Covariant amplitude decomposition in relativistic fermion scattering problems
A parameterization of on-mass-shell relativistic fermion scattering amplitudes by a set of 4 covariant amplitudes is proposed, which in the non-relativistic limit turn to coefficients of the matrix amplitude decomposition over the unity and Pauli matrices, and in the ultra-relativistic limit – to sy...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/110941 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Covariant amplitude decomposition in relativistic fermion scattering problems / M.V. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 104-110. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-110941 |
|---|---|
| record_format |
dspace |
| spelling |
Bondarenko, M.V. 2017-01-07T09:25:30Z 2017-01-07T09:25:30Z 2007 Covariant amplitude decomposition in relativistic fermion scattering problems / M.V. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 104-110. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 11.80.Cr, 13.60.-r, 13.66.-a, 13.75.Cs https://nasplib.isofts.kiev.ua/handle/123456789/110941 A parameterization of on-mass-shell relativistic fermion scattering amplitudes by a set of 4 covariant amplitudes is proposed, which in the non-relativistic limit turn to coefficients of the matrix amplitude decomposition over the unity and Pauli matrices, and in the ultra-relativistic limit – to symmetrized helicity amplitudes. In the general rela-tivistic case, the covariant amplitudes express as spurs of the matrix amplitude supplemented by γ-matrix factors not exceeding 3-rd degree. Algebraic computation of such spurs provides a comparatively short and fully covariant approach for calculation of fermion scattering processes, allowing account for all polarization observables. For extension of the method to problems of two-fermion scattering, when permitted are both ways of transition 1→3, 2→4 and 1→4, 2→3, relativistic on-mass-shell Fierz relations interconnecting the two possible definitions of transition amplitudes are derived, under simplifying assumptions of equal fermion masses and scattering elasticity. Eigenfunctions of the on-shell Fierz relations are constructed, and advantages of their use for automatic account for contributions from cross-diagrams are demonstrated with the example of Møller scattering. Запропоновано параметризацію амплітуди розсіяння релятивістського ферміона на масовій поверхні набором 4 коваріантних амплітуд, які в нерелятивістському наближенні переходять у коефіцієнти розкладення матричної амплітуди по одиничній матриці та матрицям Паулі, а в ультререлятивістській границі – у симетризовані спіральні амплітуди. В загальному релятивістському випадку коваріантні амплітуди виражаються через шпури від матричної амплітуди з додатковими γ-матричними факторами, ступінь яких не перевищує 3. Алгебраїчне обчислення таких шпурів дає порівняно короткий та повністю коваріантний шлях розрахунку процесів розсіяння ферміонов, з урахуванням усіх поляризацій. Для узагальнення методу до задач розсіяння двох ферміонів, в умовах коли можливі обидва шляхи переходів 1→3, 2→4 та 1→4, 2→3, виведено релятивістські тотожності Фірца на масовій поверхні, які зв’язують визначення амплітуд переходу, за спрощуючих припущеннях рівності мас усіх ферміонів та пружності розсіяння. Побудовано власні функції тотожностей Фірца, та продемонстровано переваги їх використання для автоматичного врахування вкладів від перехресних діаграм на прикладі Мелеровського розсіяння. Предложена параметризация амплитуды рассеяния релятивистского фермиона на массовой поверхности набором 4 ковариантных амплитуд, которые в нерелятивистском пределе переходят в коэффициенты разложения матричной амплитуды по единичной матрице и матрицам Паули, а в ультрарелятивистском пределе – в симметризованные спиральные амплитуды. В общем релятивистском случае ковариантные амплитуды выражаются через шпуры от матричной амплитуды, помноженной на γ-матричные факторы степени не выше 3. Алгебраическое вычисление таких шпуров дает сравнительно короткий и полностью ковариантный путь расчета процессов рассеяния фермионов, с учетом всех поляризационных наблюдаемых. Для обобщения метода на задачи рассеяния двух фермионов, в условиях когда допустимы оба пути переходов 1→3, 2→4 и 1→4, 2→3, выведены релятивистские тождества Фирца на массовой поверхности, связывающие два возможных определения амплитуд перехода, при упрощающих предположениях равенства масс всех фермионов и упругости рассеяния. Построены собственные функции тождеств Фирца, и продемонстрированы преимущества их использования для автоматического учета вкладов от кросс-диаграмм на примере Меллеровского рассеяния. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Elementary particle theory Covariant amplitude decomposition in relativistic fermion scattering problems Метод коваріантних амплітуд у задачах розсіяння релятивістських ферміонів Метод ковариантных амплитуд в задачах рассеяния релятивистских фермионов Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Covariant amplitude decomposition in relativistic fermion scattering problems |
| spellingShingle |
Covariant amplitude decomposition in relativistic fermion scattering problems Bondarenko, M.V. Elementary particle theory |
| title_short |
Covariant amplitude decomposition in relativistic fermion scattering problems |
| title_full |
Covariant amplitude decomposition in relativistic fermion scattering problems |
| title_fullStr |
Covariant amplitude decomposition in relativistic fermion scattering problems |
| title_full_unstemmed |
Covariant amplitude decomposition in relativistic fermion scattering problems |
| title_sort |
covariant amplitude decomposition in relativistic fermion scattering problems |
| author |
Bondarenko, M.V. |
| author_facet |
Bondarenko, M.V. |
| topic |
Elementary particle theory |
| topic_facet |
Elementary particle theory |
| publishDate |
2007 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Метод коваріантних амплітуд у задачах розсіяння релятивістських ферміонів Метод ковариантных амплитуд в задачах рассеяния релятивистских фермионов |
| description |
A parameterization of on-mass-shell relativistic fermion scattering amplitudes by a set of 4 covariant amplitudes is proposed, which in the non-relativistic limit turn to coefficients of the matrix amplitude decomposition over the unity and Pauli matrices, and in the ultra-relativistic limit – to symmetrized helicity amplitudes. In the general rela-tivistic case, the covariant amplitudes express as spurs of the matrix amplitude supplemented by γ-matrix factors not exceeding 3-rd degree. Algebraic computation of such spurs provides a comparatively short and fully covariant approach for calculation of fermion scattering processes, allowing account for all polarization observables. For extension of the method to problems of two-fermion scattering, when permitted are both ways of transition 1→3, 2→4 and 1→4, 2→3, relativistic on-mass-shell Fierz relations interconnecting the two possible definitions of transition amplitudes are derived, under simplifying assumptions of equal fermion masses and scattering elasticity. Eigenfunctions of the on-shell Fierz relations are constructed, and advantages of their use for automatic account for contributions from cross-diagrams are demonstrated with the example of Møller scattering.
Запропоновано параметризацію амплітуди розсіяння релятивістського ферміона на масовій поверхні набором 4 коваріантних амплітуд, які в нерелятивістському наближенні переходять у коефіцієнти розкладення матричної амплітуди по одиничній матриці та матрицям Паулі, а в ультререлятивістській границі – у симетризовані спіральні амплітуди. В загальному релятивістському випадку коваріантні амплітуди виражаються через шпури від матричної амплітуди з додатковими γ-матричними факторами, ступінь яких не перевищує 3. Алгебраїчне обчислення таких шпурів дає порівняно короткий та повністю коваріантний шлях розрахунку процесів розсіяння ферміонов, з урахуванням усіх поляризацій. Для узагальнення методу до задач розсіяння двох ферміонів, в умовах коли можливі обидва шляхи переходів 1→3, 2→4 та 1→4, 2→3, виведено релятивістські тотожності Фірца на масовій поверхні, які зв’язують визначення амплітуд переходу, за спрощуючих припущеннях рівності мас усіх ферміонів та пружності розсіяння. Побудовано власні функції тотожностей Фірца, та продемонстровано переваги їх використання для автоматичного врахування вкладів від перехресних діаграм на прикладі Мелеровського розсіяння.
Предложена параметризация амплитуды рассеяния релятивистского фермиона на массовой поверхности набором 4 ковариантных амплитуд, которые в нерелятивистском пределе переходят в коэффициенты разложения матричной амплитуды по единичной матрице и матрицам Паули, а в ультрарелятивистском пределе – в симметризованные спиральные амплитуды. В общем релятивистском случае ковариантные амплитуды выражаются через шпуры от матричной амплитуды, помноженной на γ-матричные факторы степени не выше 3. Алгебраическое вычисление таких шпуров дает сравнительно короткий и полностью ковариантный путь расчета процессов рассеяния фермионов, с учетом всех поляризационных наблюдаемых. Для обобщения метода на задачи рассеяния двух фермионов, в условиях когда допустимы оба пути переходов 1→3, 2→4 и 1→4, 2→3, выведены релятивистские тождества Фирца на массовой поверхности, связывающие два возможных определения амплитуд перехода, при упрощающих предположениях равенства масс всех фермионов и упругости рассеяния. Построены собственные функции тождеств Фирца, и продемонстрированы преимущества их использования для автоматического учета вкладов от кросс-диаграмм на примере Меллеровского рассеяния.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/110941 |
| citation_txt |
Covariant amplitude decomposition in relativistic fermion scattering problems / M.V. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 104-110. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT bondarenkomv covariantamplitudedecompositioninrelativisticfermionscatteringproblems AT bondarenkomv metodkovaríantnihamplítuduzadačahrozsíânnârelâtivístsʹkihfermíonív AT bondarenkomv metodkovariantnyhamplitudvzadačahrasseâniârelâtivistskihfermionov |
| first_indexed |
2025-11-27T05:40:34Z |
| last_indexed |
2025-11-27T05:40:34Z |
| _version_ |
1850802680425873408 |
| fulltext |
COVARIANT AMPLITUDE DECOMPOSITION
IN RELATIVISTIC FERMION SCATTERING PROBLEMS
M.V. Bondarenco
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
e-mail: bon@kipt.kharkov.ua
A parameterization of on-mass-shell relativistic fermion scattering amplitudes by a set of 4 covariant amplitudes
is proposed, which in the non-relativistic limit turn to coefficients of the matrix amplitude decomposition over the
unity and Pauli matrices, and in the ultra-relativistic limit – to symmetrized helicity amplitudes. In the general rela-
tivistic case, the covariant amplitudes express as spurs of the matrix amplitude supplemented by -matrix factors
not exceeding 3-rd degree. Algebraic computation of such spurs provides a comparatively short and fully covariant
approach for calculation of fermion scattering processes, allowing account for all polarization observables. For ex-
tension of the method to problems of two-fermion scattering, when permitted are both ways of transition 1→3, 2→4
and 1→4, 2→3, relativistic on-mass-shell Fierz relations interconnecting the two possible definitions of transition
amplitudes are derived, under simplifying assumptions of equal fermion masses and scattering elasticity. Eigenfunc-
tions of the on-shell Fierz relations are constructed, and advantages of their use for automatic account for contribu-
tions from cross-diagrams are demonstrated with the example of Møller scattering.
γ
PACS: 11.80.Cr, 13.60.-r, 13.66.-a, 13.75.Cs
1. INTRODUCTION
In computations of scattering processes of relativis-
tic fermions, when those emit or absorb several quanta,
evaluation of spin matrix products consumes consider-
able effort, especially if the goal is pursued to bring the
result to a visual form. To that objective, there is no
common approach, which might afford to completely
rely on symbolic calculation with the aid of computer.
Since the result of symbolic computation of a -matrix
product (basing on algebraic relations, such as those of
anticommutation) depends on the number of -matrices
in the product, virtually, in a factorial manner, it is ob-
vious, that the computation must be carried out not on
the level of cross-sections, but on the level of ampli-
tudes. But in the letter case, there arise questions, how
to preserve covariance of the analysis and the correct
number of spin degrees of freedom on the mass shell.
For matrix element computation, a formidable number
of approaches has been proposed [1-6], which footed on
special forms of a basis for bispinors or/and Lorentz-
vectors, or, as in [7,8], the bispinors were augmented to
the form of density matrices, at the expense of appear-
ing polarization-dependent denominators. This
contribution offers formulation of an approach, in
which no information on bispinor realizations is
inv
γ
γ
olved. Beginning with scattering of one fermion, the on-
shell matrix element may always be parameterized as
( )uASIuMuuM fi
5γγ+′=′= µµ , (1)
given that bispinors u , u ′ obey Dirac equations1
( ) 0=−γ ump , ( ) 0=′−′′ mpu γ ,
and so are allowed for 2 spin degrees of freedom. The
1 The account for difference between initial and final fer-
mion masses may be essential in problems of baryon excita-
tion or change of flavour.
component of vector , parallel to µA mpmp ′′+ µµ ,
does not contribute to (1) on account of the identity
( ) 05 ≡γγ′′+′ µµµ umpmpu ,
so the set of , contains the correct number of 4
linearly independent components. The choice of ,
as basic matrices on-shell is not the only possible
one, but it is favored because in the non-relativistic limit
the spatial part of is equivalent to Pauli matrices.
S µA
5γγ
I
5γγ
The explicit formulas for evaluating covariant am-
plitudes introduced in (1) read2
( ) ( ;
4
11 mpMmpSp
mmpp
S +′+′
′+′
= γγ ) (2)
( ) ( ) ,
4
11 5 νµνµ γγγγ mpMmpSp
mmpp
GA +′+′
′+′
= (3)
where3
( )( )
( ) ( ) ,
4
1
νµµννµ
ννµµµνµν
αα mpmpmpmp
mpmpmpmpgG
+′′++′′+
−′′−′′−=
with arbitrary vector . The choice of α will further
be referred to as “acceptance condition”. Two choices
important for practice are
µα µ
−= 2m
ppgGp
νµ
µνµν ,
′
′′
−=′ 2m
ppgp
νµ
µνµνG . (4)
Also, if in some reference frame the scattering is elastic
( , ), it may be convenient to make mm =′ Epp ==′ 00
2 As is straightforward to check by substituting
to (2), (3). 5γγASIM +=
3 The vector coefficient at mpmp νν +′′
µA
in (3) has no
effect on the form of the vector and is chosen so that ten-
sor is symmetric. µνG
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 104-110. 104
µνG have only spatial components non-zero. Then,
G
pr =
=
=
=
2′− a
( )
Π+Π+′+Π= µνµνµνµν
qrNE mE
pp 22
2
4
1
4
1 , (5)
where means projector on the vector indicated at
its subscript (
µνΠ
2xxxx
νµµν ≡Π
p′
N
q r
), , is
the spatial part of vector (i. e., r ,
), – a vector, orthogonal to , and to
the time axis. According to (5), tensor G is diagonal
in the orthogonal basis of , , .
µµµ ppq −′=
µp+
q r
µν
N
µr
0 =µ 0
p+′
In the non-relativistic limit, at any of the accep-
tances (4), (5), reduces to the vector coefficient of
expansion of a 2 amplitude over Pauli matrices.
µA
2×
Amplitudes and carry the full information
about the scattering, and have a “minimal” structure
from the viewpoint of algebraic covariant computation.
These are also well-suited for expression of scattering
observables, as will be shown shortly. In what follows,
we shall for simplicity put .
S µA
m m=′
With the given definitions, it is straightforward to
find that the cross-section averaged over initial and final
fermion spin states expresses only through squares of
the covariant amplitudes:
( ) ( )
( )
( )
( ) ( )
−+′
−+′
−+′
+γ+γ′=′
νµµν−
′
*122
222
222
2
2
1
2
1
EEE
p
p
AAGSmpp
ASmpp
ASmpp
MmpMmpSpMuu
(6)
(positive definiteness of final expressions is secured by
vectors , , being space-like). If, further,
fermion polarization effects are concerned, a correspon-
dence of the covariant amplitudes with mean polariza-
tion vectors or spin asymmetries referred to some quan-
tization axes has to be established, as is done below.
pA pA ′ EA
2. EXPRESSION OF ONE-FERMION
POLARIZATION CHARACTERISTICS
2.1. The generic quantity carrying information about
all polarization effects in terms of particle polarization
vectors is the scattering amplitude square averaged over
the density matrices with arbitrary polarization
4-vectors , ( pa , , ,
):
µa µa′ 0= 12 ≤− a 0=′′ap
1≤
aa
Muu
′
′
,
2
( )( ) ( )( )
( ) ,1
1
2
11
2
1
2
55
νµ
′→
µν
′
νν
′
µ
′→
µ
′ ′+′−−′=
γγ++γγγ′++γ′=
aahagafMuu
MampMampSp
ppppp
(7)
where coefficients , , are assumed to be
orthogonal to the momentum , and notation
µ
pf ′
ν
pg ′
µν
ph ′
′p
( )µµµµ pp
mpp
apaa p ′+
+′
′
−=′→ 2
, ( ) (8) 0=′′→ pa p
is utilized for the initial polarization 4-vector a , trans-
formed by a straight Lorentz boost to position . In
terms of coefficients , and , the final polariza-
tion 4-vector may be retrieved as
p′⊥
f g h
( )
p
pppaa
a
fin fa
ahg
a
Muu
Muu
a
′→
µ
′→
µν
′
ν
′
ν
′ν
−
−
=
′δ
′δ
′
−=′
1
1 ,
2
2
.
For expression of coefficients (7) in terms of covari-
ant amplitudes, it is natural to adopt acceptance ⊥ .
Computation from the definition (7) then gives
p′
4
( )
;
1Re2
22
**
p
ppp
p
AS
AApi
m
AS
f
′
′′′
′
−
′−
=
λκρρκλµµ
µ
ε
(9)
( )
;
1Re2
22
**
p
ppp
p
AS
AApi
m
AS
g
′
′′′
′
−
′+
=
λκρρκλνν
ν
ε
(10)
( ) ( ) .*Im2Re2 *
22
122
′ε−−
+
−=
λ
′
κκλµνν
′
µ
′
µν
′′
−
′
µν
′
ppp
pppp
ASp
m
AA
gASASh
(11)
In appearance, the above expressions are straightfor-
ward generalizations of known non-relativistic ones.
Since the number of the observables 2Muu ′
µA
,
, , is 16, exceeding the number of real pa-
rameters in the 4 complex amplitudes S , , measur-
able, moreover, up to an overall phase, the polarization
observables must obey some identities. A possible way
to express those is to write
µ
pf ′
ν
pg ′
µν
ph ′
( )( ) ( )( )λ
′
λ
′
λµ
′
µλ
′
µ
′
µ
′
λλ
′ +−=−+ ppppppp gfhhgfh1 ,
( )
( )( ) ( )( )
( )
.0
1
1
1
2
2
2
2
2
=
+
′ε′ε+++
+
+
′′−−+
+
′′
−
λλ
′
βγ
′
ααβγνστ
′
ρρστµν
′
ν
′
µ
′
µ
′
λλ
′
νµµνλλ
′
νµ
′
µν
′νµ
µν
p
pppppp
p
ppp
h
hphp
m
gfgf
h
mppghhh
m
ppg
µ
In turn, from the measured analyzing powers ,
and spin correlation coefficients , covariant ampli-
tudes in acceptance can be extracted up to their
overall phase as follows:
pf ′
ν
pg ′
µν
ph ′
p⊥
4
1
2
2
2
λλ
′+
+′
′
= ph
mpp
Muu
S ,
4 The calculation is a simple matter when using the identity
( )( )( )( ) ( )( )( )525 121 γγγγγγγγ pampmppmpampmp ′→++′+′=+′+++′ .
105
4
1
2
2
*
στ
′
ρρστµµ
′
µ
′µ
′
′ε++
+′
′
=
ppp
p
hpi
m
gf
mpp
Muu
AS ;
( )( ) 2*** SASSAAA pppp
ν
′
µ
′
ν
′
µ
′ = .
2.2. Among spin bases employed for description of
relativistic fermion polarization phenomena, spiral one
is among most widespread, especially in the high-
energy limit of gauge theories, where helicity is virtu-
ally con-served. To express helicity amplitudes in terms
of covariant ones, it is appropriate to adopt elastic ac-
ceptance (5) and the “low-energy” representation for -
matrices and bispinors:
γ
−
+
=γγ+
σA
σA
E
E
E S
S
ASI
0
05 ;
;
−
+=
λ
λ
λ λχ
χ
mE
mEu ( λ ); ±=λ′,
( )+λ′+
λ′λ′ χ′λ′−−χ′+=′ mEmEu , .
For definition of Pauli spinor components and overall
phases, choose a spatial coordinate frame with axis
along vector r , and along . Then,
x
pp ′+= y ppq −′=
−+
−=σ+σ+σ= Nqr
qrN
Nqr
E
AiAA
iAAAAAA 321σA ,
and in the phase convention of [9],
;
2
1
4
4 ∗
+−+ ′=
= χχ θ
θ
i
i
e
e
∗
−θ−
θ
− χ′=
−=χ 4
4
2
1
i
i
e
e
( θ is the scattering angle, being, in the chosen frame,
the azimuthal angle with respect to -axis). Computing
matrix elements with the given entries yields
z
( )
( ) ;22
,22
q
r
mAiMM
EAMM
=−
=−
−++−
−−++ (12a)
( )
( ) .
2
cos2
2
sin22
;
2
sin2
2
cos22
N
N
AmSiEMM
AiESmMM
θθ
θθ
−−=+
+=+
+−−+
−−++
(12b)
In view of (12a), vector amplitude components ,
admit direct interpretation as P- and T-asymmetries
of helicity amplitudes
rA
qA
5, but and are related with S NA
( ) 2−−+ + M+M and ( ) 2+ MM
S
+−−+ via a matrix,
unitary up to a common factor, which gets diagonal in
the massless limit only (then, is a helicity-flip, –
helicity non-flip amplitude).
NA
5 At a different choice of basis helicity states, the helicity
amplitudes would enter (12a,b) with additional phases. For
example, in the convention of [10],
∗
+−+ ′=
= χχ θ 2
1
2
1
ie
, ;
12
1 2 ∗
−− ′=
−= χχ
θie
( )
( ) .
2
sin2
2
cos22
;22
22
22
Nii
rii
AiESmeMeM
EAeMeM
θθθθ
θθ
+=+
=−
−
−−++
−
−−++
2.3. In the simplest physical situation, when the fer-
mion scatters due to absorption of a single (virtual) pho-
ton with polarization , by virtue of parity and gauge
invariance of electromagnetic interaction, the matrix
amplitude admits parameterization
νe
( ) ( )
( )
γ+
′+
′+
−= e
pp
eppmM mme FFF2 2
.
, (13)
where , are functions of , real in the
domain and referred to as charge and
magnetic form-factors. Such not a self-evident fashion
of parameterization proves advantageous because
and appear to not interfere in the cross-section av-
eraged over fermion spins – in contrast to form-factors
introduced in a fashion suggested by perturbation theory
eF
p
m
mF
( −′ p
( 2pp −′ )
) 02 <
eF
F
λκκλ
⋅
σ−γ= qe
m
eM 21 F
2
1F .
In this regard, it is instructive to compute the covariant
amplitudes by substituting (13) into (2), (3). One finds:
( )
;F
2 empp
eppmS
+′
′+
= m
mpp
eppiA F2+′
′ε
=
νβαµαβν
µ
(in any of acceptances (4) or (5)). Recalling (6), the
non-interference of and in the averaged cross-
section should be regarded as natural result.
eF mF
If polarization is linear, the direction of vector
serves as a physical quantization axis. Manifestly, if
designates a unit real vector in the space-like direc-
tion of (so that ), the matrix
commutes with both
νe
A
µN
µA µµ = NAA N 5γγN
γp and γp′
I=
, and on account of
the identity ( , its eigenvalues equal ±1.
Thus, it is possible to pick an initial spin basis u and a
final basis u so that
Nγγ
′
25 )
σ
σ′
σσ σ=γγ uuN 5 , σ′σ′ ′σ′=γγ′ uNu 5 , ( ) ±=σ′σ,
and ( ) +−−+−+ ′==γγ−γγ′=′ uuuNNuuu 055 . Then,
( ) ( )NASuuuASIu σ+′δ=γγ+′ σσσσ′σ
µµ
σ′
5 .
Owing to reality of the form-factors, thereat
, so the polarizing effect is absent
and the vector amplitude acts merely as an axis of spin
precession. However, for the problem of scattering in a
strong, centrally-symmetric electrostatic field, the struc-
ture of invariant amplitudes remains similar (with
substituted by the time axis direction), but these become
energy-dependent and are no longer real. Under such
conditions , so the polarizing
effect may be essential.
|||| NN ASAS −=+
|| NAS +
νe
|| NAS −≠
If, moreover, the field is not centrally-symmetric, or
the process of scattering is accompanied by radiation
with substantial recoil, the direction of the vector ampli-
tude is no longer fixed by kinematics alone. In this
event, the quantization axis direction can be straight-
forwardly computed via formula (3).
106
3. TWO-FERMION COVARIANT AMPLITUDES.
RELATIVISTIC ON-SHELL FIERZ RELATIONS
Generalization of the covariant amplitude approach to the case of collision between two fermions can be made
by introducing parameterizati n of the on-shell matrix element like o
( ){ ( ) ( ) ( ) } 1242
5
31
5
42,3142
5
31424231
5
31423142,31341234 uuBIAIAIISuuuMuuuM fi γγγγ+γγ+γγ+== νµµνννµµ , (14)
where subscript 31 at matrices , indicates that those act from spin state of the particle with momentum
into spin state of the particle with momentum , and similarly for subscript 42.
I 5γγ 1p
3p
Convenience of actual use of the representation (14) depends on structure of the matrix . If
, where is a shorthand for all variables of intermediate particles exchanged between fer-
mions, then covariant amplitudes in (14) are evaluated by formulae trivially generalizing those of one-particle theory:
M
( ) ( )∫ ΞΞΞ= 4231 MMdM Ξ
( )( ) ( ) ( )( ) ( ) ( )( 224244113133
24241313
42,31 4
1
4
11 mpMmpSpmpMmpSpd
mmppmmpp
S +γΞ+γ⋅+γΞ+γΞ
++
= ∫
µ ν µν
)
r r
(15)
and etc. for , , . The cross-section is correspondingly formed by a formula generalizing (6). 31A 42A 4231,B
However, if there are two cross-subprocesses interfering in the matrix scattering amplitude:
, (16) ( ) ( ) ( ) ( )∫∫ ΞΞΞ+ΞΞΞ= 32414231 MMdMMdM
direct calculation of coefficients in (14) with the second term of (16) yields spurs which do not factorize, unlike (15),
and straightforward algebraic expansion of such formidable spurs leads to improperly extensive results. In those cir-
cumstances, it is more practical to compute contribution from this cross-subprocess in its natural ep esentation
( ){ ( ) ( ) ( ) } 1232
5
41
5
32,4132
5
41323241
5
41324132,41341234 uuBIAIAIISuuuMuuu γγγγ+γγ+γγ+= νµµνννµµ , (14a)
whereas contribution from the first part of (15) – be still computed in representation (14). However, when doing so,
to analyse quantitatively the sum of such amplitudes, it should be brought to some common basis. It is not obvious
to propose any third basis except (14) and (14a), so there must be derived a kind of Fierz relations connecting the
two possible representations.
In discussion of Fierz relations between on-mass-shell relativistic fermions, we confine ourselves to the case of
elastic scattering of two equal-mass particles6, i. e. assume identities
µµµµµ Ppppp
def
=+=+ 4321 , . mmmmm
def
==== 4321
When interrelating the amplitudes, it is expedient to adopt for them some common acceptance, a natural choice of
which, by symmetry reasons, is (analog of (5)). The resulting spin crossing relations are quoted below: P⊥
( ) ( )κκγβααβγκ +ε+
−=+ 32412343241
2
31
2
41
22
4231
4
13 4
2
12 AApppmiSppPmSpp ,,
;
2
12 32,41
2
31
2
41
22 κλκλκλ BppGPm NP
Π−−
( ) ( ) 32412344231
4
13 8 ,SpppmiAApp γβαµαβγµµ ε=++ ( )( )κκµκµκ +Π−+ 3241
2
31
2
41
224 AAppGPm NP
( );4 32,4132,41234
λκκλγβαλαβγµκ ε BBpppimGP +−
( ) ( ) ( ) ( )[ ] 3241
2
13
2
14
2
31
2
4142314231
4
13 2 ,,, SGppppppBBpp PN
µνµννµµν ++−Π=++
( )( )κκγβαµαβγνκγβαναβγµκ +ε+ε+ 32412342344 AApppiGpppiGm PP
( )[ ] ;4 32,41
2
31
2
41
22 κλκλµνκλµνκνλµλνκµ BGppGGGGGGPm NPPPPPPP Π−−++ ,
( ) ( ) ( )( ) κλδµδκλκκκµκµµµ ε+−−−=−+ 32413241413131414231
2
13 2 ,BPmiAAppppAApp ,
( ) ( ) ( ) ( )κκγβααβγκνµνµτµνκτνµµν −
ε−+ε=−+ 324123441313141242,3142,31
2
13
12 AApppipppp
mP
PmiBBpp
( ).1
32,4132,4131412
λκκλτσρρστκδδλµν −εε+ BBppPP
P
Here , , and 1331 ppp −= 1441 ppp −= ( )
Π+Π++Π= αβαβαβαβ
412312
2
13
1
4
1
Pm
ppNPG (cf. (5)).
6 It is worth reminding, that understood in approximate sense, equality of masses does not necessarily imply identity of parti-
cles. The typical example is proton and neutron, and, to a lesser accuracy, Λ -hyperon.
107
Before addressing specific models for particle inter-
action, the Fierz relations allow one to establish conse-
quences from the suggested symmetry properties. First
of all, it is apparent, that amplitudes
4231,S , , (17) µµ
4231 AA + νµµν
42314231 ,, BB +
and
µµ
4231 AA − , (18) νµµν
42314231 ,, BB −
constitute Fierz subgroups. The physical meaning of
combinations (17, 18) is that amplitudes (17) are sym-
metric under the simultaneous permutation (1↔2,
3↔4), and conserving the initial wave function permu-
tational symmetry, whereas amplitudes (18) are anti-
symmetric and permutational symmetry changing. For
collision of identical fermions, the permutational sym-
metry of initial and final states is obliged to be the same
(negative), then, only amplitudes (17) remain.
Consequences from discrete space-time symmetries
are also easy to deduce. Р-invariance of the matrix am-
plitude permits covariant amplitudes to have only com-
ponents
4231,S , , , , , (19) NA31
NA42
NN
,B 4231
N,N
,B ⊥⊥
4231
which upon the cross-transformation turn to a set of
similar structure: , , , , . 3241,S NA41
NA32
NNB 3241,
NNB ⊥⊥ ,
,3241
As for T-invariance, in analogy with the non-
relativistic case [11], one can infer that a scattering sub-
process, during which continuously 1→3, 2→4 (the
first term of (15), contributes only to amplitudes
4231,S , , , , . (20) 31
31
⊥A 31
42
⊥A 3131
4231
,
,B 3131
4231
⊥⊥ ,
,B
A cross-subprocess (the second term of (15)), accord-
ingly, yields amplitudes , , , ,
, which upon crossing transformation turn to
3241,S 41
41
⊥A 41
32
⊥A 4141
3241
,
,B
4141
3241
⊥⊥ ,
,B
4231,S , , ,41
42
41
31
⊥⊥ + AA 4141
4231
,
,B ( ) 4141
42314231
⊥⊥+ ,
,, BB νµµν ,
41
42
41
31 AA − , . (21) 4141
4231
4141
4231
,
,
,
, BB ⊥⊥ − − αβδµε
mP
In the sum of (20) and (21), forbidden are only 3 ampli-
tudes, namely, , and
.
31
42
31
31 AA − 31,41
42,31
41,31
42,31 BB +
31,
42,31
,31
42,31
NN BB −
In the maximally restricted case, when both P- and
T-invariance apply and the colliding fermions are iden-
tical, there remain only 5 non-zero amplitudes: S ,
, , , (direct analogs of
Wolfenstein’s parameters known in the non-relativistic
case [11]). In their terms, the averaged over all fermion
spins matrix element square is obtained to be
4231,
NN AA 4231 + NNB ,
,4231
3131
4231
,
,B 4141
4231
,
,B
( )
++++=
2
4231
2
4231
2
4231
22
13
2
1234
2
1 NNNN BAASmpp
uMuuu
,,
. (22) BPBm ,
,
,
,
24141
4231
423131
4231
4
4
4 ++
4. FIERZ-INVARIANT AMPLITUDES
AND ACCOUNT FOR CONTRIBUTIONS
FROM CROSS-DIAGRAMS
Besides amplitudes (17-18), symmetric and antisym-
metric under the simultaneous permutation (1↔2,
3↔4), i. e. physical permutation of particles, of further
use can be amplitudes of definite symmetry with respect
to separate permutations 1↔2 and 3↔4. At determining
such a symmetry, it should be minded that permutation
1↔2 or 3↔4 brings covariant amplitudes to a cross-
representation, so to compare the result with the initial
expression, it needs to be turned back to the initial rep-
resentation, with the aid of Fierz identities. Note, that in
the non-relativistic case, amplitudes of definite permuta-
tional symmetry both in the initial and in the final state
admit simple physical interpretation – those are transi-
tion amplitudes between states with definite values of
the two-fermion total spin. In terms of covariant ampli-
tudes, those classes, accordingly, come as a scalar, two
vector and a tensor combinations7 – with constant coef-
ficients, granting that non-relativistic spin does not de-
pend on momentum.
In the relativistic case, inception of dependence on
momenta deprives total spin of its absolute sense as a
vector, but concepts of permutational symmetry and
correspondent state multiplicity remain valid. Based on
on-shell Fierz identities, one can pick a full set of
“minimal” cross-symmetric and antisymmetric covari-
ant amplitude combinations, securing them to be non-
interfering in the spin-averaged cross-section. Below
quoted are expressions for singlet-singlet and triplet-
triplet amplitudes, those which stay non-zero under Р-,
Т-invariance and identity of colliding particles:
( ) ( )
( ) ( ) ;4
4
41,41
32,41
231,31
32,41
2
32,4132,41
2
14
41,41
42,31
231,31
42,31
2
42,3142,31
2
13
BmBPBSpp
BPBmBSppU
NN
NN
−−++−≡
++++=
(23a)
( ) {
( )
( ) {
( ) ;1
1
32412342
32,4132,41
2
14
42312342
42,3142,31
2
13
++
−+≡
+
−+=
κκδβααβδκ
µµδβα
ε AAippp
mP
BSpp
AAippp
BSppW
NN
NN
N
(23b)
( ) {
( )
( ) {
( ) ,4
4
32412342
31
2
41
32,4132,41
2
14
42312342
31
2
41
42,3142,31
2
13
+ε−
−+−≡
+ε+
−+=
κκδβααβδκ
µµδβααβδµ
AAippp
pp
m
BSpp
AAippp
pp
m
BSppW
NN
NN
A
(23c)
7 The latter tensor part virtually appears in terms of a sca-
lar, a vector (equivalent to antisymmetric tensor), and a sym-
metric tensor with zero trace.
108
( ) ( )
( ) ( ) ;4
4
41,41
32,41
231,31
32,41
2
32,4132,41
2
14
41,41
42,31
231,31
42,31
2
42,3142,31
2
13
BmBPBSpp
BPBmBSppW
NN
NN
NQ
−−++≡
−−++=
W=
(23d)
4141
3241
23131
3241
24141
4231
23131
4231
2 44 ,
,
,
,
,
,
,
, BmBPBPBmWQ −≡−= .
(23e)
The spin-averaged cross-section (22) rewrites through
the above amplitudes as
( ) ( )
.
42
1
8
1
16
1
16
1
22
31
2
41222
2
13
2
14
2222
1234
+
++
+
++=
AN
QNQ
WppWPm
pppp
WWUuMuuu
(24)
It appears, that Fierz-invariant amplitudes can sup-
ply an efficient tool for performing calculations, be-
cause contribution to them from any Feynman diagram
with continuous fermionic lines may be calculated via
that representation of covariant amplitudes, which cor-
responds to the order of fermionic transitions in this
diagram. Moreover, diagrams differing only by crossing
of fermion ends need not actually be calculated both –
with contributions from one diagram evaluated, it suf-
fices to make momentum and charge substitutions to
recover that from the other.
To illustrate efficiency of this way of conducting
calculations, it may be applied to scattering of two elec-
trons via one-photon exchange (Møller scattering). In
Feynman’s gauge, the corresponding matrix amplitude
is [9,10]:
( ) ( ) ( ) ( )
2
41
3241
2
31
4231
pp
M
µµµµ γγγγ
−= . (25)
Computing Fierz-invariant amplitudes for the first term
of (25) and deducing those from the other, one finds
;114
2
41
2
31
12
+=
pp
ppU
;11444
2
41
2
31
122
41
13
2
31
14
−=−=
pp
pp
p
pp
p
ppWNQ
211 =+=QW ;
( ) ( ) ( ) ( )
;114
22
2
41
2
31
12
2
41
2
14
2
13
2
31
2
13
2
14
NQ
N
W
pp
pp
p
pppp
p
pppp
W
=
−=
+−+
−
+−+
=
( ) ( ) ( ) ( )
( ) .
pp
Pm
p
pppp
p
ppppWA
+++−=
+++
−
+++
−=
2
41
2
31
22
2
41
2
13
2
14
2
31
2
13
2
14
11212
22
Note that all those quantities stay finite in the limit
, whereas contribution to (24) from W in this
limit is vanishing. In the opposite, non-relativistic limit,
achieved through , the main contribution
to (24) comes from U (singlet Coulomb scattering) and
from W (triplet Coulomb scattering).
0→m N
04131 →p,p
γ
NNQ
As is observed, expressions for cross-invariant am-
plitudes (even those resulting from individual diagrams)
prove to be more simple then the covariant amplitudes
they add up of in (23). Computation of loop and weak
corrections to such expressions can also be facilitated.
5. SUMMARY
The main objective of this note was to demonstrate,
that reducing the problem of calculation of relativistic
massive fermion scattering observables to evaluation of
the introduced covariant amplitudes, in a proper accep-
tance, is advantageous from the most points of view. In
the one-fermion case, it requires computation of spurs
of the matrix amplitude multiplied by polynomials of
-matrices not exceeding 3 degree. Such spurs may be
calculated using conventional algebraic techniques. The
relation with the scattering observables is also well
suited – the scattering cross-section averaged over ini-
tial and final fermion polarizations expresses through
the scalar and the vector amplitude squares. In case if
the vector amplitude is proportional to a real vector, the
latter serves as a physical quantization axis. In most
important limiting cases, the covariant amplitudes re-
duce to conventional basis sets: in the non-relativistic
limit the 4-vector amplitude turns to the 3-vector one, in
the ultra-relativistic limit it turns to spin-non-flip ampli-
tudes, and the scalar amplitude – to the spin-flip one.
γ
For two fermion scattering, the generalization of the
covariant approach is rather straightforward, however, a
complication arises if the amplitude is an interference of
two cross-running subprocesses. Then, it is preferred to
compute contribution from each cross-diagram in the
spin representation, corresponding to the order of con-
tinuous fermionic transitions in it. For bringing the
quantities so evaluated to a common basis, relativistic
on-mass-shell Fierz relations must be derived (herein
presented for simplifying conditions of equal fermion
masses and absence of accompanying hard radiation).
At practice, performing computations may turn out to
be more simple via cross-invariant amplitudes – eigen-
functions of the on-shell Fierz relations. In the consid-
ered example of Møller scattering, expressions for the
cross-invariant amplitudes in arbitrary kinematics ac-
quire very simple structure.
In applications, it should be minded, that specific
composition of the matrix amplitude , as it results
from Feynman diagrams or non-perturbative dynamical
solutions, may suggest basic -matrix structures, dif-
ferent from (1) (or (14)). Some of such self-suggesting
bases may even occur to be mutually orthogonal, so that
the cross-section averaged over the fermion spins ex-
presses through squares of those amplitudes, as good as
through (6). If that degree of knowledge about scat-
tering is sufficient, there is no actual need for transfor-
mation to amplitudes of the form (1). However, when
M
109
there is also a need to estimate fermion polarization
effects, the amplitudes (1) are convenient in view of
their simple and transparent connection to polarization
observables, so using them to encode the information
about scattering may be worth doing.
REFERENCES
1. A.A. Sokolov and I.M. Ternov. Radiation from
Relativistic Electrons. New York: AIP, 1986, 312 p.
2. R. Gastmans and T.T. Wu. The Ubiquitous Photon:
Helicity Method for QED and QCD, Oxford: Oxford
University Press, 1990, 664 p.
3. H.E. Haber. Spin Formalism and Applications to
New Physics Searches: Preprint SCIPP 93/49,
(hep-ph/9405376), 1994, 83 p.
4. A.L. Bondarev. Methods of minimization of calcu-
lations in high energy physics. hep-ph/9710398,
1997, 38 p.
5. M.V. Galynsky, S.M. Sikach. The diagonal spin
basis and calculation of processes involving polar-
ized particles. // Phys. Part. & Nucl. 1998, v.29,
p. 469-518 (hep-ph/9910284).
6. V.V. Andreev. Spinor techniques for massive fer-
mions with arbitrary polarization // Phys.Rev. D.
2000, v. 62, p. 014029-014042.
7. E. Bellomo. Sull’uso degli operatori di proiezione
per ottenere gli elementi di matrice per particelle di
spin ½. // Nuovo Cim. 1961, v. 21, p. 730-739.
8. H.W. Fearing and R.R. Silbar. Method for Expres-
sing Dirac Spinor Amplitudes in Terms of Invariants
and Application to the Calculation of Cross Sections
// Phys. Rev. D. 1972, v. 6, p. 471-477.
9. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii.
Quantum Electrodynamics. Oxford: Pergamon
Press, 1982, 667 p.
10. J.D. Bjorken, S.D. Drell. Relativistic Quantum Me-
chanics. New York, McGraw Hill, 1964, 304 p.
11. L. Wolfenstein and J. Ashkin. Invariance Conditions
on the Scattering Amplitudes for Spin ½ Particles. //
Phys. Rev. 1952, v. 85, p. 947-949.
МЕТОД КОВАРИАНТНЫХ АМПЛИТУД В ЗАДАЧАХ РАССЕЯНИЯ
РЕЛЯТИВИСТСКИХ ФЕРМИОНОВ
Н.В. Бондаренко
Предложена параметризация амплитуды рассеяния релятивистского фермиона на массовой поверхности
набором 4 ковариантных амплитуд, которые в нерелятивистском пределе переходят в коэффициенты раз-
ложения матричной амплитуды по единичной матрице и матрицам Паули, а в ультрарелятивистском преде-
ле – в симметризованные спиральные амплитуды. В общем релятивистском случае ковариантные амплиту-
ды выражаются через шпуры от матричной амплитуды, помноженной на γ-матричные факторы степени не
выше 3. Алгебраическое вычисление таких шпуров дает сравнительно короткий и полностью ковариантный
путь расчета процессов рассеяния фермионов, с учетом всех поляризационных наблюдаемых. Для обобще-
ния метода на задачи рассеяния двух фермионов, в условиях когда допустимы оба пути переходов 1→3,
2→4 и 1→4, 2→3, выведены релятивистские тождества Фирца на массовой поверхности, связывающие два
возможных определения амплитуд перехода, при упрощающих предположениях равенства масс всех
фермионов и упругости рассеяния. Построены собственные функции тождеств Фирца, и
продемонстрированы преимущества их использования для автоматического учета вкладов от кросс-
диаграмм на примере Меллеровского рассеяния.
МЕТОД КОВАРІАНТНИХ АМПЛІТУД У ЗАДАЧАХ РОЗСІЯННЯ
РЕЛЯТИВІСТСЬКИХ ФЕРМІОНІВ
М.В. Бондаренко
Запропоновано параметризацію амплітуди розсіяння релятивістського ферміона на масовій поверхні на-
бором 4 коваріантних амплітуд, які в нерелятивістському наближенні переходять у коефіцієнти розкладення
матричної амплітуди по одиничній матриці та матрицям Паулі, а в ультререлятивістській границі – у симет-
ризовані спіральні амплітуди. В загальному релятивістському випадку коваріантні амплітуди виражаються
через шпури від матричної амплітуди з додатковими γ-матричними факторами, ступінь яких не переви-
щує 3. Алгебраїчне обчислення таких шпурів дає порівняно короткий та повністю коваріантний шлях
розрахунку процесів розсіяння ферміонов, з урахуванням усіх поляризацій. Для узагальнення методу до за-
дач розсіяння двох ферміонів, в умовах коли можливі обидва шляхи переходів 1→3, 2→4 та 1→4, 2→3, ви-
ведено релятивістські тотожності Фірца на масовій поверхні, які зв’язують визначення амплітуд переходу,
за спрощуючих припущеннях рівності мас усіх ферміонів та пружності розсіяння. Побудовано власні функ-
ції тотожностей Фірца, та продемонстровано переваги їх використання для автоматичного врахування вкла-
дів від перехресних діаграм на прикладі Мелеровського розсіяння.
110
http://arxiv.org/find/hep-ph/1/au:+Galynsky_M/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Sikach_S/0/1/0/all/0/1
|