Effect of temporal randomization on the interaction of normalized and anomalous transport

The fractional kinetic equations are a natural consequence of non-Gaussian properties in the behavior of many complex systems. We consider the competition between normalized and anomalous transport in the presence of temporal subordination. The anomalous transport is induced by fractional spatial de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Stanislavsky, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111014
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Effect of temporal randomization on the interaction of normalized and anomalous transport / A.A. Stanislavsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 340-342. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111014
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1110142025-02-23T20:28:13Z Effect of temporal randomization on the interaction of normalized and anomalous transport Вплив тимчасової субординації на взаємодію нормальної й аномальної кінетик Влияние временной субординации на взаимодействие нормальной и аномальной кинетик Stanislavsky, A.A. Kinetic theory The fractional kinetic equations are a natural consequence of non-Gaussian properties in the behavior of many complex systems. We consider the competition between normalized and anomalous transport in the presence of temporal subordination. The anomalous transport is induced by fractional spatial derivatives as occurs in fractional kinetic theory. It is shown that for large time the power tails of the probability density play a dominant role. This supports and extends the Weitzner-Zaslavsky's result obtained in a simpler case. Дробові кінетичні рівняння з'являються внаслідок негаусових властивостей поводження складних систем. Ми розглядаємо суперництво між нормальним (гаусовим) і аномальним транспортом при наявності субординації. Аномальний транспорт приводить до появи дробових похідних по просторовим перемінним у кінетичному описі систем. Показано, що на великих часах степенні хвости функції розподілу імовірності відіграють домінуючу роль. Це підтверджує результат Вейцнера-Заславського, отриманий в більш простому випадку, і розширює межі його застосування. Дробные кинетические уравнения появляются вследствие негауссовых свойств поведения сложных систем. Мы рассматриваем соперничество между нормальным (гауссовым) и аномальным транспортом при наличии субординации. Аномальный транспорт приводит к появлению дробных производных по пространственным переменным в кинетическом описании систем. Показано, что на больших временах степенные хвосты функции распределения вероятности играют доминирующую роль. Это подтверждает результат Вейцнера-Заславского, полученный в более простом случае, и расширяет границы его применимости. 2007 Article Effect of temporal randomization on the interaction of normalized and anomalous transport / A.A. Stanislavsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 340-342. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 05.40.Fb, 02.50.Ey https://nasplib.isofts.kiev.ua/handle/123456789/111014 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Kinetic theory
Kinetic theory
spellingShingle Kinetic theory
Kinetic theory
Stanislavsky, A.A.
Effect of temporal randomization on the interaction of normalized and anomalous transport
Вопросы атомной науки и техники
description The fractional kinetic equations are a natural consequence of non-Gaussian properties in the behavior of many complex systems. We consider the competition between normalized and anomalous transport in the presence of temporal subordination. The anomalous transport is induced by fractional spatial derivatives as occurs in fractional kinetic theory. It is shown that for large time the power tails of the probability density play a dominant role. This supports and extends the Weitzner-Zaslavsky's result obtained in a simpler case.
format Article
author Stanislavsky, A.A.
author_facet Stanislavsky, A.A.
author_sort Stanislavsky, A.A.
title Effect of temporal randomization on the interaction of normalized and anomalous transport
title_short Effect of temporal randomization on the interaction of normalized and anomalous transport
title_full Effect of temporal randomization on the interaction of normalized and anomalous transport
title_fullStr Effect of temporal randomization on the interaction of normalized and anomalous transport
title_full_unstemmed Effect of temporal randomization on the interaction of normalized and anomalous transport
title_sort effect of temporal randomization on the interaction of normalized and anomalous transport
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Kinetic theory
url https://nasplib.isofts.kiev.ua/handle/123456789/111014
citation_txt Effect of temporal randomization on the interaction of normalized and anomalous transport / A.A. Stanislavsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 340-342. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT stanislavskyaa effectoftemporalrandomizationontheinteractionofnormalizedandanomaloustransport
AT stanislavskyaa vplivtimčasovoísubordinacíínavzaêmodíûnormalʹnoíjanomalʹnoíkínetik
AT stanislavskyaa vliânievremennojsubordinaciinavzaimodejstvienormalʹnojianomalʹnojkinetik
first_indexed 2025-11-25T04:21:10Z
last_indexed 2025-11-25T04:21:10Z
_version_ 1849734707519946752
fulltext EFFECT OF TEMPORAL RANDOMIZATION ON THE INTERACTION OF NORMALIZED AND ANOMALOUS TRANSPORT A.A. Stanislavsky Institute of Radio Astronomy, Kharkov, Ukraine; e-mail: alexstan@ira.kharkov.ua The fractional kinetic equations are a natural consequence of non-Gaussian properties in the behavior of many complex systems. We consider the competition between normalized and anomalous transport in the presence of temporal subordination. The anomalous transport is induced by fractional spatial derivatives as occurs in fractional kinetic theory. It is shown that for large time the power tails of the probability density play a dominant role. This supports and extends the Weitzner-Zaslavsky's result obtained in a simpler case. PACS: 05.40.Fb, 02.50.Ey 1. INTRODUCTION Fractional calculus occupies an appreciable place in the description of various kinds of wave propagation in complex media, fractional kinetics of Hamiltonian sys- tems, anomalous diffusion and relaxation, random walks with a long-term memory and flights, pseudocha- otic dynamics, etc (see, for example, [1-3] and refer- ences therein). The fractional operator is a natural gen- eralization of the ordinary differentiation and integra- tion. Long-term memory effects characterize the frac- tional operator with respect to time, whereas the non- local (long-range) effects characterize it with respect to coordinates. This new type of problems has increased rapidly in areas in which the fractal features of a proc- ess or a medium impose the necessity to use non- traditional tools in ”regular” smooth physical equations. The language of fractional equations (FE) is in progress now. While the linear FE have attained fairly broad research activity, the study of nonlinear FE is at their very beginning. The fractional kinetic equations describe non- Gaussian properties in the behavior of stochastic sys- tems. In many cases of physical interest it is reasonable to study simultaneously the Gaussian and anomalous processes [4]. This means that the anomalous processes lead to algebraically decreasing tails of a probability distribution function (PDF), whereas the bulk of the PDF is expected to be mostly Gassian in character. Weitzner and Zaslavsky [5] have investigated the inter- action of Gaussian and anomalous dynamics for a sim- ple model in one-dimensional space. They have shown that for large times the fractional derivative term domi- nates in the solution and leads to power type tails in the probability density. We intend to go on the study and clarify what influence will have subordination on the competition between normalized and anomalous trans- port. 2. WHAT IS SUBORDINATION? A subordinated process Y is obtained by ran- domizing the time clock of a random process Y using a new clock U , where U is a random process with nonnegative independent increments. The resulting process is said to be subordinated to Y , called the parent process, and is directed by U , called the directing process. The directing process is often referred to as the randomized time or else opera- tional time [6]. In general, the subordinated process can become non-Markovian, though its parent process is Markovian. The PDFs of the parent process and directing one U determine the PDF of the subordinated process Y via the integral relation: ))(( tU )(t )(t )(t ))(t(UY )(t )(t τ ))(( tUY )(tY (p UY p (pU τ )(t ))(( tU ),τ px U x )(t (Y <1, )(1 ,0) − ′′ − β tx α ∂∂ |/ | ( Γ α β β P2 ∂ ∂ = ∂ ∂β x P ε ββ ′∂∂ t/ ,0)(xP ′β x = t′α− β 2 2 = ),( tk ,),(),( 0 ) ττ= ∫ ∞ dtpxt where represents the probability to find the parent process Y at on the operational time , and is the probability to be at the operational time on the real time t . ),( xY τ ), τt )(τ Let the subordinator U be an inverse-time stable process, and the parent process satisfies Lévy (or Gaus- sian) properties. Then the process Y describes the subdiffusion [7]. ))(( tU 3. MODEL AND ITS ANALYSIS Consider the kinetic equation with fractional deriva- tive in time 1,<02,< | ),( 2 ≤ ′∂ ∂ + ′ − ′ ′′ βαε αβ β β β x P P t tx (1) where is a constant, the Riesz derivative, the differential Riemann-Liouville operator, the initial condition, the gamma func- tion. This equation determines the corresponding PDF. By changing the variables α′ |x (Γ )s x′ and ε − β 2 α t ε α| ~| Pβ α one can get out of this equation. Therefore we put it equal to one. The Riesz derivative is easily defined in Fourier transform space as − , ε α∂ / ′∂ | x | k PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 340-342. 340 where is the Fourier transform of the function . Then the Fourier transform of the right-hand side of (1) gives . Thus, for large wavenumber and short wavelength the system exhibits normal, Gaussian transport (if β , then normal diffu- sion becomes subdiffusion), while for the small wavenumber and large wavelength, the system behaves anomalous in kinetics. ),(~ tkPβ )t =),( 0 tx ∫ ,'(xPβ Pβ ),(~)||( 2 tkPkk β αε+− 1≠ ,),()( 1 dzztxPzF β β duue zuu Br 1−ββ−∫ ),(1 txP =β (Pβ z 2 1=)( π ),(1 txP = ) ),( txPβ Fβ ,( txP ([ 2β β −∞ ∞− +−∫ ktEedk ikx ∑∞ = +βΓ= 0 )1(/n n ny 2 1=),( tx β )( yE βP . 1)( 1)(= +βγΓ +)( 0 γΓ ).,(| txPdx β βM γ β zzF |= ∞ ∞−β ∫ ∞ ∫ M ( / + α α tO 1(( 2~ Γ    β βαβ π π t βQ + M 1.1, || ),( − ∂ α βα β β x Q t txQ ∂ ∂ = ∂β Using the results of Refs. [5,7], it is easy to repre- sent the solution of Eq. (1) in the form ∞ where the function i is expressed in terms of the Bromwich integral. The PDF is the same one denoted by in Section 2 in the paper of Weitzner and Zaslavsky. For the initial condition the PDF is written as a Fourier integral )(=,0) xx δ )],α π k where is the one- parameter Mittag-Leffler function. From above it fol- lows that dz Next, we examine the simple relevant moment x The asymptotic expansion for large takes the form t .) /sin))/1 sin)/( /32 )/11( /    − Γ − − αββ αβ αβ πα παββ πt (2) The remaining terms give the corrections from anoma- lous transport. Denote the solution of the equation only with anomalous transport <02,<< )(1 ,0)( ≤ −Γ − βα β ββ txQ Following the same procedure as for , we obtain βM . /sin)/( 2~ / απαβΓβ αβ β tMQ (3) We are now prepared to compare the contribution of normalized and anomalous kinetics in dependence of the value of the parameters and β , and we start with the simplest comparison, namely between and . α βM βQM 4. RESULTS AND DISCUSSION To sum up, in leading order and for 1< <2 and 0<β <1, it is seen that . However, the dif- ference between and is not small unless . For not far from one, this relation holds, but as α approaches 2, one requires increasingly larger values of in order that dominates . The asymptotic expansion for fails at = 2, and must then be very poor for small values of . If the value is sufficiently large, then the anomalous transport under subordination is the limiting form for the case with both Gaussian and anomalous transport subordinated, however there may be signifi- cant corrections. It should be pointed out that the long- term memory effects (in the form of the fractional tem- poral derivative) do not change a character of the inter- action between the normalized and anomalous transport distinctly. α β ββ QMM ~ βQM α βM t t )/11( α−ββ >> tt )/1 αβt α 2 /α 1( − α− αβ /t M REFERENCES 1. G.M. Zaslavsky. Chaos, fractional kinetics, and anomalous transport //Phys. Rep. 2002, v. 371, p. 461-580. 2. R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the de- scription of anomalous transport by fractional dy- namics //J.Phys. A: Math. Gen. 2004, v. 37, p. R161-R208. 3. A. Piryatinska, A.I. Saichev, W.A. Woyczynski. Models of anomalous diffusion: the subdiffusive case //Physica. A. 2005, v. 349, p. 375-420. 4. V.V. Zosimov, L.M. Lyamshev. Fractals in wave processes //Physics-Uspekhi. 1995, v. 38, p. 347-384. 5. H. Weitzner, G.M. Zaslavsky. Some applications of fractional equations //Comm. Nonlin. Sci. and Nu- mer. Simul. 2003, v. 8, p. 373-281. 6. W. Feller. An Introduction to Probability Theory and Its Applications. 2nd Ed., v. II, New York: Wiley, 1971, 669 р. 7. A.A. Stanislavsky. Probabilistic interpretation of the integral of fractional order //Theor. and Math. Phys. 2004, v. 138, N 3, p. 418-431. 341 ВЛИЯНИЕ ВРЕМЕННОЙ СУБОРДИНАЦИИ НА ВЗАИМОДЕЙСТВИЕ НОРМАЛЬНОЙ И АНОМАЛЬНОЙ КИНЕТИК А.А. Станиславский Дробные кинетические уравнения появляются вследствие негауссовых свойств поведения сложных сис- тем. Мы рассматриваем соперничество между нормальным (гауссовым) и аномальным транспортом при наличии субординации. Аномальный транспорт приводит к появлению дробных производных по простран- ственным переменным в кинетическом описании систем. Показано, что на больших временах степенные хвосты функции распределения вероятности играют доминирующую роль. Это подтверждает результат Вейцнера-Заславского, полученный в более простом случае, и расширяет границы его применимости. ВПЛИВ ТИМЧАСОВОЇ СУБОРДИНАЦІЇ НА ВЗАЄМОДІЮ НОРМАЛЬНОЇ Й АНОМАЛЬНОЇ КІНЕТИК О.О. Станіславський Дробові кінетичні рівняння з'являються внаслідок негаусових властивостей поводження складних сис- тем. Ми розглядаємо суперництво між нормальним (гаусовим) і аномальним транспортом при наявності субординації. Аномальний транспорт приводить до появи дробових похідних по просторовим перемінним у кінетичному описі систем. Показано, що на великих часах степені хвости функції розподілу імовірності ві- діграють домінуючу роль. Це підтверджує результат Вейцнера-Заславського, отриманий в більш простому випадку, і розширює межі його застосування. 342