The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice

In a lattice formulation of the SU(2)-gluodynamics, the spontaneous generation of the chromomagnetic field at high temperature is investigated. The procedure to study this phenomenon is developed and Monte Carlo simulations are carried out on the lattices 2x8³, 4x8³ and 2x16³ at various temperatures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2007
Hauptverfasser: Demchik, V.I., Skalozub, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/110940
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice / V.I. Demchik, V.V. Skalozub // Вопросы атомной науки и техники. — 2007. — № 3. — С. 111-115. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110940
record_format dspace
spelling Demchik, V.I.
Skalozub, V.V.
2017-01-07T09:24:04Z
2017-01-07T09:24:04Z
2007
The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice / V.I. Demchik, V.V. Skalozub // Вопросы атомной науки и техники. — 2007. — № 3. — С. 111-115. — Бібліогр.: 15 назв. — англ.
1562-6016
PACS: 11.15.Ha, 11.10.Wx
https://nasplib.isofts.kiev.ua/handle/123456789/110940
In a lattice formulation of the SU(2)-gluodynamics, the spontaneous generation of the chromomagnetic field at high temperature is investigated. The procedure to study this phenomenon is developed and Monte Carlo simulations are carried out on the lattices 2x8³, 4x8³ and 2x16³ at various temperatures. The χ²-analysis of the obtained data set indicates the presence of the spontaneously created magnetic field in the deconfinement phase. A comparison with the results of other approaches is done.
Досліджено спонтанну генерацію хромомагнітного поля при високій температурі в гратковій формуліровці SU(2)-глюодинаміки. Розроблено процедуру для дослідження цього ефекта на гратці. Проведено моделювання методом Монте Карло на гратках 2x8³, 4x8³ та 2x16³ при різних температурах. χ²-аналіз отриманих даних вказує на наявність у фазі деконфайнменту магнітного поля, що народжується спонтанно. Проведено порівняння з результатами, отриманими у інших наближеннях
Исследована спонтанная генерация хромомагнитного поля при высокой температуре в решеточной формулировке SU(2)-глюодинамики. Разработана процедура для исследования этого эффекта на решетке. Проведено моделирование методом Монте Карло на решетках 2x8³, 4x8³ и 2x16³ при различных температурах. χ²-анализ полученных данных указывает на существование в фазе деконфайнмента спонтанно рожденного поля. Проведено сравнение с результатами, полученными в других приближениях.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Elementary particle theory
The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
Спонтанна генерація магнітних полів при високій температурі в SU(2)-глюодинаміці на гратці
Спонтанная генерация магнитных полей при высокой температуре в SU(2)-глюодинамике на решетке
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
spellingShingle The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
Demchik, V.I.
Skalozub, V.V.
Elementary particle theory
title_short The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
title_full The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
title_fullStr The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
title_full_unstemmed The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice
title_sort spontaneous generation of magnetic fields at high temperature in su(2)-gluodynamics on a lattice
author Demchik, V.I.
Skalozub, V.V.
author_facet Demchik, V.I.
Skalozub, V.V.
topic Elementary particle theory
topic_facet Elementary particle theory
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Спонтанна генерація магнітних полів при високій температурі в SU(2)-глюодинаміці на гратці
Спонтанная генерация магнитных полей при высокой температуре в SU(2)-глюодинамике на решетке
description In a lattice formulation of the SU(2)-gluodynamics, the spontaneous generation of the chromomagnetic field at high temperature is investigated. The procedure to study this phenomenon is developed and Monte Carlo simulations are carried out on the lattices 2x8³, 4x8³ and 2x16³ at various temperatures. The χ²-analysis of the obtained data set indicates the presence of the spontaneously created magnetic field in the deconfinement phase. A comparison with the results of other approaches is done. Досліджено спонтанну генерацію хромомагнітного поля при високій температурі в гратковій формуліровці SU(2)-глюодинаміки. Розроблено процедуру для дослідження цього ефекта на гратці. Проведено моделювання методом Монте Карло на гратках 2x8³, 4x8³ та 2x16³ при різних температурах. χ²-аналіз отриманих даних вказує на наявність у фазі деконфайнменту магнітного поля, що народжується спонтанно. Проведено порівняння з результатами, отриманими у інших наближеннях Исследована спонтанная генерация хромомагнитного поля при высокой температуре в решеточной формулировке SU(2)-глюодинамики. Разработана процедура для исследования этого эффекта на решетке. Проведено моделирование методом Монте Карло на решетках 2x8³, 4x8³ и 2x16³ при различных температурах. χ²-анализ полученных данных указывает на существование в фазе деконфайнмента спонтанно рожденного поля. Проведено сравнение с результатами, полученными в других приближениях.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110940
citation_txt The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice / V.I. Demchik, V.V. Skalozub // Вопросы атомной науки и техники. — 2007. — № 3. — С. 111-115. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT demchikvi thespontaneousgenerationofmagneticfieldsathightemperatureinsu2gluodynamicsonalattice
AT skalozubvv thespontaneousgenerationofmagneticfieldsathightemperatureinsu2gluodynamicsonalattice
AT demchikvi spontannageneracíâmagnítnihpolívprivisokíitemperaturívsu2glûodinamícínagratcí
AT skalozubvv spontannageneracíâmagnítnihpolívprivisokíitemperaturívsu2glûodinamícínagratcí
AT demchikvi spontannaâgeneraciâmagnitnyhpoleiprivysokoitemperaturevsu2glûodinamikenarešetke
AT skalozubvv spontannaâgeneraciâmagnitnyhpoleiprivysokoitemperaturevsu2glûodinamikenarešetke
AT demchikvi spontaneousgenerationofmagneticfieldsathightemperatureinsu2gluodynamicsonalattice
AT skalozubvv spontaneousgenerationofmagneticfieldsathightemperatureinsu2gluodynamicsonalattice
first_indexed 2025-11-24T06:09:36Z
last_indexed 2025-11-24T06:09:36Z
_version_ 1850844086068576256
fulltext THE SPONTANEOUS GENERATION OF MAGNETIC FIELDS AT HIGH TEMPERATURE IN SU(2)-GLUODYNAMICS ON A LATTICE V.I. Demchik1 and V.V. Skalozub2 Dniepropetrovsk National University, Dniepropetrovsk, Ukraine; 1e-mail: vadimdi@yahoo.com; 2e-mail: skalozub@ff.dsu.dp.ua In a lattice formulation of the SU(2)-gluodynamics, the spontaneous generation of the chromomagnetic field at high temperature is investigated. The procedure to study this phenomenon is developed and Monte Carlo simula- tions are carried out on the lattices 2x83, 4x83 and 2x163 at various temperatures. The χ2-analysis of the obtained data set indicates the presence of the spontaneously created magnetic field in the deconfinement phase. A comparison with the results of other approaches is done. PACS: 11.15.Ha, 11.10.Wx 1. INTRODUCTION Among interesting problems of modern cosmology the origin of large-scale magnetic fields is intensively attacked nowadays. Various mechanisms of the field generation at different stages of the universe evolution were proposed [1]. Basically they are grounded on the idea of Fermi, Chandrasekhar and Zel'dovich that to have the present day galaxy magnetic fields seed mag- netic fields must be present in the early universe. These fields had been frozen in a cosmic plasma and then am- plified by some of the mechanisms of the field amplifi- cation. One of the ways to produce seed fields is a spon- taneous vacuum magnetization at high temperature T [2,3,4,5]. Actually, this is an extension of the Savvidy model for the QCD vacuum [6], proposed already at T=0 and describing the creation of the Abelian chromomagnetic fields due to a vacuum polarization, in case of non-zero temperature. At zero temperature this field configuration is unstable because of the tachyonic mode in the gluon spectrum. At T ≠ 0, the possibility of having strong temperature-dependent and stable mag- netic fields was discovered [4]. The field stabilization is ensured by the temperature and field dependent gluon magnetic mass. Another related field of interest is the deconfinement phase of QCD. As it was realized recently, this is not the gas of free quarks and gluons, but a complicate in- teracting system of them. This was discovered at RHIC experiments [7] and observed in either perturbative [4,8] or nonperturbative [9] investigations of the vac- uum state with magnetic fields at high temperature. In Refs. [4,8] the spontaneous creation of the chromomag- netic fields of order gB~g4T2 was observed in SU(2)- and SU(3)-gluodynamics within the one-loop plus daisy resummation accounted for. In Ref. [9] the fields of the same order were observed in lattice simulations of two- point correlators. In Ref. [10] the response of the vac- uum to the influence of strong external fields at differ- ent temperatures has been investigated and it was shown that the confinement is restored by increasing the strength of the applied field. These results stimulated the present investigation. We are going to determine the spontaneous creation of magnetic fields in lattice simu- lations of SU(2)-gluodynamics. In contrast to the prob- lems in the external field, in the case of interest the field strength is a dynamical variable which values at differ- ent temperatures have to be determined by means of the minimization of the free energy. This procedure is not a simple one as in continuum because the field strength on a lattice is quantized. To deal with this peculiarity, we consider magnetic fluxes on a lattice as the main objects to be investigated. The fluxes take continuous values, and therefore the minimization of the free en- ergy in presence of magnetic field can be fulfilled in a usual way. These speculations serve as an explanation of the strategy of our calculations. One of the methods to introduce a magnetic flux on a lattice is to use the twisted boundary conditions (t.b.c.) [11]. In this approach the flux is a continuous quantity. So, in what follows we consider the free en- ergy F(ϕ) with the magnetic flux ϕ on a lattice in the SU(2)-gluodynamics and calculate its values at different temperatures by means of Monte Carlo (MC) simula- tions. We will show that the global minimum of F(ϕ) is located at some non-zero value ϕmin dependent on the temperature. It means the spontaneous creation of the temperature-dependent magnetic fields in the decon- finement phase. 2. MAGNETIC FIELDS ON A LATTICE In perturbation theory, the value of the macroscopic (classical) magnetic field generated inside a system is determined by the minimization of the free energy func- tional. The interaction with the classical field is intro- duced by splitting the gauge field potential in two parts: RAAA µµµ += , where describes a radiation field and RAµ )0,1Hx,0,0(A =µ corresponds to the constant mag- netic field directed along the third axis. However, on a lattice, the direct detection of the spontaneously gener- ated field strength by straightforward analysis of the configurations, which are produced in the MC simu- lations, seems to be problematic. Therefore, it is reason- PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 111-115. 111 able to follow the approach used in the continuum field theory. First, let us write down the free energy density, ; )0( )(log)( Z ZF ϕ ϕ −= (1) ({∫ −= )(exp)]([)( ϕϕϕ USDUZ )} . (2) ,( xUµ Here, Z(ϕ) and Z(0) are the partition functions at finite and zero magnetic fluxes, respectively; the link variable U is the lattice analogue of the potential Aµ. The free energy density relates to the effective action as follows, )0()()( SSF −= ϕϕ , (3) µ where )(ϕS and )0(S are the effective lattice actions with and without magnetic field, correspondingly. To detect the spontaneous creation of the field it is necessary to show that the free energy density has the global minimum at a non-zero magnetic flux, . 0min ≠ϕ In what follows, we use the hypercubic lattice ( ) with the hypertorus geometry; L3 st LL × st LL < t and Ls are the temporal and the spatial sizes of the lattice, respectively. In the limit of the temporal size L ∞→sL t is related to physical temperature. The one-plaquette action of the SU(2) lattice gauge theory can be written: ∑ ∑ > −= x W xTrUS νµ µνβ )](1[ 2 1 ; (4) )()ˆ()ˆ()()( xUaxUaxUxUxU ++ ++= νµνµµν νµ , (5) where β=4/g2 is the lattice coupling constant, g is the bare coupling, Uµ(x) is the link variable located on the link leaving the lattice site x in the µ direction, Uµν(x) is the ordered product of the link variables. The effective action S in (3) is the Wilson action averaged over the Boltzmann configurations, produced in the MC simulations. The lattice variable Uµ(x) can be decomposed in terms of the unity, I, and Pauli, σj, matrices in the col- our space, =+= )()()( 0 xUixIUxU j j µµµ σ         −+− ++ = )()()()( )()()()( 3012 1230 xiUxUxiUxU xiUxUxiUxU µµµµ µµµµ . (6) The four components U are subjected to the nor- malization condition . Hence, only three components are independent. )(xj µ (∑ Uj j µ 1)() =xUx j µ Since the spontaneously generated field is to be the Abelian one, the Abelian parametrization of the lattice variables is used to introduce the magnetic field,         − = −− )()( )()( cossin sincos )( xixi xixi ee ee xU µµ µµ θ µ χ µ χ µ θ µ µ φφ φφ , (7) where the angular variables are changed in the follow- ing ranges θ, χ∈ [-π;+π), φ∈ [0;π/2). The Abelian part of the lattice variables is repre- sented by the diagonal components of the matrix and the condensate Abelian magnetic field influences the field θµ(x), only. The second important task is to incorporate the mag- netic flux in this formalism. The most natural way was proposed by 't Hooft [11]. In his approach, the constant homogeneous external flux ϕ in the third spatial direc- tion can be introduced by applying the following t.b.c.: ),,,0(),, xxxUxxL = ; 321321t µ ),,0,(),,,( xxxUxxLxU = ; (8) 320320 s µµ ),0,,(),,,( xxxUexLxxU iϕ= ; 3 210210 s µ 10310 s µµ )0,,,(),,,( xxxULxxxU = . It could be seen, the edge links in all directions are identified as usual periodic boundary conditions except for the links in the second spatial direction, for which the additional phase ϕ is added (Fig. 1). In the contin- uum limit, such t.b.c. settle the magnetic field with the potential Aµ(x)=(0,0,Hx1,0). The magnetic flux ϕ is measured in angular units, . )2,0[ πϕ ∈ Fig. 1. The plaquette presentation of the twisted boundary conditions The lattice variables (in the Abelian parametrization) in the presence of the magnetic flux ϕ are =)(xU µ       − = +−− + ))()(()( )())()(( cossin sincos xxixi xixxi ee ee µµµ µµµ ϕθ µ χ µ χ µ ϕθ µ φφ φφ ,(9)  p S µµµµ where ϕµ(x) = ϕ for the edge links at x = (x0, x1, Ls, x3) with µ = 2 and ϕµ(x) = 0 for other links. The total flux through the plane spanned by the plaquettes p, which affects the edge links at x=(x0, x1, Ls, x3) with µ = 2, is ∑ ∈ +=Φ planep pg )( ϕθ , (10) )()ˆ()ˆ()( xaxaxx νµνµ θνθνθθθ −+−++= . (11) Eq. (10) is the lattice analogue of the flux in the contin- uum . In this approach the variable ϕ describes a flux through the whole lattice plane, not just through an elementary plaquette. ∫=Φc Fd µνµνσ2 The t.b.c. for the components (9), )(cos))()(cos()(0 xxxxU µµµµ φϕθ += ; )(sin)(sin)(1 xxxU χφ= ; µµµ )(sin)(sin)(2 xxxU χφ= ; µµµ )(cos))()(sin()(3 xxxxU φϕθ += , (12) 112 read ϕϕ µµµ sin)(cos)()( 300 xUxUxU −= , (13) ϕϕ µµµ cos)(sin)()( 303 xUxUxU += (14) for the edge links at x =(x0, x1, Ls, x3) with µ=2. The relations (13) and (14) have been implemented into the kernel of the MC procedure in order to produce the configurations with the magnetic flux ϕ. In this case the flux ϕ is accounted for in obtaining a Boltzmann ensemble at each MC iteration. 3. MC SIMULATIONS AND DATA FITS The MC simulations are carried out by means of the heat bath method. The spontaneous generation of magnetic field is the effect of order ~g4 [4]. The results of MC simulations show the comparably large dispersion. So, the large amount of the MC data is collected and the standard χ2- method for the analysis of data is applied to determine the effect. We consider the results of the MC simulations as observed “experimental data”. The effective action depends smoothly on the flux ϕ in the region ϕ~0. Therefore, the free energy density can be fitted by the quadratic function of the flux ϕ, 2 minmin )()( ϕϕϕ −+= bFF . (15) This choice is motivated also by the results obtained already in continuum field theory [13] where it was de- termined that free energy has a global minimum at ϕ 0. The parametrization (15) is the most reasonable in this case. It is based on the effective action accounting for the one-loop plus daisy diagrams [13], ≠ −+= 2 2 22 2 22 log 48 11 2 )( µπ THHgHHF (16) 2 23 00 23 )]0([ 12 1)( 3 1 Π−− TrTgH π , having g2 and (g2)3/2 orders in coupling constant. Here, H is field strength (flux ϕ~H), T is the temperature, µ is the normalization point, is the zero-zero component of the gluon polarazation operator calculated in the exter- nal field at the finite temperature and taken at zero mo- mentum. The value of β=3, which was used, corresponds to a deep perturbation regime. So, a comparison with perturbation results is reasonable. The systematic errors in fitting function (15) could come from not taking into ac- count the high-order diagrams in (16). However, as it is well-known [15], the lack of an expansion parameter at finite temperature starts from the three-loop diagram con- tributions that is of g )0(00Π 6 order and could not remove an ef- fect derived in g2 and g3 orders. As the finite-size effects are concerned, in the present investigation we just made calculations for two lattices 2x83 and 2x163 and have derived the same results for the ϕmin (as it will be seen below). A more detailed investigation of this issue re- quires much more computer resources, which were lim- ited. There are 3 unknown parameters, Fmin, b and ϕmin in Eq.(16). The parameter ϕmin denotes the minimum posi- tion of the free energy, whereas the Fmin and b are the free energy density at the minimum and the curvature of the free energy function, correspondingly. The value ϕmin is obtained as the result of the minimi- zation of the -function ),,( minmin 2 ϕχ bF ∑ −−+ = i i ii FD FbF ))(( ))()(( 22 minmin2 ϕ ϕϕϕ χ , (17) where ϕi is the array of the set fluxes and D(F(ϕi)) is the data dispersion. It can be obtained by collecting the data into the bins (as a function of flux), ∑ ∈ − − = bini bin bini i n FFFD 1 )ˆ)(())(( 2ϕϕ , (18) where nbin is the number of points in the considered bin, is the mean value of free energy density in the con- sidered bin. As it is determined in the data analysis, the dispersion is independent of the magnetic flux values ϕ. The deviation of ϕ binF̂ min from zero indicates the presence of spontaneously generated field. Fig. 2. χ2-fit of the free energy density on lattice for β=3.0 (grey region describe the ϕ 316× .0min= at the 95% C.L.) 0022.0 0057.00069+− The values of the generated fluxes ϕmin for different lattices (at the 95% C.L.) ϕmin 2x83 2x163 4x83 β=3 013.0 012.0019.0 + − 0022.0 0057.00069.0 + − 005.0 003.0005.0 + − β=5 011.0 010.0020.0 + − - - The fit results are given in Table 1. As one can see, ϕmin demonstrates the 2σ-deviation from zero. The de- pendence of ϕmin on the temperature is also in accordance with the results known in perturbation theory: the in- crease in temperature results in the increasing of the field strength [4]. The fit for the lattice 2x163 at β=3.0 is shown in Fig. 2. The maximum-likelihood estimate of F(ϕ) by the whole data set is shown as the solid curve. In addition, all ϕ values are divided into 10 bins. The mean values and the 95% confidence intervals are presented as points for each bin. The first 7 bins contain about 600-2000 points per bin. The large number of points in the bins allow to find the free energy F with the accuracy which substan- tively exceeds the dispersion, 410~))(( − iFD ϕ . It makes possible to detect the effect of interest. As it is also 113 seen, the maximum-likelihood estimate of F(ϕ) is in a good accordance with the bins pointed, because the solid line is located in the 95% confidence intervals of all bins. The 95% confidence level (C.L.) area of the parame- ters b and ϕmin is represented in Fig. 3. The black cross marks the position of the maximum-likelihood values of b and ϕmin. It can be seen that the flux is positive deter- mined. The 95% C.L. area becomes more symmetric with the center at the Fmin, b and ϕmin when the statistics is in- creasing. This also confirms the results of the fitting. Fig. 3. The 95% C.L. area for the parameters ϕmin and b, determining the free energy density dependence on the flux ϕmin on lattice for β=3.0 3162× 4. DISCUSSION The main conclusion from the results obtained is that the spontaneously created temperature-dependent chromomagnetic field is present in the deconfinement phase of QCD. This supports the results derived already in the continuum quantum field theory [4,12] and in lattice calculations [9]. Let us first discuss the stability of the magnetic field at high temperature. It was observed in Refs. [4,12] that the stabilization happens due to the gluon magnetic mass calculated from the one-loop polarization operator in the field at temperature. This mass has the order 242122 ~)(~ TgTgHgmmagn as it should be because the chromomagnetic field is of order TggH 221 ~)( [4]. The stabilization is a non-trivial fact that, in princi- ple, could be changed when the higher order Feynman diagrams to be accounted for. Now we see that the sta- bilization of the field really takes place. Our approach based on the joining of calculation of the free energy functional and the consequent statistical analysis of its minimum positions at various tempera- tures and flux values. This overcomes the difficulties peculiar to the description of the field on a lattice. Here we mean that the field strength on a lattice is quantized and therefore a non-trivial tuning of the coupling con- stant, temperature and field strength values has to be done in order to determine the spontaneously created magnetic field. We also would like to note that in the present paper the flux dependence on temperature remains not inves- tigated in details. This is because of the small lattice size considered. That restricts the number of points permissible to study. However, at this stage we have determined the effect of interest as a whole. Even at the small lattice, one needs to take into consideration thou- sands points of free energy (that corresponds to an analysis of 5-10 millions MC configurations for differ- ent lattices) to determine the flux value ϕmin at the 95% C.L. In case of larger lattices this number and corre- sponding computer resources should be increased con- siderably. This problem is left for the future. It is interesting to compare our results with that of in Ref. [10] where the response of the vacuum on the ex- ternal field was investigated. These authors have ob- served in lattice simulations for the SU(2)- and SU(3)- gluodynamics that the external field is completely screened by the vacuum at low temperatures, as it should be in the confinement phase. With the tempera- ture increase, the field penetrates into the vacuum and, moreover, increase in temperature results in existing more strong external fields in the vacuum. On the other hand, increase in the applied external field strength leads to the decreasing of the deconfinement tempera- ture. These interesting properties are closely related to the studies in the present work. Actually, we have also investigated the vacuum properties as an external field problem when the field is described in terms of fluxes. This was the first step of the calculations. The next step was the statistical analysis of the minimum position of free energy, in order to determine the spontaneous crea- tion of the field. In fact, at the first step we reproduced the results of Refs. [10] (in terms of fluxes). Note that the present investigations also correspond to the case of the early universe. They support our pre- vious results on the magnetic field generation in the standard model [13] and in the minimal supersymmetric standard model [14]. As it was discussed by Pollock [5], the field generated by this mechanism at the Planck era might serve as a seed field to produce the present day magnetic fields in galaxies. We would like to conclude with the note that the de- confinement phase of gauge theories is a very interest- ing object to study. The temperature dependent mag- netic fields living in this state influence various proc- esses that should be taken into consideration to have an adequate concept about them. REFERENCES 1. D. Grasso, H. Rubinstein. Magnetic fields in the early universe //Phys. Rept. 2001, v. 348, p. 163-266. 2. K. Enqvist, P. Olesen. Ferromagnetic vacuum and galac- tic magnetic fields //Phys. Lett. B. 1994, v. 329, p. 195- 198. 3. A. Starinets, A. Vshivtsev, V. Zhukovsky. Color ferro- magnetic state in SU(2) gauge theory at finite tempera- ture //Phys. Lett. B. 1994, v. 322, p. 403-412. 4. V. Skalozub, M. Bordag. Once more on a color ferro- magnetic vacuum state at finite temperature //Nucl. Phys. B. 2000, v. 576, p. 430-444. 5. M. Pollock. Magnetic fields and vacuum polarization at the Planck era //Int. J. Mod. Phys. D. 2003, v. 12, p. 1289-1298. 6. G. Savvidy. Infrared instability of the vacuum state of gauge theories and asymptotic freedom //Phys. Lett. B. 1977, v. 71, p. 133. 114 7. J. Adams et al [STAR Collaboration]. Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration's critical assessment of the evidence from RHIC collisions //Nucl. Phys. A. 2005, v. 757, p. 102-183. 8. V. Skalozub, A. Strelchenko. The polarization tensor of neutral gluons in external fields at high temperature //Eur. Phys. J. C. 2005, v. 40, p. 121-127. 9. N. Agasian. Thermal gluomagnetic vacuum of SU(N) gauge theory //Phys. Lett. B. 2003, v. 562, p. 257-264. 10. P. Cea, L. Cosmai. Probing the nonperturbative dynam- ics of SU(2) vacuum //Phys. Rev. D. 1999, v. 60, p. 094506 (1-10). 11. G. 't Hooft. A property of electric and magnetic flux in non-Abelian gauge theories //Nucl. Phys. B. 1979, v. 153, p. 141-160. 12. V. Skalozub, A. Strelchenko. On generation of abelian magnetic fields in SU(3) gluodynamics at high tempera- ture //Eur. Phys. J. C. 2004, v. 33, p. 105-112. 13. V. Demchik, V. Skalozub. The spontaneous generation of magnetic and chromomagnetic fields at high tempera- ture in the Standard model //Eur. Phys. J. C. 2002, v. 25, p. 291-296. 14. V. Demchik, V. Skalozub. The spontaneous generation of magnetic fields at high temperature in a supersymmet- ric theory //Eur. Phys. J. C. 2003, v. 27, p. 601-607. 15. A. Linde. Phase transitions in gauge theories and cosmology //Rept. Prog. Phys. 1979, v. 42, p. 389. СПОНТАННАЯ ГЕНЕРАЦИЯ МАГНИТНЫХ ПОЛЕЙ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ В SU(2)-ГЛЮОДИНАМИКЕ НА РЕШЕТКЕ В.И. Демчик, В.В. Скалозуб Исследована спонтанная генерация хромомагнитного поля при высокой температуре в решеточной фор- мулировке SU(2)-глюодинамики. Разработана процедура для исследования этого эффекта на решетке. Про- ведено моделирование методом Монте Карло на решетках 2x83, 4x83 и 2x163 при различных температурах. χ2-анализ полученных данных указывает на существование в фазе деконфайнмента спонтанно рожденного магнитного поля. Проведено сравнение с результатами, полученными в других приближениях. СПОНТАННА ГЕНЕРАЦІЯ МАГНІТНИХ ПОЛІВ ПРИ ВИСОКІЙ ТЕМПЕРАТУРІ В SU(2)-ГЛЮОДИНАМІЦІ НА ГРАТЦІ В.І. Демчик, В.В. Скалозуб Досліджено спонтанну генерацію хромомагнітного поля при високій температурі в гратковій формуліро- вці SU(2)-глюодинаміки. Розроблено процедуру для дослідження цього ефекта на гратці. Проведено моде- лювання методом Монте Карло на гратках 2x83, 4x83 та 2x163 при різних температурах. χ2-аналіз отриманих даних вказує на наявність у фазі деконфайнменту магнітного поля, що народжується спонтанно. Проведено порівняння з результатами, отриманими у інших наближеннях. 115