From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions

Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Tomasi-Gustafsson, E., Gakh, G.I., Rekalo, A.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110935
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions / E. Tomasi-Gustafsson, G.I. Gakh, A.P. Rekalo // Вопросы атомной науки и техники. — 2007. — № 3. — С. 142-148. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110935
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1109352025-02-23T17:39:55Z From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions Від теорії до експерименту: електромагнітні формфактори адронів у просторово- та часоподібних областях От теории к эксперименту: электромагнитные формфакторы адронов в пространственно- и времениподобных областях Tomasi-Gustafsson, E. Gakh, G.I. Rekalo, A.P. Elementary particle theory Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently, due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This paper is devoted to the memory of Prof. M.P. Rekalo. Електромагнітні формфактори адронів містять інформацію про внутрішню структуру адронів. Піонерська робота, виконана у 60-ті роки у Харківському фізико-технічному інституті, яка була присвячена зв’язку протонних формфакторів з перерізом розсіювання поляризованих частинок, ініціювала низку експериментів. Такі експерименти стали можливими зовсім недавно завдяки прогресу у конструюванні прискорювачів та поляриметрів. Наведені умови цих вимірювань та прецизійні результати дослідів з протонами. Представлений сучасний стан електромагнітних формфакторів нуклонів, особлива увага приділена основоположній роботі, яка була виконана у Харківському фізико-технічному інституті. Стаття присвячена пам’яті професора М.П. Рекала. Электромагнитные формфакторы адронов содержат информацию о внутренней структуре адронов. Пионерская работа, выполненная в 60-е годы в Харьковском физико-техническом институте, посвященная связи протонных формфакторов с сечением рассеяния поляризованных частиц, инициировала ряд экспериментов. Такие эксперименты стали возможны совсем недавно благодаря прогрессу в конструировании ускорителей и поляриметров. Приведены условия этих измерений и прецизионные результаты опытов с протонами. Представлен современный статус электромагнитных формфакторов нуклонов, особое внимание уделено основополагающей работе, выполненной в Харьковском физико-техническом институте. Статья посвящена памяти профессора М.П. Рекало. 2007 Article From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions / E. Tomasi-Gustafsson, G.I. Gakh, A.P. Rekalo // Вопросы атомной науки и техники. — 2007. — № 3. — С. 142-148. — Бібліогр.: 39 назв. — англ. 1562-6016 PACS: 13.40.-f, 13.60.-r, 13.88.+e https://nasplib.isofts.kiev.ua/handle/123456789/110935 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Elementary particle theory
Elementary particle theory
spellingShingle Elementary particle theory
Elementary particle theory
Tomasi-Gustafsson, E.
Gakh, G.I.
Rekalo, A.P.
From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
Вопросы атомной науки и техники
description Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently, due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This paper is devoted to the memory of Prof. M.P. Rekalo.
format Article
author Tomasi-Gustafsson, E.
Gakh, G.I.
Rekalo, A.P.
author_facet Tomasi-Gustafsson, E.
Gakh, G.I.
Rekalo, A.P.
author_sort Tomasi-Gustafsson, E.
title From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
title_short From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
title_full From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
title_fullStr From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
title_full_unstemmed From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
title_sort from theory to experiment: hadron electromagnetic form factors in space-like and time-like regions
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Elementary particle theory
url https://nasplib.isofts.kiev.ua/handle/123456789/110935
citation_txt From theory to experiment: hadron electromagnetic form factors in space-like and time-like regions / E. Tomasi-Gustafsson, G.I. Gakh, A.P. Rekalo // Вопросы атомной науки и техники. — 2007. — № 3. — С. 142-148. — Бібліогр.: 39 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT tomasigustafssone fromtheorytoexperimenthadronelectromagneticformfactorsinspacelikeandtimelikeregions
AT gakhgi fromtheorytoexperimenthadronelectromagneticformfactorsinspacelikeandtimelikeregions
AT rekaloap fromtheorytoexperimenthadronelectromagneticformfactorsinspacelikeandtimelikeregions
AT tomasigustafssone vídteoríídoeksperimentuelektromagnítníformfaktoriadronívuprostorovotačasopodíbnihoblastâh
AT gakhgi vídteoríídoeksperimentuelektromagnítníformfaktoriadronívuprostorovotačasopodíbnihoblastâh
AT rekaloap vídteoríídoeksperimentuelektromagnítníformfaktoriadronívuprostorovotačasopodíbnihoblastâh
AT tomasigustafssone otteoriikéksperimentuélektromagnitnyeformfaktoryadronovvprostranstvennoivremenipodobnyhoblastâh
AT gakhgi otteoriikéksperimentuélektromagnitnyeformfaktoryadronovvprostranstvennoivremenipodobnyhoblastâh
AT rekaloap otteoriikéksperimentuélektromagnitnyeformfaktoryadronovvprostranstvennoivremenipodobnyhoblastâh
first_indexed 2025-11-24T04:13:32Z
last_indexed 2025-11-24T04:13:32Z
_version_ 1849643617401962496
fulltext FROM THEORY TO EXPERIMENT: HADRON ELECTROMAGNETIC FORM FACTORS IN SPACE-LIKE AND TIME-LIKE REGIONS E. Tomasi-Gustafsson1, G.I. Gakh2, and A.P. Rekalo2 1DAPNIA/SPhN, CEA/SACLAY, 91191 Gif-sur-Yvette Cedex, France; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneer- ing work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently, due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon elec- tromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This paper is devoted to the memory of Prof. M.P. Rekalo. PACS: 13.40.-f, 13.60.-r, 13.88.+e 1. INTRODUCTION Electromagnetic form factors (FFs) are fundamental quantities which describe the internal structure of com- posite particles. Hadron FFs contain dynamical information about charge and magnetic currents and are calculated in frame of hadron models. Elastic hadron FFs can be studied through elastic electron hadron scattering , or through annihilation reaction heh +→+e −+ + ee→+ pp , where the momentum q is transferred by the exchange of one photon. Assuming this reaction mechanism, FFs enter in the expression of hadron electromagnetic vertex, and can be directly accessible from experiment, measuring the differential cross section and polarization observables. Polarization observables, indeed, is the key word of this talk, which is dedicated to the fundamental contri- bution of the “Kharkov theoretical school”, leaded by Academician A. I. Akhiezer, whose memory we honour today. Basic papers, in collaboration with Prof. M. P. Rekalo [1-2], were written in the late 60's, which indicated the way to get precise data on FFs at large values of the four-momentum transfer squared, . Such experiments have been realized only recently, due to the progress achieved in building high intensity po- larized beams, spectrometers, hadron polarimeters in the GeV range. The model independent derivation of the necessary observables, the ideas and the suggestions made in Kharkov almost 40 years ago, represent a re- markable advance of the theory on experiment. At that time it was difficult to conceive that an intense high polarized beam could be accelerated, and the calcula- tions were done for polarized target, which seemed more realistic. 2 µ− q Nowadays higher transfer momenta are reached with polarized beam and hadron polarimeters which can measure the polarization of the scattered hadron, proton [3-5] or deuteron [6-7], but polarized targets are also currently used. In this presentation, we briefly present the main lines of the theoretical background, describe the ex- perimental set up and focus on the results and their im- plications. 2. ELECTRON - HADRON ELASTIC SCATTERING-THEORETICAL FRAMEWORK 2.1. THEORETICAL FRAMEWORK The Feynman diagram for elastic electron-nucleon scattering is shown in Fig. 1, assuming the one-photon exchange, together with the notations of the particle four-momenta. γ∗(q) N(p1) N(p2) e(k1) e(k2) Fig. 1. Feynman diagram for elastic scattering NeNe +→+ −− The most convenient frame for the analysis of elas- tic scattering is the Breit frame, which is defined as the system where the initial and final nucleon energies are the same. As a consequence, the energy of the vir- tual photon vanishes and its four-momentum square, coincides with its three-momentum square (in modulus). Therefore, the derivation of the formalism in Breit sys- tem is more simple and has some analogy with a non- relativistic description of the nucleon electromagnetic structure. We choose the -axis parallel to the virtual photon three-momentum in the Breit frame and the -plane as the scattering plane. An useful kinematical relation can be derived between the electron scattering angle in the Lab system and in the Breit system θ : eN z q e xz θ B τ+ θ = θ 1 2cot 2 cot 2 2 eB , 2 2 m qµ−=τ , (1) where is the nucleon mass and . m 21 kkq −= PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 142-148. 142 The matrix element corresponding to the diagram of Fig. 1 is: αα µ Jl q e 2 2 =Μ , )()( 12 kukul αα γ= , (2) where is the electromagnetic current of electron, is the nucleon electromagnetic current, is the proton charge. αl αJ e The nucleon electromagnetic current can be written in terms of Pauli and Dirac nucleon FFs and : )( 2 1 qF )( 2 2 qF )( 2 )( )()( 1 2 22 12 puq m qF qFpuJ         σ−γ= νµνµµ , (3) where )( 2 1 µννµµν γγ−γγ=σ . Note that for any values of and , i.e. the current is conserved. 0=µµJq )( 2 1 qF )( 2 2 qF µJ The expressions for the different components of the current in the Breit frame are: αJ ;)(2 12210 χχτ +−= FFmJ ,)( 1221 χ×σχ+= + BqiFFJ and allow to introduce in a straightforward way the Sachs nucleon electromagnetic FFs, electric and mag- netic, which are written as: );()()( 22212 qFqFqGE τ−= .)()()( 2 2 2 1 2 qFqFqGM += (4) Such identification can be easily understood, if one takes into account that the time component of the cur- rent , describes the interaction of the nucleon with Coulomb potential. Correspondingly, the space compo- nent describes the interaction with the magnetic field. 0J J The differential cross section in the Lab system is written as 2 1 2 22 2 64       ε ε π Μ = Ω σ md d e , (5) )( 22 ε+= where is the energy of initial (final) electron, is the element of the final electron solid angle in the Lab frame. )( 21 εε edΩ From Eq. (2) we can obtain the following representa- tion for 2Μ ; 2 2 22 µνµν WL q e       =Μ ∗ νµµν = llL , W , ∗ νµµν = JJ where is the lepton tensor and W is the nucleon tensor. µνL µν The product of the tensors and W is a rela- tivistic invariant, therefore it can be calculated in any reference system. For comparison with experiment it is more convenient to use the differential cross section in Lab system (the Rosenbluth formula [8]) µνL µν         τ+ τ+ + θ τσ= Ω σ 12 tan2 22 22 MEe MM e GGG d d (6) with , )2(sin)2(1 )2(cos )( 4 2 cos )( 4 2 1 22 2 22 2 2 1 3 2 22 2 e e e M mq q θε+ θε − α = = θ ε ε − α =σ where , is the Mott cross- section, describing a scattering of relativistic electrons by a point particle (with charge e and spin ½). 137/14/2 ≈π=α e Mσ Note that the very specific )2(cot2 eθ dependence of the reduced cross-section eM dd Ωσσ−1 for elastic scattering ( ) results from the assumption of one-photon-exchange mechanism for the considered reaction. This can be easily proved, by cross-symmetry considerations, looking to the annihilation channel, Ne npN ,= p θ2 pe +→− cos e ++ [9-10]. In the CMS of such reaction, the one-photon-exchange mechanism induces a simple and evident -dependence of the corresponding differential cross section ( is the angle of the emitted nucleon in center of mass system), due to the C- invariance of the hadron electromagnetic interaction, and unit value of the photon spin. The particular θ )2( eθcot2 - dependence of the differential cross sec- tion (6) is at the basis of the method to determine both nucleon electromagnetic FFs, G and , using the ε linearity of the reduced cross section: E GM = Ω σ θ θ α ε     θ ε +τ+ε= =τθσ ee e e e Born red d d m )2(cos )2(sin4 )2(sin 2 1)1( ),( 2 4 2 2 121 )( 22 QGQG EMτ , (7) [ ] 12 )2(tan)1(21 − θτ++=ε e , where is polarization parameter of the virtual photon (we use the common notation Q for the value of the four-momentum transfer squared, Q ) . ε 2 22 µ−= q Measurements of the elastic differential cross- section as a function of , at different angles for a fixed value of Q allow and to be deter- mined as the slope and the intercept, respectively, from the linear dependence (7) (Rosenbluth fit) [6]. ε G eθ 2 2 E 2 MGτ ε 143 One can see that the backward scattering ( θ ) is determined by the magnetic FF only, and that the slope for is sensitive to . At large , (such that τ ), the differential cross sec- tion eN (GE π=e 2Q redσ >> )2Q 1 eΩ E ddσ (with nonpolarized particles) is unsensi- tive to G : the corresponding combination of the nu- cleon FFs, ( )2 MGτ+2 EGε is dominated by the G contribution, due to the following reasons: 2 M 1) pEpMp QGQGR µ≥=µ )()( 22 2 ≈µR 2 , where is the proton magnetic moment, so ; pµ 8 2) The factor increases the contribution at large momentum transfer, where >>1. τ MG τ Therefore electron-proton scattering (with unpolar- ized particles) is dominated by the magnetic FF, at large values of momentum transfer. The same holds for elec- tron-neutron scattering, even at relatively small values of , due to the smaller values of the neutron electric FF. 2Q As a result, for the exact determination of the proton electric FF, in the region of large momentum transfer, and for the neutron electric FF — at any value of , polarization measurements are strongly required and in particular those polarization observables which are de- termined by the product , and are, therefore, more sensitive to [1]. Both experiments (with polarized electron beam) have been realized: for the determination of the proton FF [3- 5] and, for the determination of the neutron FF , [11] and [12]. 2Q Ep EnG )()( 22 QGQG ME EG pn) epep ),( need ),( ′ G p eed ,( ′ In general the hadronic tensor W for elastic ( en ) scattering, contains four terms, related to the 4 possibilities of polarizing the initial and final protons (neutrons): µν ep ),()()()0( 2121 PPWPWPWWW µνµνµνµνµν +++= , where and are the polarization vectors of the initial and final protons (neutrons). 1P 2P The first term corresponds to the unpolarized case, the second (third) term corresponds to the case when the initial (final) nucleon is polarized, and the last term de- scribes the reaction when both nucleons (initial and final) are polarized. One can show that the polarization of the final pro- ton (neutron) vanishes, if the electrons are unpolarized: unpolarized electrons can not induce polarization of the scattered proton (neutron). This is a property of the one- photon mechanism for elastic e scattering ( ) and of the hermiticity of the Hamiltonian for the hadron electromagnetic interaction. Namely the hermiticity condition allows to prove that the hadron electromag- netic FFs are real functions of the momentum transfer squared in the space-like region < 0. On the other hand, in the time-like region, which is scanned by the annihilation process N npN ,= 2q ppe +→+ −+ 2q 2 ≥q e , the nucleon FFs are complex functions of if , where is the pion mass. 24 πm πm ppee +→+ −+ (Im * MEGG α +∞→2 2)( )(lim q qF TL xP2 ) α zP2 xz MGG τ+ τ )2G τ D The complexity of nucleon FF's (in the time-like re- gion) results in specific polarization phenomena, for the annihilation process , which are dif- ferent from the case of elastic electron - proton scatter- ing. For example, the polarization of the final proton (or antiproton) is different from zero, even in the case of annihilation of unpolarized leptons: this polarization is determined by the product (and, therefore, vanishes in the case of elastic electron - proton scatter- ing, where FFs are real functions). Note that the two-photon exchange in elastic scattering is also generating complex amplitudes. So the interference between one and two-photon ampli- tudes induces nonzero proton polarization, but small in absolute value, as it is proportional to . ep Numerous experiments have been done with the aim to detect such polarization at the momentum transfers 1 GeV≤2Q 2, but with negative result, at a percent level. Only recently the above mentioned interference was experimentally detected, measuring the asymmetry in the scattering of transversally polarized electrons by an unpo- larized proton target [13], which contains information on the imaginary part of the two–photon contribution. Note that at very large momentum transfer, the rela- tive role of two-photon exchange amplitudes may be increased (violating the counting in ), due to the steep decreasing of hadronic electromagnetic FFs. 2Q Note also that the analytical properties of the nu- cleon FFs, considered as functions of the complex vari- able , result in a specific asymptotic behavior, as they obey to the Phragmen-Lindeloef theorem: 2qz = −∞→ = 2 2)( )(lim q qF SL . (8) The existing experimental data about the proton FFs in time-like region up to 15 GeV2, seem to contradict this theorem [14], showing that the asymptotic region is more far than expected. Let us define a coordinate system where -axis is parallel to the virtual photon three-momentum and is the scattering plane. One can find the following ex- pressions for the components and of the pro- ton polarization vector (in the scattering plane) - in terms of the proton electromagnetic FFs [1-2]: z E e xDP θ λ−= 12 cot22 , (21 2 1 Mz m DP + τε+ε λ= , (9) where is the electron helicity, which takes values , corresponding to the direction of spin parallel or antiparallel to the electron three-momentum, and is λ 1± 144 proportional to the differential cross section with unpolarized particles: 2 cot 1 2 2 22 2 eME M GGGD θ τ+ τ+ +τ= . (10) So, for the ratio of these components one can find the following formula: )( )( 2 cot2 2 2 212 2 qG qGm P P P P M Ee l t z x ε+ε θ −== . (11) A measurement of the ratio of the transverse and the longitudinal polarization of the recoil proton is directly related to the ratio (11) of electric and magnetic FFs, )()( 22 qGqG ME . In the same way it is possible to calculate the de- pendence of the differential cross section for the elastic scattering of the longitudinally polarized electrons by a polarized proton target, with polarization : 1P ( xxzz ee APAP d dP d d 11 0 1 1)( λ+λ+      Ω σ = Ω σ ) , (12) where the asymmetries and (or the correspond- ing analyzing powers) are related in a simple and direct way, to the components of the final proton polarization: xA zA xx PA 2= , (13) zz PA 2−= ) =R This holds in the framework of the one-photon- exchange mechanism for elastic scattering. Note that the quantities and have the same sign and ab- solute value, but the components and being equal in absolute value, have opposite sign. ep xA xP2 zA zP2 In the framework of the one-photon-exchange mechanism, there are at least two different sources of corrections to these relations: - the standard radiative corrections; - the electroweak corrrections. 2.2. EXPERIMENTAL RESULTS Highly polarized electron beams are available at dif- ferent accelerators, MAMI (Mainz), MIT (Bates), JLab (Virginia). At JLab, where the G experiment was done [3-5], electron energies are available up to 6 GeV, the typical intensity about 30 µ and the polarization from 60 to 80%. The (longitudinal) electron polariza- tion is obtained by photoemission from a semiconductor cathode using polarized laser light from a pulsed diode laser. Beam polarimeters based on Mott, Moeller or Compton scattering measure the electron beam polariza- tion with an error of the order of percent. Ep A Measurements of elastic scattering require coinci- dence experiments in order to eliminate the background, even if in a binary process, in principle, the detection of one particle allows to reconstruct fully the kinematics. ep The momentum of the scattered proton is analyzed by a high resolution spectrometer which focal plane detection constitutes also the front detection of the focal polarimeter. Proton polarimeters in the GeV range are based on inclusive scattering on a graphite or polyethylene target, where one charged particle is detected. The azymuthal asymmetry of the scattered particle contains the infor- mation on the polarization of the proton at the focal plane. The optimization of the figure of merit (efficiency and analyzing powers) in the GeV range was carefully studied at Saturne accelerator [15] and at JINR-LHE accelerator complex in Dubna, where polarized proton beams are available in the GeV range [16]. In particular it has been shown that the thickness of the target is a very important parameter, and depends on the proton energy. For proton momenta over 3 GeV/c, very thick targets (larger than the collision length) do not improve the polarimeter performances. After that a good elastic ep event is identified by energy and angular correlation of the two outgoing par- ticles, and its polarization measured, the ratio of the longitudinal and transverse polarization is directly re- lated to the ratio MGEGR µ= (µ is the proton mag- netic moment), by Eq. (11). The ratio is shown in Fig. 2. These data show two remarkable features: high precision of the polarization data, compared to the Rosenbluth data, and monotonical decrease with Q which can be parametrized as: R 2 ( ))09.004.0(/)005.0130.0(1 ( 22 2 ±−±−= GeVQ Q (14) 2.3. IMPLICATIONS This means that the charge and magnetic currents in the nucleon are different, contrary to what had been previously assumed. Indeed, a commonly used pa- rametrization was a dipole approximation for both FFs, which was compatible with an exponential distribution of the charge, in non-relativistic approximation, and agreed with predictions from quark counting rules [22- 23]. Fig. 2. -dependence for the proton form factor ra- tio. Selected data from Rosenbluth measurements are plotted: from [17] (solid triangles); from [18] (solid cir- cles); from [19] (open circles); from [20] (solid squares) from [21] (open triangles). Polarization data (solid stars) are shown together with the fit from Eq. (14) 2Q 145 QCD predicts a )()( 2 1 2 2 2 qFqFq scaling, because carries an extra factor )( 2 2 qF 2q 2 1 as it requires a spin flip. Such scaling was approximately in agreement with the previous data, and it was argued that asymptotic predictions were reached already at Q . 25....2 GeV≈ When logarithmic corrections are added, pQCD pa- rametrizations may reproduce the polarization data (which scale as )()( 2 1 2 2 2 qFqFq− 2 ) . However ana- lytical properties of FFs, which should satisfy Phrag- men-Lindeloff theorem, are fulfilled by such parametri- zations only at much larger value of Q [24]. Another important issue concerns the light nuclei structure, 2H, 3He. A good description of the electro- magnetic properties of these nuclei requires the knowl- edge of nucleon FFs. A modification of the proton FFs requires either another prescription for the neutron FFs, or a revision of other ingredients of the models, such as wave functions or meson exchange currents, relativistic effects etc [25]. Data in time-like region are also necessary for a complete understanding of the nucleon structure. The separation of individual electromagnetic FFs has not been done, yet. As electromagnetic FFs are complex functions of in time-like region, polarization ex- periments are necessary. The present understanding is poor, and few phenomenological models can describe all data in the full kinematical region [26]. Experiments are planned in future, at Novosibirsk, Frascati, FAIR. 2q Reasons of the discrepancy between the two meth- ods have been indicated in the two-photon exchange [27]. However this is incompatible with model inde- pendent considerations, which require non-linearity of the Rosenbluth fit as a function of and the experi- ments do not give evidence for the presence of such mechanism [28-31]. ε Recent calculations of the box diagram prove that this contribution is small [32-33]. A more realistic ex- planation relies on the method used to calculate and to apply standard radiative corrections, as a multiplicative factor to the measured cross section. Such factor con- tains a large and dependence, which are the rele- vant variables. Therefore, this procedure induces large correlations between the parameters of the Rosenbluth fit [34]. A recent suggestion to apply higher order cor- rections, through the structure function method, proves to be successful in bringing into agreement the two sets of data [35]. ε 2Q 3. CONCLUSIONS The pioneering work [1] is at the origin of a series of experiments and programs at different world accel- erators. The unexpected results which were obtained changed our view on the nucleon structure. Although an English translation of the original pa- pers [1-2] was soon available, these papers did not re- ceive the consideration they deserve and are not prop- erly quoted. Only recently these papers have been added to the High-Energy Physics Literature Database [37] and appear very little quoted in comparison with later works. From this database, it appears today that works, which essentially reproduce the same result are more widely quoted, as for example Ref. [38] which appeared at least one year later and Ref. [39] published in 1981. This situation is not new, and unfortunately not ade- quate citation of appropriate references is a current problem. Efforts and concernment of scientific authori- ties at the level of Editorial board of journals, Confer- ence Committees, representatives and individuals are necessary in order to have a proper appreciation of these achievements. We would like to conclude with a citation from [1]: “Thus, there exist a number of polarization experiments which are more effective for determining the proton charge FF than is the measurement of the differential cross section for unpolarized particles”. REFERENCES 1. A.I. Akhiezer, M.P. Rekalo. Polarization phenomena in electron scattering by protons in the high energy region //Sov. Phys.- Dokl. 1968, v. 13, p. 572-575 [Dokl. Akad. Nauk SSSR, Ser. Fiz. 1968, v. 180, p. 1081-1083 (in Russian)]. 2. A.I. Akhiezer , M.P. Rekalo. Polarization effects in the scattering of leptons by hadrons //Sov. J. Part. Nucl. 1974, v. 4, p. 277-289 [Fiz. Elem. Chast. Atom. Yadra. 1973, v. 4, p. 662-703 (in Russian)]. 3. M.K. Jones et al. ratio by polarization transfer //Phys. Rev. Lett. 2000, v. 84, p. 1398-1402. MpEp GG / p−epe− → 4. O. Gayou et al. Measurement of in to Q //Phys. Rev. Lett. 2002, v. 88, p. 092301 (1-5). MpEp GG / pepe −− → 22 6.5 GeV= 5. V. Punjabi et al. Proton elastic form factor ratios to by polarization transfer //Phys. Rev C. 2005, v. 71, p. 055202 (1-27) [Erratum: Phys. Rev. C. 2005, v. 71, p. 069902]. 22 5.3 GeVQ = 6. S. Kox et al. POLDER: a tensor polarimeter for in- termediate energy deuterons //Nucl. Instrum. Meth. Phys. Res. A. 1994, v. 346, p. 527-543. 7. E. Tomasi-Gustafsson et al. A vector and tensor polarimeter for high-energy deuterons //Nucl. In- strum. Meth. Phys. Res. 1999, v. 420, p. 90-100. 8. M.N. Rosenbluth. High energy elastic scattering of electrons on protons //Phys. Rev. 1950, v. 79, p. 615-619. 9. A.I. Akhiezer, M.P. Rekalo. Electrodynamics of Hadrons. Kiev: “Naukova dumka”, 1977, Ch. 4.8, (In Russian). 10. M.P. Rekalo, E. Tomasi-Gustafsson, D. Prout. Search for evidence of two photon exchange in new experimental high momentum transfer data on elec- tron deuteron elastic scattering //Phys. Rev. C. 1999, v. 60, p. 042202 (1-5). 11. G. Warren et al. [Jefferson Lab E93-026 Collabora- tion]. Measurement of the electric form factor of the 146 neutron at 222 5.0 cGeVQ = and 222 1 cGeVQ = //Phys. Rev. Lett. 2004, v. 92, p. 042301 (1-5) and refs. therein. 12. B. Plaster et al [Jefferson Laboratory E93-038 Col- laboration]. Measurements of the neutron electric to magnetic form factor ratio via the reaction to MnEn GG / HneeH 12 )',( ( 2cGeV )2 45.1Q = //Phys. Rev. C. 2006, v. 73, p. 025205 (1-37). 13. F.E. Maas et al. Measurement of the transverse beam spin asymmetry in elastic electron proton scat- tering and the inelastic contribution to the imaginary part of the two-photon exchange amplitude //Phys. Rev. Lett. 2005, v. 94, p. 082001 (1-4) and refs. therein. 14. E. Tomasi-Gustafsson, M.P. Rekalo. Search for evi- dence of asymptotic regime of nucleon electromag- netic form factors from a compared analysis in space- and time-like regions //Phys. Lett. B. 2001, v. 504, p. 291-295. 15. B. Bonin et al. Measurement of the inclusive p-C analyzing power and cross-section in the 1 GeV re- gion and calibration of the new polarimeter POMME //Nucl. Instrum. Meth. Phys. Res. A. 1990, v. 288, p. 379-388. 16. L.S. Azhgirey et al. Measurement of analyzing pow- ers for the reaction at 2CHp + cGeVp p 3.575.1 −= //Nucl. Instrum. Meth. Phys. Res. A. 2005, v. 538, p. 431-441. 17. T. Janssens, R. Hofstadter, E.B. Hughes, M.R. Yearian. Proton form factors from elastic elec- tron-proton scattering //Phys. Rev. 1966, v. 142, p. 922-931. 18. L. Andivahis et al. Measurements of the electric and magnetic form-factors of the proton from ( 22 75.1 cGeVQ = ) to ( )22 83.8 cGeVQ = //Phys. Rev. D. 1994, v. 50, p. 5491-5517. 19. M.E. Christy et al. [E94110 Collaboration]. Meas- urements of electron proton elastic cross sections for 222 )(5.5)(4.0 cGeVQcGeV << //Phys. Rev. C. 2004, v. 70, p. 015206 (1-15). 20. R.C. Walker et al. Measurements of the proton elas- tic form-factors for 222 )(3)( cGeVQcGeV ≤≤1 at SLAC //Phys. Rev. D. 1994, v. 49, p. 5671-5689. 21. I. A. Qattan et al. Precision Rosenbluth measure- ment of the proton elastic form factors //Phys. Rev. Lett. 2005, v. 94, p. 14230 (1-5). 22. V. Matveev, R.M. Muradyan, A.N. Tavkhelidze. Automodellism in the large-angle elastic scattering and structure of hadrons //Nuovo Cimento Lett. 1973, v. 7, p. 719-723. 23. G. P. Lepage, S. J. Brodsky. Exclusive processes in perturbative quantum chromodynamics //Phys. Rev. D. 1980, v. 22, p. 2157-2198. 24. E. Tomasi-Gustafsson, G.I. Gakh. Asymptotic be- havior of nucleon electromagnetic form factors in time-like region //Eur. Phys. J. A. 2005, v. 26, p. 285-291. 25. E. Tomasi-Gustafsson, M.P. Rekalo. Neutron elec- tric form factor at large momentum transfer //Euro- phys. Lett. 2001, v. 55, p. 188-193. 26. E. Tomasi-Gustafsson et al. Nucleon electromag- netic form factors and polarization observables in space-like and time-like regions //Eur. Phys. J. A. 2005, v. 24, p. 419-430. 27. A.V. Afanasev et al. The two-photon exchange con- tribution to elastic electron nucleon scattering at large momentum transfer //Phys. Rev. D. 2005, v. 72, p. 013008 (1-18) and refs. therein. 28. M.P. Rekalo, E. Tomasi-Gustafsson. Model inde- pendent properties of two-photon exchange in elas- tic electron proton scattering //Eur. Phys. A. 2004, v. 22, p. 331-336. 29. M.P. Rekalo, E. Tomasi-Gustafsson. Complete ex- periment for elastic scattering, in presence of two-photon exchange //Nucl. Phys. A. 2004, v. 740, p. 271-286. Ne∓ 30. M.P. Rekalo, E. Tomasi-Gustafsson. Polarization phenomena in elastic scattering, for axial pa- rametrization of two-photon exchange //Nucl. Phys. A. 2004, v. 742, p. 322-334. Ne∓ 31. E. Tomasi-Gustafsson, G. I. Gakh. Search for evi- dence of two photon contribution in elastic electron proton data //Phys. Rev. C. 2005, v. 72, p. 015209 (1-6). 32. E.A. Kuraev, V.V. Bytev, Yu.M. Bystritskiy, E. Tomasi-Gustafsson. Targed normal spin asymme- try and charge asymmetry for µe elastic scattering and the crossed processes //Phys. Rev. D, 2006, v. 74, p. 013003 (1-8). 33. D. Borisyuk, A. Kobushkin. Exact evaluation of box diagram in the elastic electron proton scattering, nucl-th/0606030, 2006, 12 p. 34. E. Tomasi-Gustafsson. On the intrinsic limitation of the Rosenbluth method at large momentum transfer, hep-ph/0412216, 2004, 10 p. 35. Yu. M. Bystritskiy, E.A. Kuraev, E. Tomasi- Gustafsson. Application of the structure function method to polarized and unpolarized electron pro- ton scattering. hep-ph/0603132, 2006, 22 p. 36. E. Tomasi-Gustafsson, Open questions and perspec- tives for hadron electromagnetic form factors in space-like and time-like regions, nucl-th/0602007, 2006, 10 p. 37. http://www.slac.stanford.edu/spires/ 38. N. Dombey. Scattering of polarized leptons at high energy //Rev. Mod. Phys. 1969, v. 41, p. 236-246. 39. R.G. Arnold, C.E. Carlson, F. Gross. Polarization transfer in elastic electron scattering from nucleons and deuterons //Phys. Rev. C. 1981, v. 23, p. 363-374. 147 ОТ ТЕОРИИ К ЭКСПЕРИМЕНТУ: ЭЛЕКТРОМАГНИТНЫЕ ФОРМФАКТОРЫ АДРОНОВ В ПРОСТРАНСТВЕННО- И ВРЕМЕНИПОДОБНЫХ ОБЛАСТЯХ Е. Томаси-Густафссон, Г.И. Гах, А.П. Рекало Электромагнитные формфакторы адронов содержат информацию о внутренней структуре адронов. Пио- нерская работа, выполненная в 60-е годы в Харьковском физико-техническом институте, посвященная связи протонных формфакторов с сечением рассеяния поляризованных частиц, инициировала ряд экспериментов. Такие эксперименты стали возможны совсем недавно благодаря прогрессу в конструировании ускорителей и поляриметров. Приведены условия этих измерений и прецизионные результаты опытов с протонами. Представлен современный статус электромагнитных формфакторов нуклонов, особое внимание уделено основополагающей работе, выполненной в Харьковском физико-техническом институте. Статья посвящена памяти профессора М.П. Рекало. ВІД ТЕОРІЇ ДО ЕКСПЕРИМЕНТУ: ЕЛЕКТРОМАГНІТНІ ФОРМФАКТОРИ АДРОНІВ У ПРОСТОРОВО- ТА ЧАСОПОДІБНИХ ОБЛАСТЯХ Е. Томасі-Густафссон, Г.І. Гах, О.П. Рекало Електромагнітні формфактори адронів містять інформацію про внутрішню структуру адронів. Піонерсь- ка робота, виконана у 60-ті роки у Харківському фізико-технічному інституті, яка була присвячена зв’язку протонних формфакторів з перерізом розсіювання поляризованих частинок, ініціювала низку експеримен- тів. Такі експерименти стали можливими зовсім недавно завдяки прогресу у конструюванні прискорювачів та поляриметрів. Наведені умови цих вимірювань та прецизійні результати дослідів з протонами. Представ- лений сучасний стан електромагнітних формфакторів нуклонів, особлива увага приділена основоположній роботі, яка була виконана у Харківському фізико-технічному інституті. Стаття присвячена пам’яті професо- ра М.П. Рекала. 148