Construction of probabilistic solutions of the Boltzmann equation

The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the auxiliary vector-valued random process such that the particle vel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2007
Hauptverfasser: Virchenko, Yu.P., Karabutova, T.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111012
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Construction of probabilistic solutions of the Boltzmann equation / Yu.P. Virchenko, T.V. Karabutova // Вопросы атомной науки и техники. — 2007. — № 3. — С. 297-300. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111012
record_format dspace
spelling Virchenko, Yu.P.
Karabutova, T.V.
2017-01-07T17:27:03Z
2017-01-07T17:27:03Z
2007
Construction of probabilistic solutions of the Boltzmann equation / Yu.P. Virchenko, T.V. Karabutova // Вопросы атомной науки и техники. — 2007. — № 3. — С. 297-300. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 25.20.Dd
https://nasplib.isofts.kiev.ua/handle/123456789/111012
The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the auxiliary vector-valued random process such that the particle velocity distribution function satisfying the Boltzmann equation is the first order marginal probability distribution of this random process.
Пропонується метод доведення розв’язання проблеми Коші для кінетичного рівняння Больцмана з просторово однорідною початковою функцією у випадку скінченності перерізу розсіяння частинок, що зiткаються. Метод оснований на побудові векторнозначного випадкового процесу такого, що функція розподілу за швидкостями частинок, яка задовольняє рівнянню Больцмана, є його частинним розподілом ймовірностей першого порядку.
Предлагается метод доказательства разрешимости задачи Коши для кинетического уравнения Больцмана с пространственно однородными начальными данными в случае конечности сечения рассеяния сталкивающихся частиц. Метод основан на построении вспомогательного векторнозначного случайного процесса, такого, что функция распределения по скоростям частиц, удовлетворяющая уравнению Больцмана, является его частным распределением вероятностей первого порядка.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Nonlinear dynamics
Construction of probabilistic solutions of the Boltzmann equation
Побудова ймовiрностних розв’язкiв рiвняння Больцмана
Построение вероятностных решений уравнения Больцмана
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Construction of probabilistic solutions of the Boltzmann equation
spellingShingle Construction of probabilistic solutions of the Boltzmann equation
Virchenko, Yu.P.
Karabutova, T.V.
Nonlinear dynamics
title_short Construction of probabilistic solutions of the Boltzmann equation
title_full Construction of probabilistic solutions of the Boltzmann equation
title_fullStr Construction of probabilistic solutions of the Boltzmann equation
title_full_unstemmed Construction of probabilistic solutions of the Boltzmann equation
title_sort construction of probabilistic solutions of the boltzmann equation
author Virchenko, Yu.P.
Karabutova, T.V.
author_facet Virchenko, Yu.P.
Karabutova, T.V.
topic Nonlinear dynamics
topic_facet Nonlinear dynamics
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Побудова ймовiрностних розв’язкiв рiвняння Больцмана
Построение вероятностных решений уравнения Больцмана
description The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the auxiliary vector-valued random process such that the particle velocity distribution function satisfying the Boltzmann equation is the first order marginal probability distribution of this random process. Пропонується метод доведення розв’язання проблеми Коші для кінетичного рівняння Больцмана з просторово однорідною початковою функцією у випадку скінченності перерізу розсіяння частинок, що зiткаються. Метод оснований на побудові векторнозначного випадкового процесу такого, що функція розподілу за швидкостями частинок, яка задовольняє рівнянню Больцмана, є його частинним розподілом ймовірностей першого порядку. Предлагается метод доказательства разрешимости задачи Коши для кинетического уравнения Больцмана с пространственно однородными начальными данными в случае конечности сечения рассеяния сталкивающихся частиц. Метод основан на построении вспомогательного векторнозначного случайного процесса, такого, что функция распределения по скоростям частиц, удовлетворяющая уравнению Больцмана, является его частным распределением вероятностей первого порядка.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111012
citation_txt Construction of probabilistic solutions of the Boltzmann equation / Yu.P. Virchenko, T.V. Karabutova // Вопросы атомной науки и техники. — 2007. — № 3. — С. 297-300. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT virchenkoyup constructionofprobabilisticsolutionsoftheboltzmannequation
AT karabutovatv constructionofprobabilisticsolutionsoftheboltzmannequation
AT virchenkoyup pobudovaimovirnostnihrozvâzkivrivnânnâbolʹcmana
AT karabutovatv pobudovaimovirnostnihrozvâzkivrivnânnâbolʹcmana
AT virchenkoyup postroenieveroâtnostnyhrešeniiuravneniâbolʹcmana
AT karabutovatv postroenieveroâtnostnyhrešeniiuravneniâbolʹcmana
first_indexed 2025-11-26T01:42:42Z
last_indexed 2025-11-26T01:42:42Z
_version_ 1850604898003976192
fulltext CONSTRUCTION OF PROBABILISTIC SOLUTIONS OF THE BOLTZMANN EQUATION Yu.P. Virchenko and T.V. Karabutova Belgorod State University, Belgorod, Russia; e-mail: virch@bsu.edu.ru The proving method of the Cauchy problem solvability of the Boltzmann kinetic equation with spatially uniform initial data in the case of particle scattering cross-section finiteness is proposed. It is based on the construction of the auxiliary vector-valued random process such that the particle velocity distribution function satisfying the Boltzmann equation is the first order marginal probability distribution of this random process. PACS: 25.20.Dd 1. INTRODUCTION The Boltzmann equation has got the origin of the physical kinetics. Building of the equation and its physical predictions have played the great role during the development of representations concerning evolu- tion irreversibility that are taken place in nature. Later, this equation has got also the practical mean for calcula- tion of kinetic coefficients of real gently dense gases and also for the study of the motion of solids in the di- lute gas environment. In this connection, the mathe- matical correct results concerning some solution proper- ties of the Boltzmann equation have gained special im- portance. In particular, the Cauchy problem solvability of the equation is of interest. First results in this direc- tion have been obtained by D.Hilbert [1] and T.Carleman [2]. All stationary solutions of the Boltz- mann equation have been found and the theorem of the final behavior of solutions at the unbounded increasing of time has been proved. Besides, the spectrum of corre- sponding linearized equation has been investigated. Fur- ther, in connection with the development of the ap- proximate methods of the equation solving, the Chep- men-Enskog asymptotical analysis has been created [3]. The modern state of the mathematical physics area which is connected with the Boltzmann equation see in [4]. In the present work, we propose the new approach to study the Boltzmann equation solutions which is based on the random process theory. This method per- mits to approach in a new fashion to the Cauchy prob- lem solving of the Boltzmann equation and to the con- struction of approximations of corresponding solutions with the controlled accuracy. 2. THE BOLTZMANN EQUATION For formulation of the Boltzmann equation in the form that is convenient for our aim, it is required the following presentation of scattering data in the classical mechanics for the pair of identical particles. Let and be two particle velocities before the collision when they are on such a distance where one may consider them as the noninteracting ones. Further, let and be corresponding velocities after the collision when the particles have gone away so far that they become nonin- teracting again. These velocities are represented by the definite functions of velocities , and the vector which is on the plane being orthogonal to vectors v 'v V V' rv 'v ',vv V V' ( 1r −Φ t f f ( − ∫ 3R f V + | V V = , i.e. . On the defini- tion, the vector begins at the straight line on which the first particle arrives from the infinity and it is fin- ished at the analogous straight line of the second parti- cle. The vector r has the minimal length among all vec- tors possessing the properties pointed out. The functions , are defined by the interaction potential between two particles, where are space position vectors of particles. )('),( rv'vVrv'vV ,,,, == r ,(f v v σ ρ ddtf tftf ')),'( ),'(),((|'| vv VVvv −∫ 0 σd r )t,(f v 0≥)t,v =1vd) ,,( v'vV = 222 ',' vVVvv +=++ |'| vv −= )(') rv'vVrv ,,, == = n )2 t t ), ) = >ρ (f v t, '= |'V v' , r ( , v v ( V − ( 21 rr , Φ t ,( v'v= ||),, nr For the determination of these functions, it is neces- sary to solve the mechanical scattering problem of two particles interacting by means of the potential . Fur- ther, we consider only the spatially homogeneous gas of particles. In this case, the Boltzmann equation is formu- lated for the distribution function that depends on the velocity of the mentioned particle and the time . It has the following form (see, for example, [5]) )t (1) where the dot means the differentiation on , the pa- rameter represents the density of particles and the integral on points out the integration on all val- ues of the vector . The function is the probability density func- tion, i.e. and the equality (2) takes place. The functions have the properties ),'), rVr 2'v (3) which express the conservation laws of momentum and energy at collisions. From Eq. (3), the equality of rela- tive velocities follows, . (4) Besides, the symmetry property (5) takes place. It corresponds to the particle identity. Let us introduce the vector function n , satisfying to the equality 1=,( v'v PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 297-300. 297 |]'|)'[( 2 1 vvnvvV −++= , |]'|)'[( 2 1' vvnvvV −−+= . (6) ((δ∫× Further, we notice that for the complete characterization of the scattering of two particles, it is necessary to introduce, in addition to th tions V , V' , the vector funct ),,( rv'vR also. Its values lay in the plane being orthogonal to v cto V , V' . The vector R is defined similarly to the vector r but it is done relative to the straight trajectories of particles going away with the elo ies V , V' . From the energy and momentum conservati ality || R e func ion s v cit low ),,('),,,( rv'vVrv'vV == ),',( RVVVv −−−= ),',('' RVVVv −−−= − RV'Vrv'v ,,,,, δ e r n, the equo r|| =r= fol- s. The reversibility of mechanical motion leads to the fact that the functions sat- isfy to identities , (7) ),' RV,( VRr −=and, besides, . In the case when the potential is spherically symmet- ric, all vectors lay in the common plane. Let us transform the right-hand side of the equation (1) to another form which is more suitable for our con- struction. With this aim, introducing the additional inte- gration by means of -functions, we write down uv' ; '.')),'(),( ),'(),(()(),( uuvvv uuu'vv dddtftf tftf,,wtf − = ∫ w (8) The non-negative function is named the intensity of scattering ',', uuvv ⇒ ),;,(w =u'uv'v ),;,(w)',;,(w uu'vv'uuv'v = )', v− δ δ ),;(w =u'u )'( uu − '(|2|'| vvvv −−− δ δ 'uuv'v +=+ 1− )'(4)( −−+= uuv'vu'uv'v ,;,w ρδ 0≥)t,(f v 0≥t 00 ≥),(f v process. It is determined by the formula . (9) d)'()(|'| σδδρ ∫ −−−= uV'uVvv ,)( According to Eqs. (5,7), it satisfies to the following identities , (10) ;,(w)',;,(w vu'uuuv'v −−−= . (11) ∫ The function w contains the δ -functional singularities which are connected with conservation laws. Indeed, changing the argument of the second - function in Eq. (9) according to the first identity of Eq. (3) and also using the condition presented by the second -function, we obtain ,v'v .d)()(|| σδδρ ∫ −−−+−= uVu'uv'vv'v V (12) [ We change the function in the integrand expression according to Eq. (6) and we use the first identity of Eq. (3), σδσδ d|)'|(d)(∫ ∫ −−−=− vvnu'uuV 2 δ . Decomposing three-dimensional -function depending on the vector argument on the product |)'|| uu −− )||/)(( nv'vu'u −−−×δ and after that transforming the first -function with the account of equality which is carried out in the integration domain, we find .)|'|/)' )''( |'|2)( 2222 σ δ σδ d d∫ −−− −−+× −=− nuuuu uuvv vvuV ),,( rv'vn (13) Since the function realizes one-to-one corre- spondence between the plane of the vector r changing and the unit sphere, the last integral is equal to the Jaco- bean of corresponding map 1|))(/)((| )|'|/)'(( − == −−−∫ mnrn nuuuu DD dσδ '|/)'( uuuum −−= where | . Together with Eq. (12) and Eq. (13), it gives the final formula . |))(/)((|)''( 12222 − =−−+× mnrnuuvv DDδ 3. M.KAC PROBLEM Solutions which possess the following properties: a) at all , if ; vv d)t,(f∫b) does not depend from t , R3 we name as the probabilistic ones. In connection with the existence of probabilistic so- lutions of the equation (1), M. Kac has set the problem [6] of the construction of such a random process 0≥t);t(~v )t,(f v for which the function is the first order marginal distribution density, )}()t(~{ )(d )t,(f vv v v ω ω ∈= Prd R )t,;...;t,(f vv )t,(f)t,(f vv = )]t,(f[f)t,;...;t,( vvv = ),0 ∞ ),(f)(d/)}()(~{d 00 vvvv =∈ ωωPr . (14) This function should completely define the probability distribution of the process in its sample space , i.e. the function should define all set of marginal distribution densities of order , which are consistent, i.e. +∈+ RR t3 N∈n ;...;t,(f n 11v nnn 11 ).t,;...;t,(f d)t, nnn nnn 11111 −−−= = vv vv They generate the process probability distribution ac- cording to the Kolmogorov theorem. It means that and all densities of higher order are some functionals . 1 f nnnn 11 Constructive building of such a random process on for which the probability distribution of initial values satisfies solves the Cauchy problem on for the equation (1) with initial data . Below, we offer a building of this process in the case of finiteness of cross-section of particles scattering. +R ),(f 0v 4. THE WEAK SOLVABILITY We construct the process 0≥t);t(~v as the weak limit in the space of the sequence +R)R( 3 ...,N,t);t(~ )N( 210 =≥v of random processes. It 298 Nvv ∈nttf nn N n ),,;...;,( 11 )( ∞→N Nvv ∈n),t,;...;t,(f nnn 11 →         ∫ ∑ = N n n j jj tfi vvk 1 )( 1 ,(),(exp n n j jj tfi vvk ;...;,(),(exp 11 1 ∫ ∑         = )t,(f)t,(f )N( vv → L ∫ < L const)x(d)x( )N(µΨ ]T,[t),t(~ 0∈v L t(~v 299 ddt vvv ...... ),;; means that all marginal densities converge weakly at to the infinite set of densities consistent with each other, i.e. sequences of corresponding characteristic functions converge a~ ...,n,~~~ nnn 211 =−= −vva ∑ −+ −= n nn ttp |''~'~| '~)0('~|])(''~),('~[1 aa vvvv ]T,[ 0 )t(''~v ''t~n ''~ na '~ na ],[ ⋅⋅1p ),t('~v ],[ ⋅⋅2p ∑ −= n n ttttp ~'~|])(''~),('~[2 vv nnn 11 nnn ddt vvv ...), 1 . In particular, the weak convergence to the Boltzmann equation solu- tion takes place. We use the Prokhorov criterion of weak compact- ness measure sequence for the proof of the weak con- vergence of random processes sequence. It is formulated as follows. If the sequence of measures on a metrical separable space L (being not necessarily complete) such that for this sequence there exist a com- pact function Ψ on space having uniformly bounded average values on measures , , so this sequence is weakly compact. ...,N,)N( 21=µ µ )N( We choose the space of all piecewise constant func- tions with vector values as the sample space of all processes. Each random trajectory is characterized by the sequence of pairs ) N∈n;t~n ,n,t~n 21= ,n , where are random function jumps which occur in random time points . We put ... +|)0(' (15) f v where the summation is carried out on all jumps of both functions being in the one-to-one correspondence ac- cording to their order on . If one of the functions, for example, has greater number of jumps in comparison with the other function, so it is necessary formally to put that the last has zero jumps in those points where jumps do not have correspond- ing jumps . The functional is the deviation on be- tween two functions . The functional defined by the formula L )t(''~v n |'' ~ (16) is the deviation too. Here, points are set in one- to-one correspondence according to the one-to-one cor- respondence between jumps of the functions . It is easily to verify that the functional ''t~,'t nn )t(''~),t('~ vv ('~[ ),('~dist[ 2 tp t v v + )t(''~),t('~ vv ]Ψ[⋅ v∈~ ~v 0>M ∫= = v v fq | ];[ ρσ ',;(Q uuv ∫ 3R uv ,;(Q ];[ ),( ffq tf v v − = ∫ N),t,()N( t);t(~ )N( ≥v ∫× −+ ( exp(1( ,()( uv v ,;Q tf N /T=∆ N )t(~ )N(v )(v ≡l d f ])(''~), ])(''~),('~[])(''~ 1 t ttpt v vvv = (17) is the distance in the space L between functions . The space is separable relative to this distance. Besides, it is established that those function sets for which the jump number does not surpass any- thing number , are precompact relative to the topology connected with the distance . There- fore, for the fixed interval , we construct the function on putting that its values for each function are equal L N∈m L L ],dist[ ⋅⋅ ]T,[ 0 |),0[ T∩ ] ; n∈ [ [⋅ ~tn ,0 } ] | to the random number of its jumps on . Then, we get that sets { are compact for any and, hence, the function Ψ is compact. N T M≤~]v:∈ Ψ[L 5. THE BOLTZMANN RANDOM PROCESS We construct the random process +∈Rv t);t(~ σ which solves the Kac problem. It is named the Boltz- mann process. At the assumption of the cross-section finiteness, we introduce the functional ∫ − v'vv vuuvuuv'v df dddtf,;,w )'(|' ''),'()'( (18) and an the kernel 'd)',;,(w) vuuv'v R ∫= 3 . (19) Due to Eq. (11), it takes place −= u'uvu' ||d) ρσ . (20) In terms of introduced values, equation (8) is repre- sented in the form of ).,( '),'(),()'( t ddtftf,;Q v uuuuuuv (21) Let us require that the first order marginal densities of the processes ...,21= ...,21N,0 = , satisfy to the identity ×∆− ∆−=∆+ '),'(),()' ))];[ )];[exp(),() )()( )( )()( uuuuu v vv ddtftf fq fqtf NN N NN (22) where and . N ∞→N To achieve this aim, we construct for any the random process Ν∈N +∈Rv t);t(~ )N( Ν . Trajectories of the process at are defined by the formula ∈ }l),N/lT,N/T)l[(t;~{ )N( l Nv ∈−∈= 1 where the random sequence Nv ∈l;~ )N( l R is the nonlinear Markov chain with the state space which is defined by the distribution density 3 )}(~{Pr )( vv v ω ω ∈l d of random variable at the moment l . This den- sity is changed during one evolution step by the follow- ing way )N( l ~v .')'()()( ];[))];[exp(1( )];[exp()()( )()( )(1)( )()()( 1 ∫× ×∆−− +∆−= − + uuuuu'uv vv vvv ddff,;Q fqfq fqff N l N l N l N l N l N l N l (23) ~ The changing points of the process +∈Rv ttN );(~ )( ~ belong to the set { . };/ N∈lNlT Let be the number of the changing points of the function in . The average number of changing points of the chain trajectory is equal to ]Ψ[ )t(v L n,...,,l,~ l 10=v ( ) .)(')'()( ];[))];[exp(1( )()( )(1 1 1 )( ∫ ∫ ∑ × ×−− − − = vuuuuu'uv vv ddfdf,;Q fqfq N l N n N l n l N l Since all random points of the chain are in one-to-one correspondence with changing points of the process +∈Rv ttN );(~ )( , the average value ])(~Ψ[ )( tNv 0→∆ is defined by above expression too. Then, at , we have ( .'),(),'()'( ])(~Ψ[ 0 )()( )( dsdddsftf,;Q t t NN N vuuuuuuv v ∫ ∫ ∝ ) Consequently, this average value is bounded, ( ) 2/12 0 )()( )( 2 '),(),'(|'| ])(~Ψ[ 〉〈ρσ≤ ≤− ×ρσ∝ ∫ ∫ u uuuuuu v t dsddsftf t t NN N , (24) where the squared average of the velocity does not depend on t , since the Boltzmann equation conserves the kinetic energy. Thus, due to the inequality (24), one may apply the Prokhorov criterion 2/12 〉〈u )(~ )( tNv for measures connected with processes +∈Rv ttN );(~ )( . On the basis of this criterion, these processes weakly converge to a process +∈Rv tt);(~ . In this case, all marginal distributions of the processes +∈Rv ttN );()( , weakly converge to corresponding marginal distributions of the process +∈Rv tt);(~ at . Then, on the basis of Eq. (22), 0→∆ ).,( ),(),(),;( ])(;[ 1 ),(),( )( 212 )( 1 )( 21 )(1 ])(;[ )()( )( tf ddtftfQ tfq e tftf N NN N tfq NN N v vvvvvvv v vv v − × = − −∆+ ∫ − ∆− Therefore, the one-point probability density of the limit process ),(1 tf v +∈Rv tt);(~ satisfy to Eq. (1), i.e. the existence of the random process +R∈v tt);(~ leads to the existence of the weak solution of the equation (1). REFERENCES 1. D. Hilbert. Math. Ann // 1912, v. 72, p. 562-582. 2. T. Carleman. Problemes mathematiques dans la theorie cinetique des gaz. Uppsala, Almqvist and Wiksells, 1957, 150 p. 3. S. Chapmen, T.G. Cowling. The mathematical the- ory of nonuniform gases, Cambridge Univ. Press, 1952, 468 p. 4. C. Cercignani. Theory and Application of the Boltz- mann Equation. Scottish Academic Press, 1975, 324 p. 5. A.I. Akhiezer, S.V. Peletminskii. Metody statis- ticheskoi fiziki. M.: “Nauka”, 1977, 368 p. (in Rus- sian). 6. M. Kac. Neskolko veroyatnostnykh zadach fiziki i matematiki. M.: “Nauka”, 1967, 176 p. (in Russian). ПОСТРОЕНИЕ ВЕРОЯТНОСТНЫХ РЕШЕНИЙ УРАВНЕНИЯ БОЛЬЦМАНА Ю.П. Вирченко, Т.В. Карабутова Предлагается метод доказательства разрешимости задачи Коши для кинетического уравнения Больцмана с пространственно однородными начальными данными в случае конечности сечения рассеяния сталкиваю- щихся частиц. Метод основан на построении вспомогательного векторнозначного случайного процесса, та- кого, что функция распределения по скоростям частиц, удовлетворяющая уравнению Больцмана, является его частным распределением вероятностей первого порядка. ПОБУДОВА ЙМОВIРНОСТНИХ РОЗВ’ЯЗКIВ РIВНЯННЯ БОЛЬЦМАНА Ю.П. Вiрченко, Т.В. Карабутова Пропонується метод доведення розв’язання проблеми Коші для кінетичного рівняння Больцмана з прос- торово однорідною початковою функцією у випадку скінченності перерізу розсіяння частинок, що зiткаються. Метод оснований на побудові векторнозначного випадкового процесу такого, що функція роз- поділу за швидкостями частинок, яка задовольняє рівнянню Больцмана, є його частинним розподілом ймо- вірностей першого порядку. 300