Group properties of osp(2/1;C) gauge transformations
Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie algebra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-formation parameters that multiply the pair of odd generators of the graded Lie...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/110897 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Group properties of osp(2/1;C) gauge transformations/ K. Ilyenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 22-27. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110897 |
|---|---|
| record_format |
dspace |
| spelling |
Ilyenko, K. 2017-01-06T17:24:43Z 2017-01-06T17:24:43Z 2007 Group properties of osp(2/1;C) gauge transformations/ K. Ilyenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 22-27. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 11.10.Ef, 11.15.-q https://nasplib.isofts.kiev.ua/handle/123456789/110897 Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie algebra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-formation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su(2)-spinors clarifies the nature of Grassmann-odd transformation parameters and allows one an investigation of the corresponding infinitesimal gauge transformations. We also explore the action of a corresponding group element on an appropriately graded representation space and find that a proper (graded) generalization of hermitian conjugation is consistent with a natural generalization of Dirac adjoint. A corresponding generalization of a unitary transformation is discussed. Виходячи з явної конструкції градуйованого узагальнено-ермітового приєднаного уявлення osp(2/1;C) градуйованої алгебри Лі, розглянуто формулу Бейкера-Кемпбелла-Хаусдорффа та знайдено умови дійсності, що накладаються на грасманово-непарні параметри, які є множниками пари непарних генераторів градуйованої алгебри Лі при експоненціюванні. Використання формалізму su(2)-спінорів прояснює природу грасманово-непарних параметрів та суттєво полегшує дослідження відповідних інфінітезимальних калібрувальних перетворень. Також вивчено дію загального групового елементу на придатному просторі уявлення та перевірено, що відповідне (градуйоване) узагальнення ермітівського спряження погоджується із природним узагальненням дираківського спряження. Обговорюються придатні узагальнення унітарного перетворення відповідного векторного простору. На основе явной конструкции градуированного обобщенно-эрмитового присоединенного представления osp(2/1;C) градуированной алгебры Ли рассмотрена формула Бейкера-Кэмпбелла-Хаусдорффа и найдены условия вещественности, налагаемые на грассманово-нечетные параметры, которые являются множителями пары нечетных генераторов градуированной алгебры Ли при экспоненцировании. Использование формализма su(2)-спиноров поясняет природу грассманово-нечетных параметров и существенно облегчает исследование соответствующих инфинитезимальных калибровочных преобразований. Также изучено действие общего группового элемента на подходящем пространстве представления и проверено, что соответствующее (градуированное) обобщение эрмитового сопряжения согласуется с естественным обобщением дираковского сопряжения. Обсуждается подходящее обобщение унитарного преобразования соответствующего векторного пространства. I am grateful to Drs. T.S. Tsou and V. Pidstrigach for an interest to this work and to Dr. V. Gorkavyi and Prof. Yu.P. Stepanovsky for numerous helpful discussions. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Quantum field theory Group properties of osp(2/1;C) gauge transformations Групові властивості osp(2/1;C) калібрувальних перетворень Групповые свойства osp(2/1;C) калибровочных преобразований Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Group properties of osp(2/1;C) gauge transformations |
| spellingShingle |
Group properties of osp(2/1;C) gauge transformations Ilyenko, K. Quantum field theory |
| title_short |
Group properties of osp(2/1;C) gauge transformations |
| title_full |
Group properties of osp(2/1;C) gauge transformations |
| title_fullStr |
Group properties of osp(2/1;C) gauge transformations |
| title_full_unstemmed |
Group properties of osp(2/1;C) gauge transformations |
| title_sort |
group properties of osp(2/1;c) gauge transformations |
| author |
Ilyenko, K. |
| author_facet |
Ilyenko, K. |
| topic |
Quantum field theory |
| topic_facet |
Quantum field theory |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Групові властивості osp(2/1;C) калібрувальних перетворень Групповые свойства osp(2/1;C) калибровочных преобразований |
| description |
Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie algebra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-formation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su(2)-spinors clarifies the nature of Grassmann-odd transformation parameters and allows one an investigation of the corresponding infinitesimal gauge transformations. We also explore the action of a corresponding group element on an appropriately graded representation space and find that a proper (graded) generalization of hermitian conjugation is consistent with a natural generalization of Dirac adjoint. A corresponding generalization of a unitary transformation is discussed.
Виходячи з явної конструкції градуйованого узагальнено-ермітового приєднаного уявлення osp(2/1;C) градуйованої алгебри Лі, розглянуто формулу Бейкера-Кемпбелла-Хаусдорффа та знайдено умови дійсності, що накладаються на грасманово-непарні параметри, які є множниками пари непарних генераторів градуйованої алгебри Лі при експоненціюванні. Використання формалізму su(2)-спінорів прояснює природу грасманово-непарних параметрів та суттєво полегшує дослідження відповідних інфінітезимальних калібрувальних перетворень. Також вивчено дію загального групового елементу на придатному просторі уявлення та перевірено, що відповідне (градуйоване) узагальнення ермітівського спряження погоджується із природним узагальненням дираківського спряження. Обговорюються придатні узагальнення унітарного перетворення відповідного векторного простору.
На основе явной конструкции градуированного обобщенно-эрмитового присоединенного представления osp(2/1;C) градуированной алгебры Ли рассмотрена формула Бейкера-Кэмпбелла-Хаусдорффа и найдены условия вещественности, налагаемые на грассманово-нечетные параметры, которые являются множителями пары нечетных генераторов градуированной алгебры Ли при экспоненцировании. Использование формализма su(2)-спиноров поясняет природу грассманово-нечетных параметров и существенно облегчает исследование соответствующих инфинитезимальных калибровочных преобразований. Также изучено действие общего группового элемента на подходящем пространстве представления и проверено, что соответствующее (градуированное) обобщение эрмитового сопряжения согласуется с естественным обобщением дираковского сопряжения. Обсуждается подходящее обобщение унитарного преобразования соответствующего векторного пространства.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110897 |
| citation_txt |
Group properties of osp(2/1;C) gauge transformations/ K. Ilyenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 22-27. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT ilyenkok grouppropertiesofosp21cgaugetransformations AT ilyenkok grupovívlastivostíosp21ckalíbruvalʹnihperetvorenʹ AT ilyenkok gruppovyesvoistvaosp21ckalibrovočnyhpreobrazovanii |
| first_indexed |
2025-11-26T00:10:43Z |
| last_indexed |
2025-11-26T00:10:43Z |
| _version_ |
1850595351484956672 |
| fulltext |
GROUP PROPERTIES OF OSP(2/1;C) GAUGE TRANSFORMATIONS
K. Ilyenko1,2
1Institute for Radiophysics and Electronics of NAS of Ukraine, Kharkiv, Ukraine;
e-mail: kost@ire.kharkov.ua;
2Kharkiv Humanitarian Pedagogical Institute
Given an explicit construction of the grade star hermitian adjoint representation of graded Lie alge-
bra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-
formation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su -spinors
clarifies the nature of Grassmann-odd transformation parameters and allows one an investigation of the correspond-
ing infinitesimal gauge transformations. We also explore the action of a corresponding group element on an appro-
priately graded representation space and find that a proper (graded) generalization of hermitian conjugation is con-
sistent with a natural generalization of Dirac adjoint. A corresponding generalization of a unitary transformation is
discussed.
);1/2(osp C
)2(
PACS: 11.10.Ef, 11.15.-q
1. INTRODUCTION
A natural extension of the Lie algebras, which un-
derlie the modern gauge theory, are graded Lie algebras
introduced and studied to some extent in the articles [1-
3]. In this paper we explore how one can utilize a -
graded extension osp of the compact Lie alge-
bra for the purposes of defining a meaningful
gauge theory of the Yang-Mills type (see, e.g., [4-6]).
The form of defining relations (proposed
in [5] and refined in [6]) utilizes the Pauli matrices and
strongly suggests a relation to spinors. Exponentiating
the algebra, we observe the necessity of introduction of
anticommuting (Grassmann-odd) spinors, which multi-
ply the odd generators of the graded Lie algebra. Fi-
nally, we study some of infinitesimal properties of the
composition law of group transformations and consider
a generalization of the Dirac adjoint, thus, making
preparations for an investigation of the gauge invariance
of the proposed field strength for such a gauge theory,
[5-6].
2Z
);1/2( C
);1/2( C
)2(su
osp
2. GRADED LIE ALGEBRA OSP(2/1;C)
The algebra osp is a graded extension of
algebra by a pair of odd generators, , which
anticommute with one another and commute with the
three even generators, T , of . It is customary to
assign a degree, , to the even ( deg = 0) and
odd ( = 1) generators. We use the square brackets
to denote the commutator and the curly ones to denote
the anticommutator. The defining relations have the
form, [3,5-7]:
);1/2( C
a
αTdeg
)2(su Aτ
aT
)2(su
Aτdeg
.)(
2
}{
;)(
2
1][;][
aAB
a
BA
B
B
AaAacabcba
Ti, ττ
τ, τTT iε , TT
σ
σ
=
==
(1)
Summation is assumed over all repeated indices. Low-
ercase Roman indices from the beginning of the alpha-
bet run from 1 to 3; uppercase Roman indices run over
1 and 2; = ( ), ( 1) and
(∈ 1) are the three dimensional identity
matrix and the Levi-Civita totally antisymmetric sym-
bols in three and two dimensions, respectively; the ma-
trices [ (
] are just the usual
Pauli matrices:
abδ
=∈12
Aa )σ
ABa )
abδ
=
σ
= δ
baab δδ =
=ABa ) (σ
C
Ab ∈)(σ
abcε
=BA
a )
=abcε
ab (σδ
AB∈
= abδ
12
B(
(σ
ABa )
CB
ab
.
01
10
,
0
0
,
10
01
)(
;
10
01
,
0
0
,
01
10
)(
−
−
−
=
−
−
=
i
i
i
i
AB
a
B
Aa
σ
σ
We use the Levi-Civita symbols in two dimensions to
raise and lower uppercase Roman indices paying atten-
tion to their antisymmetric properties:
1||||
01
10
|||| −Σ−=∈=
−
=∈≡Σ AB
AB .
Note that, as concerned to these indices, we are working
with two-component spinors and adopt conventions of
the book [8]. We shall follow those conventions as
more suitable for our purposes even when complex con-
jugation of spinor and Grassmann quantities is in-
volved.
It turns out that not all of the osp algebra
generators are hermitian. A proper generalization of the
hermitian conjugation is denoted by ( ‡ ): on the even
generators the operation coincides with ordinary hermi-
tian conjugation ( ) while the odd ones obey more
complicated relations. Following the papers [9-10], we
shall call them the grade star hermiticity conditions:
);1/2( C
+
∓ττ ±=±
‡ , (2)
where . 21 τττ i±=±
OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 22-27. 22
Let us consider complex-valued matrices:
=
D
A
M
0
0
even and ,
=
0
0
odd C
B
M
where, for the purposes of this paper, and C are
2 3 rectangular blocks and and are 3 3 and
2 2 square blocks representing the division of a repre-
sentation space into even and odd parts. On these matri-
ces the grade star hermiticity condition reads
B
×
×
A D ×
= +
+
D
AM
0
0‡
even and .
−= +
+
0
0‡
odd B
CM
We shall also use multiplication of algebra generators
by scalars. Such an operation must take into account
that Grassmann-odd scalars anticommute with the odd
algebra generators while commute with complex num-
bers and the even algebra generators, [11]. The follow-
ing construction possesses all of these properties. Let
be a scalar and deg be its degree (0 or 1 depending on
whether it is Grassmann-even or Grassmann-odd, re-
spectively). Then multiplication by is defined as fol-
lows:
a
a
a
aMaM eveneven= and . aMaM a
odd
deg
odd )1(−=
3. THE GROUP PROPERTY
Given a Lie algebra one can turn over to a Lie group
by exponentiating the generators multiplied by trans-
formation parameters. This, in a usual fashion, gives us
the gauge transformations. In the case of a graded Lie
algebra we are faced with a problem: anticommutators
seem to rule out the application of the Baker-Campbell-
Hausdorff formula, which is necessary to prove that
subsequent transformations do not leave the group
manifold. This problem is solved via introduction of
Grassmann-odd parameters (cf., [1]). In the case under
consideration these are Grassmann-odd - spinors
, , etc., which multiply the odd generators. They
are included on equal footing with ordinary (Grass-
mann-even) parameters multiplying the even gen-
erators (hopefully, there will not be confusion about use
the same kernel letter, , to denote a Grassmann-even
transformation parameter and the Levi-Civita totally
antisymmetric symbol in three dimensions). By defini-
tion, , , etc. satisfy
)2(su
Aξ Aθ
Aξ
aε
ε
Aθ
.0],[
;0],[
=
=
BA
Aa
θξ
θε
{ ;0},{}, == BABA θθξξ
Then, the necessary relations can be given in terms of
commutators only:
aAB
aBABA
B
B
A
A Ti ))((
2
],[ ][}{ σθξθξτθτξ +−= ,
where and
are convenient shorthand nota-
tions. This result was obtained using anticommutator for
odd generators in definition (1). Using a fundamental
fact of spinor algebra, ∈
, one can calculate
=}{ BAθξ
−( /)ABθξ
2/)( ABBA θξθξ +
2
=][ BAθξ
BAθξ
+∈CDAB
+∈∈ DBAC 0=∈∈ BCAD
C
C ∈= )(
2
1 θξ
a )σ
BA ][ θξ
AA
i [
2
,[ θτξ
−≡
]B
Bτθ
,[
,[
a
a
a
a
T
T
θε
εκ
aθε
),(U θε
)…
=M
)
expexp M
),( ξκU
),( θεU ′′
a
aTi ε( + Aθ
…
k
N
+( Ti a
aε
…AB
a)](σaa εε =′
…A
B)
Z
A θθ =′
AB .
From symmetry of ( in the uppercase indices, it
then follows that
AB
aABaBA
aABaBABB
T
Ti
)](,
)(
2
] }{
σθξ
σθξτ −=
(3)
and, in particular, the commutator [ van-
ishes identically. One can also calculate
,A
Aτθ
,)(
2
1]
;] ][
B
B
Aa
Aa
A
A
c
abc
ba
b
b TiT
τσθετ
εεκ
=
=
where is again a Grassmann-odd trans-
formation parameter.
B
Aa
A )(σ
Group elements are obtained by exponentiating the
algebra
)](exp[ A
A
a
aTi τθε += (4)
and the Baker-Campbell-Hausdorff formula,
],[
2
1exp( +++= NMNMN (5)
may be applied to determine motion in the parameter
space under a (left) multiplication with a group element
:
),(),( θεξκ UU= . (6)
4. INFINITESIMAL TRANSFORMATIONS
AND REALITY CONDITIONS
Let us examine expression (5) restricting ourselves
by taking into account the first non-trivial contribution
– the two-fold commutator . Writing
and , we have
],[ NM
a
aT( + Aθ)Aτ =N i ε Aτ
+++= ],[
2
1) NMNMA
Aτθ ,
where dots denote the sum of linear combinations of -
fold ( k > 2, ) commutators of M and [12].
Substituting expressions for , and using (3), we
obtain after some algebra
Z∈k
M N
BAbca
cb
a ,[
4
1
2
1 θξεεκκ +−+ ;
bB
b
B
b
AA i )((
4
σξεθκξ −++ (7)
Here again dots denote the contribution from the sum of
linear combinations of -fold ( > 2, ) commu-
tators. The first three summands in the first row of for-
mula (7) reflect the non-commutative character of the
k k ∈k
23
proper Lie subalgebra, , of osp the last
one being contribution from the odd part of the algebra.
The last summand in the second row of the formula is
obviously a Grassmann-odd quantity, and it reflects the
non-commutative property of the even and odd parts of
the graded Lie algebra.
)2(su
,ξ
θ
a
A∈−
a
aTε +
aε
)2
=2
2
);1/2( C
) ξσ C
C
B
a
)2(
Aξ
)]Aτ
a
Aξ
122 ββ−=
In the view of intended applications, contribution
from Grassmann-odd part of the algebra into the law of
composition of Grassmann-even parameters needs to be
investigated in more detail. First, let us calculate that
()(
)](,[2
σθθσξ
θσξ
σθξ
TaT
ABC
C
B
aABA
ABaBA
Σ−Σ=
∈= (8)
where we employed some self-evident matrix notations;
the superscript denotes transposition. Comparing
the result (8) and a description of su -spinors of
3D Euclidean space in the book [13, p. 48], one imme-
diately realizes that the last term of the first equation in
system (7) is, in general, a complex vector of
3D Euclidean space, e.g. it transforms like a vector un-
der transformations. Second, the representation
(8) tells us that components of this vector vanish if
as required by a property of a one-parameter
subgroup of transformations (6). Finally, this vector
also has all components equal to zero if .
This shows that the inverse of the group element
has the form
)( T
SO(3)
= Aθ
),θε
Aξ
(U
= Aθ−
(exp[),(1 AiU θθε −=− .
If one intends, as customarily done in a meaningful
Yang-Mills theory, to treat , , etc. as real-valued
Grassmann-even transformation parameters, then it is
necessary to impose some conditions on the su -
spinors , , etc. in order to ensure that (8) will be a
real 3D Euclidean vector. Such a condition must be
compatible with transformation properties of the corre-
sponding space of -spinors, , and take into
account that its members are also Grassmann-odd quan-
tities. In fact, this condition should involve a passage
from an su -spinor to its conjugate and, thus, rely on
the definition of an anti-involution in the space of spi-
nors (see, e.g. [13, p. 100]). Let us observe first that for
a Grassmann algebra on one generator the last term in
the first relation in (7) vanishes identically. This is a
somewhat trivial situation. The next non-trivial one
arises when all -spinors under consideration take
values in a Grassmann algebra on two odd generators,
and : 0, (see, e.g.
[14, p. 7]). We shall employ lowercase Roman indices
from the middle of the alphabet running over 1 and 2 to
enumerate the decompositions of various quantities in
the corresponding basis of the Grassmann algebra. De-
composing and into this basis one obtains
κ
1β
)2(
Aξ
(
2β
Aθ
)2
β
Aξ
(su
)2
β
Bθ
(su
=2
11β β
iA
i
A βξξ = and , jB
j
B βθθ =
where and are ordinary (commuting), su -
spinors of 3D Euclidean space, and summation over
repeated indices is assumed. In this case we can write
A
i
ξ B
j
θ )2(
)(2)](,[
2121
21 ξσθθσξββσθξ aTaT
AB
aBA Σ−Σ= . (9)
Now we shall impose some additional conditions on
-spinors and , etc. to ensure that (9)
gives a real Grassmann-even 3D Euclidean vector. One
way of doing so in a manner preserving all the spinor
transformations properties is to define
)2(su A
i
ξ A
j
θ
'
2
'
1
B
B
AA iC ξξ = , '
2
'
1
B
B
AA iC θθ = , etc., (10)
where the ‘charge conjugation’ matrix (C =CC I− ) is
given by
CCCC B
A
B
A ==
−
== ||||
01
10
|||| '
' . (11)
In (10) and (11) a bar over the spinors in the left-hand
sides of the relations and primes over the indices denote
complex conjugation. We again adhere to Penrose's
notations whenever spinors are concerned, [8]. The
charge conjugation matrix, , is responsible for
invariant preservation of spinor properties (for details
see, e.g. the review article [15, p. 72-73]; also compare
with the treatment in [13, p. 100]). Note that the defini-
tions (10) are essentially the proper generalization of
reality conditions from numbers to spinors. As also seen
from those definitions, each Grassmann-odd su -
spinor , , etc. is defined by a single ordinary, i.e.
complex-valued Grassmann-even, su -spinor. For the
sake of notations denoting
'B
AC
)2(
Aξ Aθ
)2(
AA
2
ξη = and , BB
2
θϑ =
respectively, we write
).(
2121
ησϑϑση
ξσθθσξυ
aTTaTT
aTaTa
CCi Σ−Σ=
Σ−Σ≡
On comparison with [13, p. 50], one can check that
is indeed a real 3D Euclidean vector. In components it
reads:
aυ
).(
;
);(
2'22'21'11'1
3
1'22'12'11'2
2
2'11'21'22'1
1
ηϑϑηηϑϑηυ
ηϑϑηηϑϑηυ
ηϑϑηηϑϑηυ
+−−=
−−+=
−+−=
i
i
These are obviously real quantities and the vector
vanishes if and only if
aυ
AA ϑη ±= as expected.
5. ACTION ON A REPRESENTATION SPACE
Having formulated meaningful reality conditions,
we are in position to explore action of the group ele-
ment (4) on a suitable vector space.
24
First, let us observe that because of definition of the
matrix by its Taylor's expansion, the fact that the
generators and are ‘block’ and ‘off-block’ di-
agonal (see [6]), respectively, their multiplication prop-
erties and those of the Grassmann-even and Grassmann-
odd transformation parameters, it is easy to see that any
matrix U has a specific decomposition
U
aT Aτ
= DC
BAU , (12) U
where is a ( ) sub-matrix, is a ( ) sub-
matrix, is a ( r ) sub-matrix and is a ( )
sub-matrix. Following nomenclature of the book [14],
we shall call the matrix U a ( ) super-matrix;
in the adjoint representation under consideration of ma-
trices and , is a ( ) sub-matrix, is a
( 3 ) sub-matrix, C is a ( ) sub-matrix and is
a ( ) sub-matrix. Moreover, the sub-matrices
and have contributions only from an even number of
s’ multipliers and, hence, only even multipliers of
Grassmann-odd transformation parameters s’ are pre-
sent there. Thus, elements of those sub-matrices are in
the even subspace, , of the complex Grassmann
algebra (for more details see the book [14, p. 10-11]).
The sub-matrices and C by an analogues argument
include an odd number of s’ and s’ multipliers and,
hence, are in the odd subspace, , of the complex
Grassmann algebra. Therefore, any such a super-matrix
is an even super-matrix and by the results of the
previous section such matrices form a supergroup. Fur-
thermore, by construction any such a super-matrix is
invertible.
A
C
aT
2
pr ×
q×
Aτ A
C
B
B
r×
θ
1BL
ps ×
B
θ
D
s
qs ×
D
A
qp //
33×
2×
C
2×
2
D
τ
U
3
×
0LB
τ
Second, consider even super-column Ψ [(
) super-matrices] and super-row Φ [(1 )
super-matrices] vectors:
×qp /
sr /×1/0 0/
=
2
1
Ψ
Ψ
Ψ and Φ , (13) ),( 21 ΦΦ=
where and Φ are (1 ) and ( ) sub-matrices,
and Φ are (1 ) and ( ) sub-matrices, re-
spectively. The elements of Ψ and Φ are Grassmann-
even and those of Ψ and Φ are Grassmann-odd enti-
ties. Action of even super-matrices U on such even
super-column(-row) vectors transform them again into
even super-column(-row) vectors.
1Ψ 1 p×
2
1×r
1
1
2Ψ 2 q×
2
×s
1
For the sake of argument let U be (1 ) ma-
trices [see (12)], the actual size can be easily treated the
same way, and let also Ψ be a (1 ) even super-
column vector as regarded to the linear transformations
defined below. The entries Ψ and Ψ themselves
could be, for example, Dirac bispinors. Consider a lin-
ear transformation
1/11/ ×
1
2
/0×
1
1/
UΨ
DΨCΨ
BΨAΨ
Ψ
Ψ
Ψ ≡
+
+
=
′
′
≡′
21
21
2
1 . (14)
Taking transposition of each line in (14) (it acts on
’s) and complex conjugate as well as denoting the
Dirac conjugates as
iΨ
i′Ψ , we obtain:
,**
**),(
*)**,*(),(
21
212121
−=
+−=′′
DB
CAΨΨ
DΨCΨBΨAΨΨΨ
where the Grassmann character of the involved quanti-
ties has been taken into account. Recall that for any
super-matrix partitioned as in (12) the super-
transpose is defined by
−−
−= TTU
TUT
st
DB
CAU deg
deg
)1(
)1( ; (15)
for even super-column(-row) vectors this implies:
),( 21
TTst ΨΨΨ = and Φ . (16)
−
= T
T
st
Φ
Φ
2
1
Given definitions imply
**
**
**
=
−=
−
st
DC
BA
DB
CA
DB
CA , (17)
i.e. if, as in (14), Ψ hen UΨ=' t
‡UΨΨ =′ , (18)
thus, generalizing the corresponding result in the Yang-
Mills gauge theory.
It also follows from (17) that grade star hermitian
conjugation, denoted earlier by ‡ , can be interpreted as
complex conjugated of super-transpose.
6. DISCUSSION AND OUTLOOK
The result (18) calls for a study of an analogue of
‘unitary’ property for matrices U given by (4). A first
suggestion would be to have U , however, a
direct calculation shows that this does not hold. A direct
calculation shows that
1−=U‡
aa TT =‡)( and B
B
AA Ci ττ '
‡)( −= . (19)
The later equation in (19) is just a re-statement of her-
miticity of the even generators of the graded Lie algebra
while the former one, to the best of the
author’s knowledge, for the first time exhibits a strong
connection between compact graded Lie algebras on
one side and Euclidean spinors on the other (cf. (2)).
This same property of ’s prevents one from having
. Traced back to basic definitions, the prob-
lem lies in the very definition of the super-transpose, in
particular, ( but
);1/2(osp C
1‡ −=UU
Ψ
Aτ
Ψstst ≠)
ΨΨ stststst =)))((( ,
which also motivates our spinor approach to the treat-
ment of graded Lie algebras. In the view of this spinor
connection, it is understandable that a generalization of
unitary property for a matrix U given by (4) cannot
25
have the form U . In the theory of the Dirac
equation we have
1‡ −=U
ϕΠ+
ϕS
1 −− Π
S
);1 C
inv)‡ =
ϕϕϕ ≡
γ
S =′ϕ
+ = ΠSS
/2(osp
Π
D
( ‡‡‡ ΨΠΨ
+
2
1
Ψ
Ψ
3×
D
, where the matrix ,
which numerically coincides with in the chiral and
Dirac representations of -matrices but not in the Ma-
jorana representation, defines the invariant real-valued
internal product on the (symplectic) space of Dirac
bispinors , [15, p. 49-50; 16, p. 85]. Then, for a linear
transformation, , preserving the internal
product, we have (cf., e.g., [17, p. 32])
instead of unitary property for .
Π
‡‡)
0γ
ϕ
=
I
0
)ΠΨ
I
0
=‡
1
=
D−
1
0
1
It is, therefore, natural to define an internal unitary-
symplectic product on the space given by even super-
vectors (13), where the adjoint representation of the
graded Lie algebra acts, as
inv‡ΠΨΨ (20)
with the matrices given by
= DΠ 0 . (21)
Here is the square three-dimensional identity matrix
while hermiticity property of the square two-
dimensional matrix remains to be determined. To
clarify this issue, let us consider the grade star hermitian
conjugated of (20) with account for (15):
I
( ‡‡ =Ψ ,
where
= DΠ 0‡ .
Using (13) and (16), we infer
−
‡)(Ψ ,
where is (1 ) sub-matrix and Ψ is (1 ) sub-
matrix in terms of definition (13). Denoting Ψ ,
we can preserve the invariant property of the internal
product (20) by requiring
Ψ 2 2×
(~ = Ψ
ΠΨΨΠ ~‡ .
This can be accomplished if the matrix is anti-
hermitian
D
D =+ .
Taking into account the described analogy with the
Dirac bispinors, one is lead to the following choice:
= 0
1iD , (22)
where the matrix numerically coincides with . 1σi
Thus, it is necessary to check that for a matrix U
given by (4)
11‡ −−= ΠΠUU
holds, where (21) and (22) define the matrix . Π
ACKNOWLEDGMENTS
I am grateful to Drs. T.S. Tsou and V. Pidstrigach
for an interest to this work and to Dr. V. Gorkavyi and
Prof. Yu.P. Stepanovsky for numerous helpful discus-
sions.
REFERENCES
1. F.A. Berezin, G.I. Kac. Lie groups with commuting
and anticommuting parameters //Math. USSR – Sb.
1971, v. 11, p. 311-325.
2. L. Corwin, Y. Ne’eman, S. Stenberg. Graded Lie
algebras in mathematics and physics (Bose-Fermi
symmetry) //Rev. Mod. Phys. 1975, v. 47,
p. 573-603.
3. V. Kac. Representations of classical Lie superalge-
bras //LMS Lecture Notes. 1977, v. 676, p. 597-626.
4. Y. Ne’eman. Irreducible gauge theory of a consoli-
dated Salam-Weinberg model //Phys. Lett. B. 1979,
v. 81, p. 190-194.
5. R. Brooks, A. Lue. The monopole equations in topo-
logical Yang-Mills //J. Math. Phys. 1996, v. 37,
p. 1100-1105.
6. K. Ilyenko. Field strength for graded Yang-Mills
theory //Problems of Atomic Science and Technol-
ogy. 2001, v. 6, p. 74-75 (hep-th/0307230).
7. J.W. Hughes. Representations of and
the metaplectic representation //J. Math. Phys. 1981,
v. 22, p. 245-250.
);1/2(osp C
8. J. Stewart. Advanced general relativity. Cambridge:
“Cambridge University Press”, 1996, 228 p.
9. M. Scheunert, W. Nahm, Y. Rittenberg. Graded Lie
algebras: generalization of hermitian representations
//J. Math. Phys. 1977, v. 18, p. 146-154.
10. M. Scheunert, W. Nahm, Y. Rittenberg. Irreducible
representations of the and spl graded
Lie algebras //J. Math. Phys. 1977, v. 18,
p. 155-162.
)1,2(osp )1,2(
11. L.E. Gendenshtein, I.V. Krive. Supersymmetry in
quantum mechanics //Sov. Phys. – Usp. 1985, v. 28,
p. 645-666.
12. W. Magnus, A. Karras, D. Solitar. Combinatorial
group theory. London: “Interscience”, 1966, 578 p.
13. E. Cartan. The theory of spinors. Paris: “Hermann”,
1966, 157 p.
14. J.F. Cornwell. Group theory in physics. London:
“Academic Press”, 1989, v. 3, 628 p.
15. P.K. Rashevskij. The theory of spinors //Transl. Am.
Math. Soc. II (Ser. 6) 1957, p. 3-77.
16. H.K. Dreiner, H.E. Haber, S.P. Martin. Supersym-
metry. Cambridge: “CUP”, 2004, 271 p.
17. J.D. Bjorken, S.D. Drell. Relativistic quantum me-
chanics. New York: “McGraw Hill”, 1975, 732 p.
26
ГРУППОВЫЕ СВОЙСТВА OSP(2/1;C) КАЛИБРОВОЧНЫХ ПРЕОБРАЗОВАНИЙ
К. Ильенко
На основе явной конструкции градуированного обобщенно-эрмитового присоединенного представления
градуированной алгебры Ли рассмотрена формула Бейкера-Кэмпбелла-Хаусдорффа и найдены
условия вещественности, налагаемые на грассманово-нечетные параметры, которые являются множителями
пары нечетных генераторов градуированной алгебры Ли при экспоненцировании. Использование форма-
лизма ) -спиноров поясняет природу грассманово-нечетных параметров и существенно облегчает ис-
следование соответствующих инфинитезимальных калибровочных преобразований. Также изучено дейст-
вие общего группового элемента на подходящем пространстве представления и проверено, что соответст-
вующее (градуированное) обобщение эрмитового сопряжения согласуется с естественным обобщением ди-
раковского сопряжения. Обсуждается подходящее обобщение унитарного преобразования соответствующе-
го векторного пространства.
);1/2(osp C
2(su
ГРУПОВІ ВЛАСТИВОСТІ OSP(2/1;C) КАЛІБРУВАЛЬНИХ ПЕРЕТВОРЕНЬ
К. Ільєнко
Виходячи з явної конструкції градуйованого узагальнено-ермітового приєднаного уявлення
градуйованої алгебри Лі, розглянуто формулу Бейкера-Кемпбелла-Хаусдорффа та знайдено умови дійсності,
що накладаються на грасманово-непарні параметри, які є множниками пари непарних генераторів градуйо-
ваної алгебри Лі при експоненціюванні. Використання формалізму -спінорів прояснює природу грас-
маново-непарних параметрів та суттєво полегшує дослідження відповідних інфінітезимальних калібруваль-
них перетворень. Також вивчено дію загального групового елементу на придатному просторі уявлення та
перевірено, що відповідне (градуйоване) узагальнення ермітівського спряження погоджується із природним
узагальненням дираківського спряження. Обговорюються придатні узагальнення унітарного перетворення
відповідного векторного простору.
);1/2(osp C
)2(su
27
|