Energy confinement in the torsatron Uragan-3M during the RF-heating mode

Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2008
Hauptverfasser: Pashnev, V.K., Burchenko, P.Ya., Lozin, A.V., Kotsubanov, V.D., Kulaga, A.Ye., Krasnyj, V.V., Mironov, Yu.K., Nikol’skii, I.K., Petrushenya, A.A., Romanov, V.S., Sitnikov, D.A., Sorokovoy, Ed.L., Tsybenko, S.A., Zamanov, N.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110805
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110805
record_format dspace
spelling Pashnev, V.K.
Burchenko, P.Ya.
Lozin, A.V.
Kotsubanov, V.D.
Kulaga, A.Ye.
Krasnyj, V.V.
Mironov, Yu.K.
Nikol’skii, I.K.
Petrushenya, A.A.
Romanov, V.S.
Sitnikov, D.A.
Sorokovoy, Ed.L.
Tsybenko, S.A.
Zamanov, N.V.
2017-01-06T13:14:44Z
2017-01-06T13:14:44Z
2008
Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ.
1562-6016
PACS: 52.55.Dy, 52.55.Hc
https://nasplib.isofts.kiev.ua/handle/123456789/110805
Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is proposed.
Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку щільності плазми в області утримання.
Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ- разряда и при выключении ВЧ-разряда в торсатроне У­-3М. Оценена доля мощности, излучаемой ВЧ-антенной, которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий поведение плотности плазмы в области удержания.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Magnetic confinement
Energy confinement in the torsatron Uragan-3M during the RF-heating mode
Утримання енергії в торсатроні Ураган-3M в режимі ВЧ-нагріву
Удержание энергии в торсатроне Ураган-3M в режиме ВЧ-нагрева
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Energy confinement in the torsatron Uragan-3M during the RF-heating mode
spellingShingle Energy confinement in the torsatron Uragan-3M during the RF-heating mode
Pashnev, V.K.
Burchenko, P.Ya.
Lozin, A.V.
Kotsubanov, V.D.
Kulaga, A.Ye.
Krasnyj, V.V.
Mironov, Yu.K.
Nikol’skii, I.K.
Petrushenya, A.A.
Romanov, V.S.
Sitnikov, D.A.
Sorokovoy, Ed.L.
Tsybenko, S.A.
Zamanov, N.V.
Magnetic confinement
title_short Energy confinement in the torsatron Uragan-3M during the RF-heating mode
title_full Energy confinement in the torsatron Uragan-3M during the RF-heating mode
title_fullStr Energy confinement in the torsatron Uragan-3M during the RF-heating mode
title_full_unstemmed Energy confinement in the torsatron Uragan-3M during the RF-heating mode
title_sort energy confinement in the torsatron uragan-3m during the rf-heating mode
author Pashnev, V.K.
Burchenko, P.Ya.
Lozin, A.V.
Kotsubanov, V.D.
Kulaga, A.Ye.
Krasnyj, V.V.
Mironov, Yu.K.
Nikol’skii, I.K.
Petrushenya, A.A.
Romanov, V.S.
Sitnikov, D.A.
Sorokovoy, Ed.L.
Tsybenko, S.A.
Zamanov, N.V.
author_facet Pashnev, V.K.
Burchenko, P.Ya.
Lozin, A.V.
Kotsubanov, V.D.
Kulaga, A.Ye.
Krasnyj, V.V.
Mironov, Yu.K.
Nikol’skii, I.K.
Petrushenya, A.A.
Romanov, V.S.
Sitnikov, D.A.
Sorokovoy, Ed.L.
Tsybenko, S.A.
Zamanov, N.V.
topic Magnetic confinement
topic_facet Magnetic confinement
publishDate 2008
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Утримання енергії в торсатроні Ураган-3M в режимі ВЧ-нагріву
Удержание энергии в торсатроне Ураган-3M в режиме ВЧ-нагрева
description Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF-discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is proposed. Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку щільності плазми в області утримання. Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ- разряда и при выключении ВЧ-разряда в торсатроне У­-3М. Оценена доля мощности, излучаемой ВЧ-антенной, которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий поведение плотности плазмы в области удержания.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110805
citation_txt Energy confinement in the torsatron Uragan-3M during the RF-heating mode / V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 28-30. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT pashnevvk energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT burchenkopya energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT lozinav energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT kotsubanovvd energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT kulagaaye energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT krasnyjvv energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT mironovyuk energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT nikolskiiik energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT petrushenyaaa energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT romanovvs energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT sitnikovda energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT sorokovoyedl energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT tsybenkosa energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT zamanovnv energyconfinementinthetorsatronuragan3mduringtherfheatingmode
AT pashnevvk utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT burchenkopya utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT lozinav utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT kotsubanovvd utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT kulagaaye utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT krasnyjvv utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT mironovyuk utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT nikolskiiik utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT petrushenyaaa utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT romanovvs utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT sitnikovda utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT sorokovoyedl utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT tsybenkosa utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT zamanovnv utrimannâenergíívtorsatroníuragan3mvrežimívčnagrívu
AT pashnevvk uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT burchenkopya uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT lozinav uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT kotsubanovvd uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT kulagaaye uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT krasnyjvv uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT mironovyuk uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT nikolskiiik uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT petrushenyaaa uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT romanovvs uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT sitnikovda uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT sorokovoyedl uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT tsybenkosa uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
AT zamanovnv uderžanieénergiivtorsatroneuragan3mvrežimevčnagreva
first_indexed 2025-11-25T23:52:45Z
last_indexed 2025-11-25T23:52:45Z
_version_ 1850588803889102848
fulltext ENERGY CONFINEMENT IN THE TORSATRON URAGAN-3M DURING THE RF-HEATING MODE V.K. Pashnev, P.Ya. Burchenko, A.V. Lozin, V.D. Kotsubanov, A.Ye. Kulaga, V.V. Krasnyj, Yu.K. Mironov, I.K. Nikol’skii, A.A. Petrushenya, V.S. Romanov, D.A. Sitnikov, Ed.L. Sorokovoy, S.A. Tsybenko, N.V. Zamanov IPP, National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Energy confinement time of plasma in torsatron U-3M was measured both during quasi-stationary stady of RF- discharge and after RF-power cut-off. Power absorbed by plasma in the confinement region was estimated. A mechanism which explain the plasma density behavior in the confinement region is proposed. PACS: 52.55.Dy, 52.55.Hc INTRODUCTION The integral characteristic describing the energy confinement in toroidal helical traps is the plasma energy confinement time τE. Under the stationary conditions τE is determined by the expression: τE= W2 3Γ , where Γ = ∫ ∑      + dVTnTn i iiee – is the plasma energy content, W-is the plasma-absorbed power, ne - is the electron density, ni - is the ion density, Te and Ti - are the electron and ion temperature correspondingly. However, in some cases it is difficult to determine the value of the plasma-absorbed power. Such a situation is observed during the RF-plasma heating in the torsatron U-3M. It is caused by the RF- heating features in this facility [1]. Paper [2] presents the results of τE determination by the plasma energy content decrease after RF-power switching- off. But in this case the influence of the RF-heating on the energy confinement in this facility is not clear. In paper [3] one offers the method for τE determining under the stationary conditions which is based on the fast and insignificant increase of the RF-power introduced into the plasma (δW<<W). An advantage of this technique is that there in no need to carry out absolute measurements of plasma parameters for τE determination. The goal of the present paper is to determine the plasma energy confinement time in the torsatron U-3M during the RF-heating. For this purpose we will use the results of [3], compare the results obtained with the data of stellarator scaling and explain the previous results obtained at the torsatrons U-3 and U-3M. EXPERIMENTAL RESULTS AND THEIR DISCUSSION Experiments were carried out at the torsatron U-3M using the RF-heating mode with a quasi-stationary behavior of discharge parameters [1]. The working gas was hydrogen. It was injected into the vacuum chamber continuously. The magnetic field value on the magnetic axis was Bo= 0.72 T. The average plasma density was determined by means of a 2 mm interferometer. Distributions of the electron temperature Te over the plasma column cross-section was determined by the intensity of plasma cyclotron radiation. To determine τE the method described in [3] was applied. According to this method, for the case of insignificant increase of the RF-power introduced into the plasma the plasma energy confinement time behavior is described by the expression: )1()( 0 E t et τδδ − −Γ=Γ . (1) From here it follows: 0 0 → Γ ∂ ∂ Γ = t E t δ τ . (2) For the case of the RF-power switching-off, the plasma energy confinement time is determined by the relationship: V t n t e t E ∂ ∂−Γ ∂ ∂ Γ −= → ε τ 0 0 2 3 2 3 , (3) where 0Γδ - is the maximum gain of the plasma energy content, Г0 – is the plasma energy content in the time of RF-power change (t → 0), ε - is the energy consumed by every act of working gas atom ionization. In expression (3) growth of plasma density and additional loss of plasma energy in the volume, due to ionization of working gas, is taken into account. -1600 -1200 -800 -400 0 0 500 1000 0 10 20 30 40 50 60 0 100 200 300 400 500 1 2 3 τ E=2 ms τ E=1.6 ms 0 1 2 3 t, ms I, A I RF , a .u . 4 t=27 ms (a) (b) (c) (d) nT , e rg /c m 3 __ n e ,1 012 c m -3 _ Fig.1. Time dependence: (a) – of the RF-antenna current IRF, (b) – of the average plasma density en , (c) – of the longitudinal plasma current I, (d) curve 1 – term (I), 28 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. Series: Plasma Physics (14), p. 28-30. a b c d curve 2 – term (II), curve 3(III), curve 4 - nT , calculated basing on expression (4) According to [4,5] the expression for plasma energy confinement is written in the following form: drdxr r j c B c RIRB r st a       ∂ ∂−−∆ Φ=Γ ∫∫ 0 2 0 0 0 2 0 22 2 ιππ . (4) (I) (II) (III) Here R – is the major plasma radius, c – is the light velocity. Term (I) in expression (4) is related with the diamagnetic flux change ∆Φ, term (II) is the tokamak term related with the longitudinal current I in the plasma, term (III) is determined by the interaction between the longitudinal plasma current of a density j0 and the helical magnetic field described by the rotational transformation angle ιst (“stellarator effect”). Fig.1 shows the change in time of the RF-antenna current (Fig.1a), of the average density of plasma electrons en (Fig.1b), of the longitudinal plasma current I (Fig.1c) and of the value iiee TnTnnT += (Fig.1d) which was determined from expression (4). From Fig.1a it is seen that the sharp increase of the RF-antenna current and, respectively, of the antenna-irradiated RF-power (t=27 ms), causes the increase of the longitudinal plasma current I (Fig.1c), of the plasma energy content nT (Fig.1d, curve 4) and the decrease of the density en (Fig.1b). Curve 1 in Fig.1d describes the behavior of term (I) in expression (4), curve 2 – of term (II) and curve 3 – of term (III), respectively. From comparison of curves presented on fig.1d it’s evidently, that a value of term (III), describing a “stellarator effect”, is the most for determination of plasma energy content. It should be noted that values nT on fig.1d, curve 4, are close to the values nT , which were obtained on the basis of measuring of saddle coil [2]. The good coincidence of results of the diamagnetic measuring is also observed with nT value, which was calculated on the basis of average plasma density and average plasma electronic temperature. eT was calculated from the profile of electronic temperature on the cross-section of plasma column. Distributing of electronic temperature eT in radial direction on the cross-section of plasma column is showed on fig. 2. 100 104 108 112 116 0 200 400 600 800 1000 R, cm T e , e V Fig. 2. Distribution of electrons temperature Te in radial direction On the basis of expressions (2) and (3), the values of plasma energy confinement time were determine during the stationary stage of discharge in the moment of sharp insignificant increase of RF-power and after the shutdown of RF-power, accordingly. In the first case Eτ ≅ 2 ms and in the second case Eτ ≅ 1.6 ms. The difference in the values obtained arises due to the additional energy losses (not taken into account in (3)), as a result of the process of charge exchange on neutral atoms being enhanced by the plasma density increase after RF-power switching-off (Fig.1b). The value of the energy confinement time Eτ in the torsatron U-3M was compared with the data of the stellarator scaling ISS95 [6]. The energy confinement time calculated from the stellarator scaling 95ISS Eτ = 2.5 ms. This value is close to the experimental one of Eτ ≅ 2 ms. Similar values of the plasma energy confinement time at the quasi-stationary stage of the RF-discharge ( Eτ ≅ 2 ms) and after RF-power switching-off ( Eτ ≅ 1.6 ms) show that the RF-plasma heating mode does not deteriorate the energy confinement in the torsatron U-3M. Determination of nT and Eτ allowed one to estimate the plasma-absorbed RF-power basing on the expression: E W τ2 3Γ= = 9.45 kW. (5) This value is in a good agreement with that of the plasma-radiated power Wrad ≈ 12−14 kW, obtained on the base of bolometric measurements. As the experimental value of the antenna-radiated RF-power was approximately Wa ≈ 200 kW, the value of the plasma- absorbed power does not exceed 5% of the radiated power. The above-mentioned measurements evidence on the significant difference between the RF-antenna irradiated power (≈200 kW) and the plasma-absorbed power in the confinement region (≈ 10 kW). In other words, about 95% of the antenna-radiated RF-power is lost in the processes taking place outside the confinement volume. The current RF-antenna is designed for breakdown, formation and heating of the plasma in the confinement region and, apparently, it is capable to provide breakdown, formation and heating of the plasma also in the region of divertor field lines behind the helical coil poles. The available experimental data confirm this assumption. For example, in paper [2] given are the microwave interferometer measurement data on the plasma density in the divertor region behind the helical coil poles. The data show that after RF- switching-off the divertor plasma density sharply decreases during the time of 100 µs, while the plasma density in the confinement volume increases (Fig.1b). The probe measurements outside the confinement region demonstrate similar results (see, for example, Figs. 5 and 8 in [7]). The probe measurements [7] of the plasma density and temperature outside the confinement volume in the RF- heating mode give the values of en ≤ 1011 cm-3 and Te ≈ 20 eV, that permits to evaluate the hydrogen molecule mean free path λ ≈ 40 cm [8]. The plasma having such parameters is able to screen the confinement region against the neutral gas molecule entering. The evidence of the RF-plasma screening of the confinement region from the neutral molecule entering is 29 confirmed by the plasma average density decrease in the discharge after additional energy switching (Fig.1). As is seen from Fig.3, the plasma density in the confinement region decreases with the anode voltage increase on the oscillating tube of the RF-complex and, consequently, with the antenna-irradiated RF-power increase beginning from Ua ≥ 6 kV. And, conversely, after RF-power switching-off the plasma density increases (Fig.1b). That evidences on the RF-plasma screening disappearance and on the additional working gas molecule entering into the confinement volume. Paper [9] gives the estimated value of the average plasma density in the torsatron U-3M confinement volume equal to Z ≅ 2. Just this low value of Z provides the existence of a “banana mode” in the part of the confinement region and bootstrapt current generation. The low value of Z can be explained by the RF-plasma screening of the plasma confinement region and by the divertor effective operation. 5 6 7 8 9 1 2 3 4 5 6 4.5 UA , kVn e , 1 012 c m -3 _ Fig.3. Maximum average plasma density in the discharge en versus the RF-generator anode voltage UA CONCLUSIONS The energy confinement time has been found experimentally in the quasi-stationary stage of the RF- discharge and after switching-off of the RF-discharge in the torsatron U-3M. The results show that the RF-plasma heating mode does not deteriorate the energy confinement and the energy confinement time value Eτ ≅ 2 ms is slightly different from the data obtained for the stellarator scaling 95ISS Rτ ≅ 2.5 ms. The plasma-absorbed power, evaluated in the confinement region, equals to W ≅ 10 kW that is much lower than the antenna-radiated power Wa ≅ 200 kW. The work demonstrated that the plasma density behavior in the confinement region can be explained by the appearance in the plasma heating process of the RF- plasma confinement screening against working gas entering from the ballast vacuum volume. REFERENCES 1. A.I. Lysoivan, V.E. Moiseenko, V.V. Plyusnin et al// Fusion Engineering and Design, v. 26, 1995, p. 185. 2. V.L. Berezhnyj, V.S. Voitsenya, M.P. Vasil’ev et al// Fizika plazmy. 1990, v. 15, p. 523 (in Russia). 3. V.K. Pashnev. Application of magnetic diagnostics to determine basic energy characteristics of plasma. // Problems of Atomic Science and Technology. Series “Plasma Physics” (14). 2008, N 6, p. 225-227. 4. V.D. Pustovitov, V.D. Shafranov. Voprosy teorii plazmy (Problems of Plasma Theory). Moscow: “Atomizdat”, 1987, v. 15, p.146 (in Russian). 5. V.K. Pasnev, V.V. Nemov // Nuclear Fusion. 1993, v. 33, p. 435. 6. U. Stroth, M. Murakami, R.A. Dory, et al // Nucl. Fusion. 1996, v. 36, p. 1063. 7. V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva et al. Density behaviour and particle losses in RF discharge plasmas of the Uragan-3M torsatron// Nucl. Fusion. 1996, v. 36, p. 133. 9. V.K. Pashnev, Ed.L. Sorokovoy. Appearance of neoclassical effects in plasma behavior in torsatron Uragan-3M. // Problems of Atomic Science and Technology. Series “Plasma Physics” (14). 2008, N 6, p. 31-33. Article received 10.10.08 УДЕРЖАНИЕ ЭНЕРГИИ В ТОРСАТРОНЕ УРАГАН-3М В РЕЖИМЕ ВЧ-НАГРЕВА В.К. Пашнев, П.Я. Бурченко, А.В. Лозин, В.Д. Коцубанов, А.Е. Кулага, В.В. Красный, Ю.К. Миронов, И.К. Никольский, А.А. Петрушеня, В.С. Романов, Д.А. Ситников, Э.Л. Сороковой, С.А. Цыбенко, Н.В. Заманов Экспериментально определено энергетическое время жизни плазмы во время квазистационарной стадии ВЧ- разряда и при выключении ВЧ-разряда в торсатроне У-3М. Оценена доля мощности, излучаемой ВЧ-антенной, которая поглощается плазмой в области ее удержания. Предложен возможный механизм, объясняющий поведение плотности плазмы в области удержания. УТРИМАННЯ ЕНЕРГІЇ В ТОРСАТРОНІ УРАГАН-3М В РЕЖИМІ ВЧ-НАГРІВУ В.К. Пашнєв, П.Я. Бурченко, О.В. Лозін, В.Д. Коцубанов, А.Є. Кулага, В.В. Красний, Ю.К. Міронов, І.К. Нікольський, А.А. Петрушеня, В.С. Романов, Д.А. Ситников, Е.Л. Сороковий, С.А. Цибенко, М.В. Заманов Експериментально визначено енергетичний час життя плазми під час квазістаціонарної стадії ВЧ-розряду і при вимкненні ВЧ-розряду в торсатроні У-3М. Оцінена частка потужності, що випромінюється ВЧ-антеною, яка поглинається плазмою в області її утримання. Запропоновано можливий механізм, що пояснює поведінку щільності плазми в області утримання. 30