating mode does not deteriorate the
energy confinement in the torsatron U-3M.
Determination of nT and Eτ allowed one to estimate
the plasma-absorbed RF-power basing on the expression:
E
W
τ2
3Γ= = 9.45 kW. (5)
This value is in a good agreement with that of the
plasma-radiated power Wrad ≈ 12−14 kW, obtained on the
base of bolometric measurements. As the experimental
value of the antenna-radiated RF-power was
approximately Wa ≈ 200 kW, the value of the plasma-
absorbed power does not exceed 5% of the radiated
power.
The above-mentioned measurements evidence on the
significant difference between the RF-antenna irradiated
power (≈200 kW) and the plasma-absorbed power in the
confinement region (≈ 10 kW). In other words, about 95%
of the antenna-radiated RF-power is lost in the processes
taking place outside the confinement volume. The current
RF-antenna is designed for breakdown, formation and
heating of the plasma in the confinement region and,
apparently, it is capable to provide breakdown, formation
and heating of the plasma also in the region of divertor
field lines behind the helical coil poles. The available
experimental data confirm this assumption.
For example, in paper [2] given are the microwave
interferometer measurement data on the plasma density in
the divertor region behind the helical coil poles. The data
show that after RF- switching-off the divertor plasma
density sharply decreases during the time of 100 µs, while
the plasma density in the confinement volume increases
(Fig.1b).
The probe measurements outside the confinement
region demonstrate similar results (see, for example, Figs.
5 and 8 in [7]).
The probe measurements [7] of the plasma density and
temperature outside the confinement volume in the RF-
heating mode give the values of en ≤ 1011 cm-3 and
Te ≈ 20 eV, that permits to evaluate the hydrogen
molecule mean free path λ ≈ 40 cm [8]. The plasma
having such parameters is able to screen the confinement
region against the neutral gas molecule entering.
The evidence of the RF-plasma screening of the
confinement region from the neutral molecule entering is
29
confirmed by the plasma average density decrease in the
discharge after additional energy switching (Fig.1).
As is seen from Fig.3, the plasma density in the
confinement region decreases with the anode voltage
increase on the oscillating tube of the RF-complex and,
consequently, with the antenna-irradiated RF-power
increase beginning from Ua ≥ 6 kV. And, conversely, after
RF-power switching-off the plasma density increases
(Fig.1b). That evidences on the RF-plasma screening
disappearance and on the additional working gas
molecule entering into the confinement volume.
Paper [9] gives the estimated value of the average
plasma density in the torsatron U-3M confinement
volume equal to Z ≅ 2. Just this low value of Z provides
the existence of a “banana mode” in the part of the
confinement region and bootstrapt current generation. The
low value of Z can be explained by the RF-plasma
screening of the plasma confinement region and by the
divertor effective operation.
5 6 7 8 9
1
2
3
4
5
6
4.5
UA , kVn e
, 1
012
c
m
-3
_
Fig.3. Maximum average plasma density in the discharge
en versus the RF-generator anode voltage UA
CONCLUSIONS
The energy confinement time has been found
experimentally in the quasi-stationary stage of the RF-
discharge and after switching-off of the RF-discharge in
the torsatron U-3M. The results show that the RF-plasma
heating mode does not deteriorate the energy confinement
and the energy confinement time value Eτ ≅ 2 ms is
slightly different from the data obtained for the stellarator
scaling 95ISS
Rτ ≅ 2.5 ms.
The plasma-absorbed power, evaluated in the
confinement region, equals to W ≅ 10 kW that is much
lower than the antenna-radiated power Wa ≅ 200 kW.
The work demonstrated that the plasma density
behavior in the confinement region can be explained by
the appearance in the plasma heating process of the RF-
plasma confinement screening against working gas
entering from the ballast vacuum volume.
REFERENCES
1. A.I. Lysoivan, V.E. Moiseenko, V.V. Plyusnin et
al// Fusion Engineering and Design, v. 26, 1995, p. 185.
2. V.L. Berezhnyj, V.S. Voitsenya, M.P. Vasil’ev et
al// Fizika plazmy. 1990, v. 15, p. 523 (in Russia).
3. V.K. Pashnev. Application of magnetic diagnostics to
determine basic energy characteristics of plasma.
// Problems of Atomic Science and Technology. Series
“Plasma Physics” (14). 2008, N 6, p. 225-227.
4. V.D. Pustovitov, V.D. Shafranov. Voprosy teorii
plazmy (Problems of Plasma Theory). Moscow:
“Atomizdat”, 1987, v. 15, p.146 (in Russian).
5. V.K. Pasnev, V.V. Nemov // Nuclear Fusion. 1993,
v. 33, p. 435.
6. U. Stroth, M. Murakami, R.A. Dory, et al // Nucl.
Fusion. 1996, v. 36, p. 1063.
7. V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva et al.
Density behaviour and particle losses in RF discharge
plasmas of the Uragan-3M torsatron// Nucl. Fusion. 1996,
v. 36, p. 133.
9. V.K. Pashnev, Ed.L. Sorokovoy. Appearance of
neoclassical effects in plasma behavior in torsatron
Uragan-3M. // Problems of Atomic Science and
Technology. Series “Plasma Physics” (14). 2008, N 6,
p. 31-33.
Article received 10.10.08
УДЕРЖАНИЕ ЭНЕРГИИ В ТОРСАТРОНЕ УРАГАН-3М В РЕЖИМЕ ВЧ-НАГРЕВА
В.К. Пашнев, П.Я. Бурченко, А.В. Лозин, В.Д. Коцубанов, А.Е. Кулага, В.В. Красный, Ю.К. Миронов,
И.К. Никольский, А.А. Петрушеня, В.С. Романов, Д.А. Ситников, Э.Л. Сороковой, С.А. Цыбенко,
Н.В. Заманов
Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ-
разряда и при выключении ВЧ-разряда в торсатроне У-3М. Оценена доля мощности, излучаемой ВЧ-антенной,
которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий
поведение плотности плазмы в области удержания.
УТРИМАННЯ ЕНЕРГІЇ В ТОРСАТРОНІ УРАГАН-3М В РЕЖИМІ ВЧ-НАГРІВУ
В.К. Пашнєв, П.Я. Бурченко, О.В. Лозін, В.Д. Коцубанов, А.Є. Кулага, В.В. Красний, Ю.К. Міронов,
І.К. Нікольський, А.А. Петрушеня, В.С. Романов, Д.А. Ситников, Е.Л. Сороковий, С.А. Цибенко,
М.В. Заманов
Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при
вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка
поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку
щільності плазми в області утримання.
30
|