Geometrical approach for description of the mixed state in multi-well potentials

We use the so-called geometrical approach [1] in description of transition from regular motion to chaotic one in Hamiltonian systems with potential energy surface that has several local minima. Distinctive feature of such systems is coexistence of different types of dynamics (regular or chaotic) in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2007
Автори: Berezovoj, V.P., Bolotin, Yu.L., Ivashkevych, G.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/110968
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometrical approach for description of the mixed state in multi-well potentials / V.P. Berezovoj, Yu.L. Bolotin, G.I. Ivashkevych // Вопросы атомной науки и техники. — 2007. — № 3. — С. 249-254. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110968
record_format dspace
spelling Berezovoj, V.P.
Bolotin, Yu.L.
Ivashkevych, G.I.
2017-01-07T15:20:14Z
2017-01-07T15:20:14Z
2007
Geometrical approach for description of the mixed state in multi-well potentials / V.P. Berezovoj, Yu.L. Bolotin, G.I. Ivashkevych // Вопросы атомной науки и техники. — 2007. — № 3. — С. 249-254. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 01.30.Cc, 45.50.-j, 05.45.-a.
https://nasplib.isofts.kiev.ua/handle/123456789/110968
We use the so-called geometrical approach [1] in description of transition from regular motion to chaotic one in Hamiltonian systems with potential energy surface that has several local minima. Distinctive feature of such systems is coexistence of different types of dynamics (regular or chaotic) in different wells at the same energy [2]. Application of traditional criteria for transition to chaos (resonance overlap criterion, negative curvature criterion and stochastic layer destruction criterion) is inefficient in case of potentials with complex topology. Geometrical approach allows considering only configuration space but not phase space when investigating the stability. In this approach all information about chaos and regularity is contained in potential function. The aim of this work is to determine what details of geometry of potential lead to chaos in Hamiltonian systems using geometrical approach. Numerical calculations are executed for potentials that are relevant with lowest umbilical catastrophes.
Ми використовуємо так званий геометричний підхід [1] в описі переходу від регулярного руху до хаотичного в гамільтонових системах, у яких поверхня потенційної енергії має кілька локальних мінімумів. Відмітна риса таких систем – співіснування різних типів динаміки (регулярного або хаотичного) у різних потенційних ямах при тій же самій енергії [2]. Застосування традиційних критеріїв для переходу до хаосу (критерій перекриття резонансів, критерій негативної кривизни й критерій руйнування стохастичного шару) неефективно у випадку потенціалів із комплексною топологією. Геометричний підхід при дослідженні стабільності дозволяє розглядати тільки простір конфігурацій, але не фазовий простір. У цьому підході вся інформація щодо хаосу й регулярності міститься в потенційній функції. Ціль даної роботи полягає в тому, щоб, використовуючи геометричний підхід, визначити які деталі геометрії потенціалу приводять до хаосу в гамільтонових системах. Чисельні розрахунки виконані для потенціалів, які відповідають найнижчим омбілічним катастрофам.
Мы используем так называемый геометрический подход [1] в описании перехода от регулярного движения к хаотическому в гамильтоновых системах, в которых поверхность потенциальной энергии имеет несколько локальных минимумов. Отличительная черта таких систем – сосуществование различных типов динамики (регулярного или хаотического) в разных потенциальных ямах при той же самой энергии [2]. Применение традиционных критериев для перехода к хаосу (критерий перекрытия резонансов, критерий отрицательнoй кривизны и критерий разрушения стохастического слоя) неэффективно в случае потенциалов с комплексной топологией. Геометрический подход при исследовании устойчивости позволяет рассматривать только пространство конфигураций, но не фазовое пространство. В этом подходе вся информация относительно хаоса и регулярности содержится в потенциальной функции. Цель настоящей работы состоит в том, чтобы, используя геометрический подход, определить какие детали геометрии потенциала приводят к хаосу в гамильтоновых системах. Численные расчеты выполнены для потенциалов, которые соответствуют самым низким омбилическим катастрофам.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Nonlinear dynamics
Geometrical approach for description of the mixed state in multi-well potentials
Геометричний підхід до опису змішаного стану у багатоямних потенціалах
Геометрический подход к описанию смешанного состояния в многоямных потенциалах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometrical approach for description of the mixed state in multi-well potentials
spellingShingle Geometrical approach for description of the mixed state in multi-well potentials
Berezovoj, V.P.
Bolotin, Yu.L.
Ivashkevych, G.I.
Nonlinear dynamics
title_short Geometrical approach for description of the mixed state in multi-well potentials
title_full Geometrical approach for description of the mixed state in multi-well potentials
title_fullStr Geometrical approach for description of the mixed state in multi-well potentials
title_full_unstemmed Geometrical approach for description of the mixed state in multi-well potentials
title_sort geometrical approach for description of the mixed state in multi-well potentials
author Berezovoj, V.P.
Bolotin, Yu.L.
Ivashkevych, G.I.
author_facet Berezovoj, V.P.
Bolotin, Yu.L.
Ivashkevych, G.I.
topic Nonlinear dynamics
topic_facet Nonlinear dynamics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Геометричний підхід до опису змішаного стану у багатоямних потенціалах
Геометрический подход к описанию смешанного состояния в многоямных потенциалах
description We use the so-called geometrical approach [1] in description of transition from regular motion to chaotic one in Hamiltonian systems with potential energy surface that has several local minima. Distinctive feature of such systems is coexistence of different types of dynamics (regular or chaotic) in different wells at the same energy [2]. Application of traditional criteria for transition to chaos (resonance overlap criterion, negative curvature criterion and stochastic layer destruction criterion) is inefficient in case of potentials with complex topology. Geometrical approach allows considering only configuration space but not phase space when investigating the stability. In this approach all information about chaos and regularity is contained in potential function. The aim of this work is to determine what details of geometry of potential lead to chaos in Hamiltonian systems using geometrical approach. Numerical calculations are executed for potentials that are relevant with lowest umbilical catastrophes. Ми використовуємо так званий геометричний підхід [1] в описі переходу від регулярного руху до хаотичного в гамільтонових системах, у яких поверхня потенційної енергії має кілька локальних мінімумів. Відмітна риса таких систем – співіснування різних типів динаміки (регулярного або хаотичного) у різних потенційних ямах при тій же самій енергії [2]. Застосування традиційних критеріїв для переходу до хаосу (критерій перекриття резонансів, критерій негативної кривизни й критерій руйнування стохастичного шару) неефективно у випадку потенціалів із комплексною топологією. Геометричний підхід при дослідженні стабільності дозволяє розглядати тільки простір конфігурацій, але не фазовий простір. У цьому підході вся інформація щодо хаосу й регулярності міститься в потенційній функції. Ціль даної роботи полягає в тому, щоб, використовуючи геометричний підхід, визначити які деталі геометрії потенціалу приводять до хаосу в гамільтонових системах. Чисельні розрахунки виконані для потенціалів, які відповідають найнижчим омбілічним катастрофам. Мы используем так называемый геометрический подход [1] в описании перехода от регулярного движения к хаотическому в гамильтоновых системах, в которых поверхность потенциальной энергии имеет несколько локальных минимумов. Отличительная черта таких систем – сосуществование различных типов динамики (регулярного или хаотического) в разных потенциальных ямах при той же самой энергии [2]. Применение традиционных критериев для перехода к хаосу (критерий перекрытия резонансов, критерий отрицательнoй кривизны и критерий разрушения стохастического слоя) неэффективно в случае потенциалов с комплексной топологией. Геометрический подход при исследовании устойчивости позволяет рассматривать только пространство конфигураций, но не фазовое пространство. В этом подходе вся информация относительно хаоса и регулярности содержится в потенциальной функции. Цель настоящей работы состоит в том, чтобы, используя геометрический подход, определить какие детали геометрии потенциала приводят к хаосу в гамильтоновых системах. Численные расчеты выполнены для потенциалов, которые соответствуют самым низким омбилическим катастрофам.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110968
citation_txt Geometrical approach for description of the mixed state in multi-well potentials / V.P. Berezovoj, Yu.L. Bolotin, G.I. Ivashkevych // Вопросы атомной науки и техники. — 2007. — № 3. — С. 249-254. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT berezovojvp geometricalapproachfordescriptionofthemixedstateinmultiwellpotentials
AT bolotinyul geometricalapproachfordescriptionofthemixedstateinmultiwellpotentials
AT ivashkevychgi geometricalapproachfordescriptionofthemixedstateinmultiwellpotentials
AT berezovojvp geometričniipídhíddoopisuzmíšanogostanuubagatoâmnihpotencíalah
AT bolotinyul geometričniipídhíddoopisuzmíšanogostanuubagatoâmnihpotencíalah
AT ivashkevychgi geometričniipídhíddoopisuzmíšanogostanuubagatoâmnihpotencíalah
AT berezovojvp geometričeskiipodhodkopisaniûsmešannogosostoâniâvmnogoâmnyhpotencialah
AT bolotinyul geometričeskiipodhodkopisaniûsmešannogosostoâniâvmnogoâmnyhpotencialah
AT ivashkevychgi geometričeskiipodhodkopisaniûsmešannogosostoâniâvmnogoâmnyhpotencialah
first_indexed 2025-12-07T15:29:24Z
last_indexed 2025-12-07T15:29:24Z
_version_ 1850863899554873344