Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field

It is shown that transversal displacement of the plasma flux propagating across toroidal magnetic field, may be interpreted as a result of conversion (by means of Lorentz force) of the energy obtained by electrons in a field of polarization force and in a field of forces aroused due to magnetic fiel...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2008
Main Author: Timoshenko, A.I.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/110973
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field / A.I. Timoshenko // Вопросы атомной науки и техники. — 2008. — № 6. — С. 186-188. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-110973
record_format dspace
spelling Timoshenko, A.I.
2017-01-07T15:34:26Z
2017-01-07T15:34:26Z
2008
Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field / A.I. Timoshenko // Вопросы атомной науки и техники. — 2008. — № 6. — С. 186-188. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 52.77.-J
https://nasplib.isofts.kiev.ua/handle/123456789/110973
It is shown that transversal displacement of the plasma flux propagating across toroidal magnetic field, may be interpreted as a result of conversion (by means of Lorentz force) of the energy obtained by electrons in a field of polarization force and in a field of forces aroused due to magnetic field curvature, into kinetic energy of the transversal movement of the plasma as a whole. The same interpretation is valid also for the drift motion of a single particle.
Показано, що поперечне зміщення плазмового потоку може бути інтерпретовано як результат перетворення (за допомогою сили Лоренца) енергії, отриманої електронами в полі поляризаційної сили і в полі сил, пов'язаних з кривизною магнітного поля, в кінетичну енергію поперечного руху всієї плазми. Така ж інтерпретація справедлива і для дрейфового руху окремої частинки.
Показано, что поперечное смещение плазменного потока может быть интерпретировано как результат преобразования (посредством силы Лоренца) энергии, полученной электронами в поле поляризационной силы и в поле сил, связанных с кривизной магнитного поля, в кинетическую энергию поперечного движения всей плазмы. Такая же интерпретация справедлива и для дрейфового движения отдельной частицы.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Low temperature plasma and plasma technologies
Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
Походження поперечного зміщення потоку плазми, що рухається вздовж криволінійного магнітного поля
Происхождение поперечного смещения потока плазмы, движущегося вдоль криволинейного магнитного поля
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
spellingShingle Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
Timoshenko, A.I.
Low temperature plasma and plasma technologies
title_short Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
title_full Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
title_fullStr Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
title_full_unstemmed Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
title_sort origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field
author Timoshenko, A.I.
author_facet Timoshenko, A.I.
topic Low temperature plasma and plasma technologies
topic_facet Low temperature plasma and plasma technologies
publishDate 2008
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Походження поперечного зміщення потоку плазми, що рухається вздовж криволінійного магнітного поля
Происхождение поперечного смещения потока плазмы, движущегося вдоль криволинейного магнитного поля
description It is shown that transversal displacement of the plasma flux propagating across toroidal magnetic field, may be interpreted as a result of conversion (by means of Lorentz force) of the energy obtained by electrons in a field of polarization force and in a field of forces aroused due to magnetic field curvature, into kinetic energy of the transversal movement of the plasma as a whole. The same interpretation is valid also for the drift motion of a single particle. Показано, що поперечне зміщення плазмового потоку може бути інтерпретовано як результат перетворення (за допомогою сили Лоренца) енергії, отриманої електронами в полі поляризаційної сили і в полі сил, пов'язаних з кривизною магнітного поля, в кінетичну енергію поперечного руху всієї плазми. Така ж інтерпретація справедлива і для дрейфового руху окремої частинки. Показано, что поперечное смещение плазменного потока может быть интерпретировано как результат преобразования (посредством силы Лоренца) энергии, полученной электронами в поле поляризационной силы и в поле сил, связанных с кривизной магнитного поля, в кинетическую энергию поперечного движения всей плазмы. Такая же интерпретация справедлива и для дрейфового движения отдельной частицы.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/110973
citation_txt Origin of transversal displacement of the plasma flux moving in a curvilinear magnetic field / A.I. Timoshenko // Вопросы атомной науки и техники. — 2008. — № 6. — С. 186-188. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT timoshenkoai originoftransversaldisplacementoftheplasmafluxmovinginacurvilinearmagneticfield
AT timoshenkoai pohodžennâpoperečnogozmíŝennâpotokuplazmiŝoruhaêtʹsâvzdovžkrivolíníinogomagnítnogopolâ
AT timoshenkoai proishoždeniepoperečnogosmeŝeniâpotokaplazmydvižuŝegosâvdolʹkrivolineinogomagnitnogopolâ
first_indexed 2025-11-27T01:27:22Z
last_indexed 2025-11-27T01:27:22Z
_version_ 1850790905080971264
fulltext 186 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. Series: Plasma Physics (14), p. 186-188. ORIGIN OF TRANSVERSAL DISPLACEMENT OF THE PLASMA FLUX MOVING IN A CURVILINEAR MAGNETIC FIELD A.I. Timoshenko National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine, e-mail: timoshen@yandex.ru It is shown that transversal displacement of the plasma flux propagating across toroidal magnetic field, may be interpreted as a result of conversion (by means of Lorentz force) of the energy obtained by electrons in a field of polarization force and in a field of forces aroused due to magnetic field curvature, into kinetic energy of the transversal movement of the plasma as a whole. The same interpretation is valid also for the drift motion of a single particle. PACS: 52.77.-J 1. INTRODUCTION It is known that plasma jet (or plasmoid), after passing through a quarter torus magnetic duct, shifts a little (~1 cm) in the B×R direction [1–3], where R is a radius of the magnetic field B line of force, Fig.1. It should be noted that this shift is opposite to the plasma displacement predicted by a drift model [4–7] and it does not agree with the flux-tube model [8,9], which foresees only a radial displacement. An attempt to explain this shift by a simple entrainment of unmagnetized ions by the electrons with a speed of its electric (E×B) drift in the radial polarization field RE , gives too much value ~ 25 cm [10,11]. Furthermore, if the ions are magnetized, the model [10,11] gives no B×R displacement, while the experiment confirms its existence [1,5]. This contradiction have been overcame in [12,13], where the time scales compared with the electron Larmor period have been taken into account. During of such time intervals, the electron component of the plasma drifts mainly with a mean velocity e eV c F eB= perpendicular to some force Fe, whereas the ions, having a much greater Larmor period, pass only a small part of its Larmor orbit, deflecting in the direction to which the force Fi acts on ions. Relative displacement of the ion and electron components in the plasma moving along a curvilinear magnetic field gives rise to self-consistent polarization field E (see Fig. 2) with the components E⊥ and RE (parallel to B×R and to R, correspondingly) which, in the coordinate system moving on the circular trajectory with the ions, depend approximately on the time t in the following way [12,13]: ( ) 2 2 // //2 sini eM V mV eZ BE t t eZ R eR M cη⊥ ⎛ ⎞ ⎛ ⎞ ≈ +⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ , (1) ( ) 2 2 2 // // //2 cosi e i R M V mV eZ B M VE t t eZ R eR M c eZ Rη ⎛ ⎞ ⎛ ⎞ ≈ + −⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ , (2) where m and e are the mass and charge of electron, M and Z are the mass and degree of ionization of ion, //eV and //iV are the electron and ion velocities parallel to magnetic field B, D is a dielectric constant of magnetized plasma, and // //i eV Vη = . Thus, the displacement of the centers of the ion and electron distributions from a circular trajectory can be easily calculated. In particular, taking into account that ion component shifts in the B×R direction under direct action of the polarization force eZE⊥ , and the electron one moves owing to electric, centrifugal, gradient, and polarization drift, we find for the average velocity V⊥ [12,13]: 2 2 // , , 20 2t e e i e R cmV m c dEeZ cV V E dt E M B eRB eB dt η ⊥ ⊥ ⊥ ⊥ ⎛ ⎞ ≈ = ≈ − + − ≈⎜ ⎟ ⎝ ⎠ ∫ 2 2 //2i ec M V mV B eZ R eR η ⎛ ⎞ ≈ +⎜ ⎟ ⎝ ⎠ . (3) Substituting well-known parameters of the vacuum-arc plasma [2,8,14–16] into Eq. (3) and multiplying it by //2 iR Vπ , we obtain for the displacement of the plasma jet at the exit of quarter torus magnetic duct the value ~1 cm [12,13] that agrees with experimental results [1–3]. In present work we intend to show: 1) velocity (3) can be derived in a different way, without use of the field R0 V// Bϕ = B0R0/R Z ϕ Experiment Drift model Hydrodynamic model B0 Fig.1 Fig. 2. Lorenz force LeF , acting on the electrons, bal- ances the centrifugal and polarization force - ReE much sooner than Lorenz force LiF , acting on ions, would balance the centrifugal force acting on it RiF eV - RE LeF LiF iV ReE B В×R R E⊥ 187 E⊥ ; 2) plasma transversal drift in the B×R direction has a clear physical sense. Furthermore, the frameworks of applicability of the model proposed in [12,13] and the condition of plasma movement along the toroidal magnetic field are appreciated. 2. ENERGY OF RADIAL DISPLACEMENT OF ELECTRONS Note that in absence of any force, the leading centers of electrons would follow the magnetic field lines. Appearance of polarization field RE [see Eq. (2)] and the forces concerned with a magnetic field curvature, cause a drift in the B×R direction and the mean radial displacement Rd [12,13] of electron leading centers (along with ions) from a circular trajectory with a radius R0 (see Fig. 3): 2 2 2 // , . 2i e R i R e V mVM c Md d eZ B eZ R eR η ⎛ ⎞⎛ ⎞≅ ≈ +⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ . (4) Since the deflection Rd is proportional to the force 2 2 //2i eM V mVF Z R R = + , each of electrons obtains the energy 2 22 2 // , 1 1 2 2 2 i e R e M M V mV cW Fd Z Z R R eB η ⊥ ⎛ ⎞ ⎛ ⎞= ≅ +⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ , (5) which is delivered through the Lorentz force and field ⊥E to the mass ZM (and to electron mass, which may be neglected), increasing the kinetic energy 2 2MV Z⊥ of plasma transversal motion. Equating this energy to the right member of Eq. (5) and solving it for the velocity V⊥ , we find 2 2 //2i eV mVc MV eB Z R R η ⊥ ⎛ ⎞ = +⎜ ⎟ ⎝ ⎠ that coincides with the expression (3). From this it follows: 1) there is no necessity to know the field ⊥E for determining of transversal displacement of central part of the plasma jet, it is enough to have only the field RE and the mean radial displacement Rd , which can be easily calculated from expression 2 , , 0 0 t i R i R e R V eZd d dt E dt R M τ ⎛ ⎞ ≈ = +⎜ ⎟ ⎝ ⎠ ∫ ∫ and Eq. (2) [12,13]; 2) the identity of expressions for the velocity V⊥ obtained in a different ways is an additional evidence of the full self- consistency of the fields RE and ⊥E [see Eqs. (1), (2)] with a drift motion of electrons and direct motion of ions. Note that the same interpretation is applicable to a single particle moving across curvilinear magnetic field. The particle (or its leading center) having a charge q and mass M, when flying into the toroidal magnetic field, experience (along with transversal drift motion) an average radial shift from a circular trajectory (see Fig. 3). This shift is 2 //Rd Rρ≈ (if // Rρ << ), where // //cMV qBρ = [4]. As this shift is proportional to the centrifugal force 2 2 // R c MVd M qB R ⎛ ⎞ ≈ ⎜ ⎟ ⎝ ⎠ , the particle obtains perpendicular energy 22 2 //1 2 2R MVM cFd qB R ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , which transforms by means of the Lorentz force (see the electron trajectory on Fig. 2) into kinetic energy 2 2MV⊥ of a drift motion. Solving equation 22 22 // 2 2 MVMV M c qB R ⊥ ⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ for the velocity V⊥ , we find 2 //V cMV qBR⊥ = , i.e. the velocity of centrifugal drift. It is clear that this simple example can be easily extended on a case of arbitrary force. To estimate a range of validity of the model [12,13] and this analysis too, let us take into consideration that the ion may drift perpendicular to some force Fi, if this force is equalized mainly by the Lorentz force (as it is shown on Fig. 2 for the electron trajectory). This condition is satisfied, when the deflection 2 //Rd Rρ≅ of a single ion is lesser than a charge separation parameter δ in a plasma. This parameter is 02RE enδ π= [12,13], if the plasma density profile is Gaussian. Then, accounting Eq. (2), we can write 2 2 0 // 02 2R iE en MV Ze n Rδ π π= = > 2 // Rρ> , and find an estimation: ZMncB 02π> , or 00.1B n A Z> (in Gauss), where A is a relative atomic weight, and 0n is the plasma density on the axis of the plasma flux. So, if 0 0.1B n A Z< , the ion centrifugal drift in a plasma is impossible, because the centrifugal force is balanced by a polarization force during much lesser time than the ion Larmor period. For a typical vacuum-arc plasma density in filters, 12 3~ 10n cm− [2,3,7,10,11], ions may experience the centrifugal drift, if the magnetic field strength would exceed 5105 ⋅ G. At the usual 150−600 G in filtering devices, the drift of ions may take place, if the plasma density would not exceed 5 310 cm− . So, the range of applicability of this consideration includes all practically important cases. 3. DISCUSSION As it follows from Eq. (5), on entering at the curvilinear path, the part W⊥ of the initial plasma kinetic energy //W begins to circulate in the cross-section of the plasma flux. This perpendicular energy is approximately equal to ( )2 // //W R Wηρ⊥ ≈ [see Eq. (5)] and appears as a result of centrifugal acceleration of the ions. In the first stage, the energy W⊥ is absorbed by electrons during of its Fig. 3. Radial oscillation of the plasma jet (or a single particle) flying into the curvilinear magnetic field. Rd is a mean deflection of the jet (or the particle leading center) from the circular trajectory B R В×R Rd //V R0 188 displacement in the radial polarization field RE . At the second stage, this energy is passed to the ions through the Lorentz force and positive polarization field ⊥E [see Eq. (1) and Fig. 2)], which accelerate ions in the B×R direction. As soon as transversal velocity of the ions passes via a maximum, field ⊥E becomes negative [see Eq. (1)]. In this field electrons experience electric drift opposite to R, taking away the energy W⊥ from the ions. This last drift returns the ion component (through the field - RE , see Fig. 2) on the circular trajectory. At the moment of return, the ions (and plasma as a whole) fully lose its transversal energy and then a cycle repeats itself again. Thus, the transversal movement of the plasma in the B×R direction is only a link in the chain of transformations of the energy ( )2 // //W R Wηρ⊥ ≈ . Since always //W W⊥ < , the inequality // 1Rηρ << is a condition of plasma movement along the toroidal magnetic field. In reality, at the point of entry, plasma always moves straightforward, on tangent to the magnetic field line, and the question only consist in: how long this motion does continue (see Fig. 3). Evidently, its duration is proportional to //W W⊥ , which grows with the radial displacement Rd or ratio //MV qB . In more accurate approximation, the coefficient at //W in Eq. ( )2 // //W R Wηρ⊥ ≈ is modified and asymptotically approaches to one, if the ratio //MV qB increases. Nevertheless, the approximate condition // 1Rηρ < shows too that vacuum-arc plasma may be guided by essentially weak magnetic field (of a few dozens of Gauss [2]) and, in this case, the plasma loss in curved magnetic filters occurs due to a large characteristic radius of the plasma flux rather [17] than because of its radial displacement. REFERENCES 1. V.S. Voitsenya, A.G. Gorbaniuk et al. On polarization of a plasma propagating in a curved magnetic field// Sov. Phys.- Tech. Phys. 1965, v.35, N7, p.1330-1332 (in Russian). 2. V. Zhitomirsky, L. Kaplan et al. Ion current distribution in a filtered vacuum arc deposition system// Surf. and Coat. Techn. 1995, v.76/77, p.190-196. 3. A. Anders, S. Anders et al. Transport of vacuum arc plasmas through magnetic macroparticle filters// Plasma Sourses Sci. Technol. 1995, v.4, p.1-12. 4. N.A. Khizhnyak. Motion of plasmoid in a magnetic field of toroidal solenoid// Sov. Phys.-Tech. Phys. 1965, v.35, N5, p.847-857. 5. V.S. Voitsenya, A.G. Gorbaniuk et al. Motion of plasmoid in a curvilinear magnetic field// Sov. Phys.-Tech. Phys. 1967, v.37, N2, p.262-273 (in Russian). 6. E.N. Sokolenko, N.A. Khizhnyak. Mass ion separation in the plasma flow moved along the toroidal magnetic field// Probl. Atom. Sci. Techn, Ser. “Plasma Phys.” (5). 2000, N3, p.84-86. 7. X. Shi, Y.Q. Tu et al. Simulation of plasma flow in toroidal solenoid filters// IEEE Trans. Plasma Sci. 1996, v.24, N6, p.1309-1318. 8. I.I. Aksenov, V.G. Padalka et al. Study on motion of plasma flux in a curvilinear plasma-optics system// Sov. J. Plasma Phys. 1980, v.6, N2, p.312-317 (in Russian). 9. I.I. Aksenov, A.N. Belokvostikov et al. Plasma flux motion in a toroidal plasma guide// Plasma Phys. Control. Fus. 1986, v.28, N5, p.761-770. 10. B.A. Alterkop, E. Gidalevich et al. Vacuum arc plasma jet propagation in a toroidal duct// J. Appl. Phys. 1996, v.79. N9, p.6791-6802. 11. B.A. Alterkop, V.N. Zhitomirsky et al. Propagation of vacuum arc plasma beam in a toroidal filter// IEEE Trans. Plasma Sci. 1996, v.24, N6, p.1371-1377. 12 A.I. Timoshenko, V.S. Taran et al. Transversal displacement of the plasma flux during its motion in a toroidal magnetic field// AIP Conf. Proc. / New York: “Melville”, 2008, v.993, p.121-124. 13. A.I. Timoshenko, V.S. Taran et al. A methode of matching of ion and electron motion equations for plasma moving in a toroidal magnetic field // Ukr. J. Phys. 2008, v.53, N4, p.345-350. 14. A. Anders, Yu. G. Yushkov. Ion flux from vacuum arc cathode spots in the absence and presence of magnetic field// J. Appl. Phys. 2002, v. 91, N8, p. 4824-4832. 15. A. Anders. Ion charge state distribution of vacuum arc plasmas: The origin of species// Phys. Rev. E. 1997, v.55, N1, p.969-981. 16. A. Anders. A Periodic table of ion charge-state distributions observed in the transition region between vacuum sparks and vacuum arcs// IEEE Trans. Plasma Sci. 2001, v.29, N2, p.393-398. 17. A.I. Timoshenko. Plasma loss in a curved magnetic filters// Probl. Atom. Sci. Techn. Ser. “Pl. El. New Meth. Accel.” (6). 2008, N4, p.274-279 (in Russian). Article received 22.09.08. ПРОИСХОЖДЕНИЕ ПОПЕРЕЧНОГО СМЕЩЕНИЯ ПОТОКА ПЛАЗМЫ, ДВИЖУЩЕГОСЯ ВДОЛЬ КРИВОЛИНЕЙНОГО МАГНИТНОГО ПОЛЯ А.И. Тимошенко Показано, что поперечное смещение плазменного потока может быть интерпретировано как результат преобразования (посредством силы Лоренца) энергии, полученной электронами в поле поляризационной силы и в поле сил, связанных с кривизной магнитного поля, в кинетическую энергию поперечного движения всей плазмы. Такая же интерпретация справедлива и для дрейфового движения отдельной частицы. ПОХОДЖЕННЯ ПОПЕРЕЧНОГО ЗМІЩЕННЯ ПОТОКУ ПЛАЗМИ, ЩО РУХАЄТЬСЯ ВЗДОВЖКРИВОЛІНІЙНОГО МАГНІТНОГО ПОЛЯ О.І. Тимошенко Показано, що поперечне зміщення плазмового потоку може бути інтерпретовано як результат перетворення (за допомогою сили Лоренца) енергії, отриманої електронами в полі поляризаційної сили і в полі сил, пов'язаних з кривизною магнітного поля, в кінетичну енергію поперечного руху всієї плазми. Така ж інтерпретація справедлива і для дрейфового руху окремої частинки.