Electromagnetic field correlations and sound waves

Statistical operator of the many component plasma has been found on the basis of the Bogolyubov reduced description method and quasi-relativistic quantum electrodynamics. Calculations were carried out in the Hamilton gauge up to the second order of a perturbation theory in interaction. Closed system...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2007
Автори: Sokolovsky, A.I., Stupka, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111015
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electromagnetic field correlations and sound waves / A.I. Sokolovsky, A.A. Stupka // Вопросы атомной науки и техники. — 2007. — № 3. — С. 335-339. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111015
record_format dspace
spelling Sokolovsky, A.I.
Stupka, A.A.
2017-01-07T17:32:31Z
2017-01-07T17:32:31Z
2007
Electromagnetic field correlations and sound waves / A.I. Sokolovsky, A.A. Stupka // Вопросы атомной науки и техники. — 2007. — № 3. — С. 335-339. — Бібліогр.: 7 назв. — англ.
1562-6016
PACS: 02.70.-c, 05.20.Dd
https://nasplib.isofts.kiev.ua/handle/123456789/111015
Statistical operator of the many component plasma has been found on the basis of the Bogolyubov reduced description method and quasi-relativistic quantum electrodynamics. Calculations were carried out in the Hamilton gauge up to the second order of a perturbation theory in interaction. Closed system of equations for binary correlations of electromagnetic field and hydrodynamic variables of medium has been obtained and investigated near equilibrium. Classical Maxwell plasma approximation was studied. Coupled states of sound waves and waves of transversal correlation of the field were predicted. Waves of correlations of electromagnetic field can be excited by sound waves in plasma.
Статистичний оператор багатокомпонентної плазми знайдено на основі метода скороченого опису Боголюбова та квазірелятивістської квантової електродинаміки. Обчислення проведено у калібровці Гамільтона з точністю до другого порядку теорії збурень за взаємодією. Одержано замкнену систему рівнянь для бінарних кореляцій поля та гідродинамічних змінних середовища і досліджено біля рівноваги. Вивчено наближення класичної максвеллівської плазми. Передбачено зв’язані стани звукових хвиль та хвиль поперечних кореляцій поля. Хвилі кореляцій електромагнітного поля можуть бути збуджені звуковими хвилями у плазмі.
Статистический оператор многокомпонентной плазмы найден на основе метода сокращенного описания Боголюбова и квазирелятивистской квантовой электродинамики. Вычисления проведены в калибровке Гамильтона с точностью до второго порядка теории возмущений по взаимодействию. Получена замкнутая система уравнений для бинарных корреляций электромагнитного поля и гидродинамических переменных среды и исследована около равновесия. Изучено приближение классической максвелловской плазмы. Предсказаны связанные состояния звуковых волн и волн поперечных корреляций поля. Волны корреляций электромагнитного поля могут быть возбуждены звуковыми волнами в плазме.
This work was supported by the State Foundation for Fundamental Research of Ukraine (project No. 2.7/418).
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Kinetic theory
Electromagnetic field correlations and sound waves
Кореляції електромагнітного поля та звукові хвилі
Корреляции электромагнитного поля и звуковые волны
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Electromagnetic field correlations and sound waves
spellingShingle Electromagnetic field correlations and sound waves
Sokolovsky, A.I.
Stupka, A.A.
Kinetic theory
title_short Electromagnetic field correlations and sound waves
title_full Electromagnetic field correlations and sound waves
title_fullStr Electromagnetic field correlations and sound waves
title_full_unstemmed Electromagnetic field correlations and sound waves
title_sort electromagnetic field correlations and sound waves
author Sokolovsky, A.I.
Stupka, A.A.
author_facet Sokolovsky, A.I.
Stupka, A.A.
topic Kinetic theory
topic_facet Kinetic theory
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Кореляції електромагнітного поля та звукові хвилі
Корреляции электромагнитного поля и звуковые волны
description Statistical operator of the many component plasma has been found on the basis of the Bogolyubov reduced description method and quasi-relativistic quantum electrodynamics. Calculations were carried out in the Hamilton gauge up to the second order of a perturbation theory in interaction. Closed system of equations for binary correlations of electromagnetic field and hydrodynamic variables of medium has been obtained and investigated near equilibrium. Classical Maxwell plasma approximation was studied. Coupled states of sound waves and waves of transversal correlation of the field were predicted. Waves of correlations of electromagnetic field can be excited by sound waves in plasma. Статистичний оператор багатокомпонентної плазми знайдено на основі метода скороченого опису Боголюбова та квазірелятивістської квантової електродинаміки. Обчислення проведено у калібровці Гамільтона з точністю до другого порядку теорії збурень за взаємодією. Одержано замкнену систему рівнянь для бінарних кореляцій поля та гідродинамічних змінних середовища і досліджено біля рівноваги. Вивчено наближення класичної максвеллівської плазми. Передбачено зв’язані стани звукових хвиль та хвиль поперечних кореляцій поля. Хвилі кореляцій електромагнітного поля можуть бути збуджені звуковими хвилями у плазмі. Статистический оператор многокомпонентной плазмы найден на основе метода сокращенного описания Боголюбова и квазирелятивистской квантовой электродинамики. Вычисления проведены в калибровке Гамильтона с точностью до второго порядка теории возмущений по взаимодействию. Получена замкнутая система уравнений для бинарных корреляций электромагнитного поля и гидродинамических переменных среды и исследована около равновесия. Изучено приближение классической максвелловской плазмы. Предсказаны связанные состояния звуковых волн и волн поперечных корреляций поля. Волны корреляций электромагнитного поля могут быть возбуждены звуковыми волнами в плазме.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111015
citation_txt Electromagnetic field correlations and sound waves / A.I. Sokolovsky, A.A. Stupka // Вопросы атомной науки и техники. — 2007. — № 3. — С. 335-339. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT sokolovskyai electromagneticfieldcorrelationsandsoundwaves
AT stupkaaa electromagneticfieldcorrelationsandsoundwaves
AT sokolovskyai korelâcííelektromagnítnogopolâtazvukovíhvilí
AT stupkaaa korelâcííelektromagnítnogopolâtazvukovíhvilí
AT sokolovskyai korrelâciiélektromagnitnogopolâizvukovyevolny
AT stupkaaa korrelâciiélektromagnitnogopolâizvukovyevolny
first_indexed 2025-11-27T00:33:57Z
last_indexed 2025-11-27T00:33:57Z
_version_ 1850788813213794304
fulltext ELECTROMAGNETIC FIELD CORRELATIONS AND SOUND WAVES A.I. Sokolovsky and A.A. Stupka Dnipropetrovsk National University, Dnipropetrovsk, Ukraine; e-mail: stupka_a@mail.ru Statistical operator of the many component plasma has been found on the basis of the Bogolyubov reduced description method and quasi-relativistic quantum electrodynamics. Calculations were carried out in the Hamilton gauge up to the second order of a perturbation theory in interaction. Closed system of equations for binary correlations of electromagnetic field and hydrodynamic variables of medium has been obtained and investigated near equilibrium. Classical Maxwell plasma approximation was studied. Coupled states of sound waves and waves of transversal correlation of the field were predicted. Waves of correlations of electromagnetic field can be excited by sound waves in plasma. PACS: 52.25.Dg, 52.25Gj, 52.35.Dm 1. INTRODUCTION Recent theories of electromagnetic (ЕМ) processes, which take into account fluctuations, are based on the Langevin equations and are semiphenomenological [1]. Besides, usual quasi-relativistic theories consider effective direct Coulomb interaction between charged particles [2] and use the Coulomb gauge of the vector potential . Our purpose is to build kinetics of EM field in hydrodynamic medium based on the Hamilton gauge and quasi-relativistic quantum electrodynamics using. In the framework of this gauge one does not need to introduce the scalar potential and the Maxwell equations have the form of the Hamilton equations. The medium (plasma) consists of a few components of charged and neutral particles. div 0A = ϕ 0= ϕ Description of nonequilibrium states of the system is based on the Bogolyubov reduced description method (RDM) [3]. For the first time this method was applied to the considered system in our paper [5]. In the present paper we pay the main attention to the study of the influence of binary correlations of the field on dynamics of the system. Mass densities of a neutral and charged components, mass speed and temperature of the plasma, electric field, vector potential and their binary correlations are chosen as variables that describe time evolution of the system (reduced description parameters). Therefore, in the considered model usual plasma waves (longitudinal EM waves) are absent because of equilibrium between particles of the components. Besides, following to [6] we restrict ourselves by consideration of the ideal liquid approximation. In the framework of the RDM statistical operator of the system is built using the Bogolyubov condition of the complete correlation weakening. Additional convenience in the consideration is possible because the field variables satisfy the Peletminsky- Yatsenko commutation condition [3]. As a small parameter of the theory ratio of the plasma frequency Ω and Cherenkov’s frequency of absorption of the field ( is a characteristic equilibrium velocity) is chosen, that is equivalent to consideration of wave vectors bounded from the bottom by inverse Debye radius , . On the other hand, in quasi-relativistic theory wave vectors of the field are bounded from the above too . For our purpose one can estimate as reverse average interparticle distance . As a result closed system of equations of hydrodynamics and fluctuation electrodynamics is built within the first order of the perturbation theory for statistical operator. λ Tkυ Tυ mink k≥ maxk 1 x 0~k r− (nA x ( ))n l tE x′ ( )i t 1 min ~ Dk r− k k≤ , )t ( ( )E x max (n lA ma ( )E x η ( ,x t) ˆ ˆ2E−)n lE A ˆ( )m fH+ + { , }n lE A= 1 2 ˆ ˆ( )V+ t VĤ 2ˆ ( )}x Hˆ )E= + x ˆ (n ox )nj x 3 2 2 1 ˆ c ∫2̂ 2 = ˆ( )x A χ ˆ E A 2 2 ˆ ( )a a a ex m ˆ ( ) a χ =∑ xσ )x ˆ oaπ a ( )x 2. REDUCED DESCRIPTION OT THE SYSTEM We will describe our system by electric field , vector potential , their binary correlations , , (variables ( , )nE x t ( ( )n lA x ( ))x′ t t( ))A x′ ) and densities of mass ( a is the component number), momentum and energy of the medium (variables ). Exact definition of the correlations is given by the relation of the type ( , )a x tσ ( , )n x tπ ( , )x tµζ ε ˆ ˆ n lA2( . In the Hamilton gauge quasi-relativistic Hamilton operator of the system has the form 0 int ˆ ˆ ˆH H H= + = , 3 21ˆ { ( 8fH d x π ∫ , 3 1 1 ˆˆ ( )V d x A c = − ∫ , ( )xV d ; x ˆˆ rotH A= , 1ˆ c = − ; , ˆ ˆ( ) (a o o a a ej x m π=∑ , (1) where is the Hamilton operator of free medium particles. Formulae (1) contain a non-gauge invariant density of momentum . Gauge invariant densities of momentum and energy can be introduced by usual way. It is easy to check that gauge invariant mass velocity is given by the formula ˆ mH (n , )u x t PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 335-339. 335 1( , ) ( , ) ( , ) ( , )n on nu x t u x t A x t x t c ρ= − ( , a a ρ ρ=∑ a a a a e m ρ σ= ), (2) where is non-invariant velocity. This allows us to use the Galilei transformation for the medium and cast the results in a gauge invariant form. ( , ) ( , ) / ( , )on onu x t x t x tπ σ= Equations of motion for operators of reduced description parameters in the terms of the gauge invariant densities have usual form [5] ˆˆ ˆ4t n nl l nE c A jπ∂ = ∆ − ˆ ˆ , ˆ ˆ t n nA c E∂ = − ˆ ˆˆ ˆ{ , } { , } { , }t n l nm m l lm n mE E c A E c E A′ ′ ′∂ = ∆ + ∆ ′ − ˆ ′ ′ ′ ˆ ˆˆ ˆ4 ({ , } { , })n l n lj E E jπ ′ ′− + ˆ ˆ ˆˆ ˆ ˆ ˆ{ , } { , } { , } 4 { , }t n l nm m l n l n lE A c A A c E E j Aπ′ ′ ′∂ = ∆ − − , ˆ ˆ ˆˆ ˆ ˆ ˆ{ , } { , } { , } 4 { , }t n l n l lm n m n lA E c E E c A A A jπ′ ′ ′ ′∂ = − + ∆ − , ˆ The last equation in (5) allows to find functions . ( , )oY xµ ζˆ ˆ ˆ ˆˆ ˆ{ , } { , } { , }t n l n l n lA A c E A c A E′ ′∂ = − − ; ˆ ˆ an t a n i x σ ∂ ∂ = − ∂ , ˆ 1 ˆˆˆ { , } 2 n t n n q j E x ε ∂ ∂ = − + ∂ n ˆ 1 ˆˆ ˆˆˆ { , rot } 2 ln t l l lnm n m n t E j x c π ρ ε∂ ∂ = − + + ∂ A , (3) where nl n l nlδ∆ = ∂ ∂ − ∆ , ( ) ( ) ( ) ( )1 ˆˆ ˆ ˆn on nj x j x A x x c χ≡ − , ({ , and so on; is gauge invariant current; here ∂ is the Schrödinger time deri- vative). Averaging equations (3) with nonequilibrium statistical operator (SO) of the system we obtain a closed system of equations for parameters describing its state (it is convenient to do this using non- gauge invariant medium variables ). ˆ ˆ ˆ ˆ} { ( ), ( )}n l n lE E E x E x′ ≡ t ′ ) ˆ ( )nj x ρ η , )x t ( ) ( )( ), ot tζ (oµζ To construct SO for this case one can use the RDM [3-5] starting from the Liouville equation ( ) ( )( , ot tρ η ζ ( ) ( )( ) ( ) ( )( )ˆ, [ , ,t o o it t H t tρ η ζ ρ η ζ∂ = − ] ≡ ( ) ( )( ), ot tρ η ζ≡ L . (4) This consideration is simplified by the remark that operators of the EM field and its correlations satisfy the Peletminsky-Yatsenko condition . In this work we do not introduce direct interaction among charged particles and in the leading approximation the medium is described by the local equilibrium distribution of ideal gas ˆ ˆf i ii ii i cη η′ ′′ = − ∑L 3 ˆ( ) exp{ ( ) ( ) ( )}a o a w Y F Y d xY x xµζ= −∑∫ . Using boundary condition of the complete correlation weakening according to [3-5] we obtain the following integral equation for statistical operator ( ), oρ η ζ ( ){0 int 0 ( , ) ( ) ( ( )) ,o q o ow Y d eτρ η ζ ρ η ζ τ ρ η ζ +∞ = + ∫ L L ( ) ( ) ( ) , ( ( )) ,o q m o i i i w Y L ρ η ζ ρ η ζ η ζ η ∂ + − ∂∑L o ( ) ( ) ( ), , , }o o o ie dx M x x µ µ µ τη η δρ η ζ η ζ δζ −→ −∑∫ c ; ( ) ( ) int ˆ, Spi o oM η iζ ρ η ζ η≡ − , L , ( ) ( ) (int ˆ, , Sp , ( )o o mM x xµ µη ζ ρ η ζ ζ= − +L L )o ; ˆSp ( , ) ( ) ( )o o ox xµ µρ η ζ ζ ζ= . (5) Here is statistical operator of the free field, which satisfy the Liouville equation ( )qρ η ( ) ( )q f qii i ii i ic ρ η η ρ η ′ ′ ′ ∂ = ∂∑ L η . (6) Equation (5) is solvable in perturbation theory in small interaction. In the Baryakhtar-Peletminsky picture in the frame of the local rest its solution has the form [3-5] ( ) ( ) 2 0 ,, , ( ( )) ( )o o o q o nx i i ix w x d dx v c ρ η ζ ρ η ζ τ τ′ −∞ ′= − ∑∫ ∫ ( ) ( )( )ˆ ˆˆ{[ ( ( )), , , ( ) ]o q o oni onw x x x x x u xjρ ζ τ ρ τη ′ ′× − + − [ ] 2ˆˆ( ( )) ( ) ( ) Sp } ( )qo o on q iif i i w x x u x O ρ ζ ρ ρ η λη η ′ ′ ′ ∂ + , ∂∑ + ˆ a aM τ η nx τ , (7) where ( ) ˆ( ) exp { , }o o m a w Hζ β β µ µ= Ω − +∑ ( ). Here zero and first order contributions in interaction are given in zero approximation in gradients of hydrodynamic variables. The Dirac picture for operators and was introduced in (7) by usual formulae 1Tβ −≡ ˆ ( )nA x ˆ ( )onj x ( ) 2 , ˆ ˆ ˆ( , ) ( )f n n nx i i i A x e A xττ ν−≡ =∑L , (8) ˆ ˆ( , ) ( )m on onj x e j xττ −= L , (9) ( , ) where entering first relation Fourier components of are given by expressions 2 ˆ ˆ( )n nA x η≡ x 1 ˆ ˆ( )nE x η≡ ii ( )ν τ′ ( , ) cost nl n l nl kk k kµ τ δ ω= + , sin( , ) t k nl n l nlk c k k k ω τν τ τ δ= − − , ( , ; 2 1, ( ) ( , )nx lx nl x xν τ ν′ ′= − τ 2 2, ( ) ( , )nx lx nl x xν τ µ′ ′= − τ n nk k= k , ). (10) t nl nl n lk kδ δ= − 3. EQUATIONS OF MOTION Let us consider averaging of relations (3) with statistical operator (7). The first term in (7) can be transformed with the help of formula [1,7] 336 ( ) ( ) 0 1 ˆˆ ˆ[ , , ] [ , , , ]o o on on mj x w d j x H wτ β λ τ λ − = − ∫ 0 1 ˆ ( , , ) oonj xi d wτ λβ λ τ− ∂ = − ∂∫ (11) ( ). Integrating by parts and taking into account, that lower limit vanishes due to the principle of correlation weakening, we obtain instead of (7) ˆ ˆ( ) o oA w Awλλ −≡ λ ( ) ( ) 0 ˆ ˆ[ , , ] ,o o q n q on iw d dx A x j x c ρ ρ τ τ ρ τ −∞ = + ∫ ∫ ow ( ) ( ) 0 0 1 ˆ ˆ, , , o n on qd dx d E x j x wβ τ λ τ τ λ ρ −∞ − + ∫ ∫ ∫ ( ) ( ) 0 1 ˆ ˆ , o n n qdx d A x j x w c β λ λ − + ∫ ∫ ρ ( ) 0 ˆˆ[ o on q n i u d dx w x x A x c ρ τ ρ ρ τ −∞ ′ ′− , − ,∫ ∫ ( , )]τ′ l 2( )O λ+ . (12) M N Further we restrict ourselves by consideration of classical medium. Waves of correlations will be studied on the basis of equations of motion linearized near equilibrium, therefore, we will drop terms, which vanish after linearization, and only indicate them. Then formula (12) leads to the following expression for average gauge invariant current 0 ( ) ( , ) ( , )x n nlj x d dx I x x E xβ τ τ τ −∞ ′ ′ ′≡ − −∫ ∫ ( ) 21( , 0) ( ) (x nl l n odx I x x A x A x O u c c β τ χ′ ′ ′+ − = − +∫ ) ˆτ ′ )} τ , ˆ ˆ( , ) Sp ( ( )) ( , ) (0)x o nl m o on olI x w x j x jτ ζ τ′ ′≡ . (13) According (1), (9), (10) the Dirac picture for operator has the form ( )ˆ nE x 0ˆ ˆ( , ) ( ) { ( , ) ( )n n nl lE x e E x dx x x E xττ µ− ′ ′= = −∫L ˆ( , ) (nl lx x A xλ τ′ ′+ − , ( , ) sint nl nl kk kλ τ δ ω≡ . (14) It the considered case correlation function in (13) corresponds to the Maxwell plasma and their Fourier transform can be written in the form ( , )nlI x τ 2 3( , ) 2 ( ) ( )x nl a a n l a a I k e n d f kω π υυ υ υ δ ω υ= −∑ ∫ , ( , 0) ( )x nl nlI x xχτ δ δ β ′ ′= = ( ∫ ) (15) 3 ( ) 1ad fυ υ = ( is the Maxwell distribution; ( )af υ 2 a a ae n m a χ =∑ ; here for simplicity we do not show dependence of , , on ). This leads to the following material equation an β χ x c ( ) { ( ) ( ) ( ) ( )}x x n nl l nlj x dx M x x E x N x x A x′ ′ ′ ′= − + −∫ l ′ )′′ ) ′ ′ + ) ) ) )′ ′ ) 2( )oO u+ , (16) with material coefficients 0 ( ) ( , ) ( , )x x nl nl mlM k d I k kβ τ τ µ τ −∞ = ∫ , 0 ( ) ( , ) ( , )x x nl nm mlN k d I k kβ τ τ λ τ −∞ = ∫ . (17) Analogous to (16) calculation gives field-current correlations ( )( ) { (x x x x x n l lm n mA j dx M x x A E′ ′′′ ′ ′′= −∫ ′ ′′ ′ ( ) ( ) 2( )} (x x x x lm n m nl oN x x A A S x x O u′ ′′ ′+ − + − + , ( )( ) { ( )x x x x x n l nm m lj A dx M x x E A′ ′′′ ′′= −∫ ′′ ′ ( ) ( ) 2( )} (x x x x nm m l nl oN x x A A S x x O u′′ ′+ − + − + , ( ) "( ) { (x x x x x n l lm n mE j dx M x x E E′ ′′′ ′ ′′= −∫ ( ) ( ) 2( )} (x x x x lm n m nl oN x x E A T x x O u′ ′′ ′′ ′′ ′+ − + − + , ( )( ) { (x x x x x n l nm m lj E dx M x x E E′ ′′′ ′′= −∫ ′′ ′ ( ) ( ) 2( )} (x x x x nm m l nl oN x x A E T x x O u′′ ′+ − + − + , (18) where the functions , are also expressed through , ( )x nlS x′ ( )x ( )x nlT x′ ( )x nl x′ x nl ′ 2 8 ( )( ) ( )x x nl nl T xS k N k k π = − , T k (19) ( ) ( )8 ( )x x nl nlT x M kπ= − (in (22) and further notation of the type ( ( are used for binary correlations). Relations (18) are additional material equations of the developed theory. ) ( )) ( ) ( )x x n l t n l nE x E x E E E E′′ = = l′ tr Material coefficients (17) determinate electromag- netic properties of the medium. In homogenous and isotropic media all second rank tensors can be presented as sum of longitudinal and transversal parts ( )( ) ( ) ( )l mn n m nm n mC k k k C k k k C kδ= + − . (20) Using correlation function (15) and formulas (10), (14) we obtain the expressions for nonzero components of tensors and ( , )nlM k ω ( , )nlN k ω , ( ) 0x lM k = , 2 , ( ) Im ( )x tr a a aa a n e cM k J m c υ+= −∑ , 2 , ( ) Re ( )x tr a a aa a n e cN k J m c υ+=∑ , (21) where the function ( ) a cJ υ+ is given by integral [7] 2 3 [ , ] 2( ) ( ) 0a aa k kTd f J m ckc k i υυ υ υυ += − +∫ c , ( 3a aT mυ ≡ ); . (22) ( ) 1J+ +∞ = In the considered here nonrelativistic approximation 1aυ relations (21), (22) give , ( ) 0x trM k , , 2( ) 4x trN k πΩ c (23) ( 4πχΩ = is the plasma frequency). So, introduced material coefficients do not depend on wave vector and temperature. Operator equations (3) after averaging over nonequlibrium statistical operator lead to the following set of electrodynamic and hydrodynamic equations [5] 4t n nl l nE c A jπ∂ = ∆ − , ∂ = , t n nA c E− ( ) ( ) ( ) 4 (t n l nm m l n l n lE A c A A c E E j Aπ′ ′ ′∂ = ∆ − − )′ )′ , ( ) ( ) ( ) 4 (t n l n l lm n m n lA E c E E c A A A jπ′ ′ ′ ′∂ = − + ∆ − , 337 ( ) ( ) (t n l n l n lA A c E A c A E′ ′∂ = − − )′ )′ } , ( ) ( ) (t n l nm m l lm n mE E c A E c E A′ ′ ′∂ = ∆ + ∆ 4 {( ) ( )n l n lj E E jπ ′ ′− + ; 1( ) {( )ln t l l l lnm n m n m n t E E j B j B x c π ρ ρ ε∂ ∂ = − + + + + ∂ } , ( )n t n n n q j E j E x ε ∂ ∂ = − + + ∂ n n , an t a n i x σ ∂ ∂ = − ∂ . (24) Material equations (16), (18) express the right hand sides of these equations through independent variables of the present theory by the relations 2 , 2( ) ( ) 4 x x tr n n xj A O cπ Ω = + ou , 2 , 2( )( ) ( ) ( 4 x x x tr x n l n l o xj E A E O u cπ ′ ′Ω = + ) , 2 , 2( )( ) ( ) ( 4 x x x x tr n l n l o xE j E A O u cπ ′ ′′Ω = + ) , 2 ,( )( ) ( ) ( ) ( 4 x x x tr x x n n n l nl o xj A A A S x x O u cπ ′ ′Ω ′= + − , 2 The Maxwell equations from (24), (25) are absent in (27) because in the considered approximation they are not connected with hydrodynamic variables and correlations of the field. They describe transverse electromagnetic waves with dispersion law 2 2 2 f0( )kω = Ω + c k u . Equation for from (24), (25) can be solved after consideration of the set (27) and does not lead to new branches of oscillations. ( )n l kE Eδ )+ 2 ,( )( ) ( ) ( ) ( 4 x x x x tr x n l n l nl o xA j A A S x x O u cπ ′ ′ ′′Ω ′= + − 2 )+ ; 2 2 2 ( ) ( )( )x nl nl T x xS k ck δΩ = − ( , , ). (25) tr l nk nk nkA A A= + tr nk lk nlA A δ≡ nk lk n lA A k k= 4. SUBDYNAMICS OF ELECTROMAGNETIC CORRELATIONS OF ZERO RADIUS In this section it will be demonstrated an influence of correlations of the electromagnetic field on dynamics of the system. It is convenient [6] to introduce auxiliary field by its Fourier transform and discuss correlations of the electromagnetic field in the terms of , , . Equations (24), (25) must be linearized close to the equilibrium. We will restrict ourselves by a zero correlation length approximation, in which deviations of correlations have the structure ( )nZ x k k lm l mZ k B= ) trkA )− )− ) k n n nikε = − ( n lZ Z ′ ( )n lE E′ ( )n lE Z ′ ( ) ( ) (x x n l n l xE E E E x xδ δ δ′ ′= ′ , ∂ = ( ) ( ) (x x n l n l xZ E Z E x xδ δ δ ′= ′ , ( ) ( ) (x x n l n l xZ Z Z Z x xδ δ δ ′= − (26) (similar formulas are true for equilibrium correlations of the field). Simple calculation leads to following closed set of equations with full mass density as an independent variable t k n nik uδσ σδ∂ = − , 22 ( )t k n nk n n kT ik w u i E Z qc δ δ δΩ ∂ = − + , ( )t nk n k T ku ik Tσδ α δσ α δ∂ = − + + 2 2 2 { ( ) 4 }n l l k ki Z Zkr c δ πΩ + − Tδ )k )k ; ( ) (t n l k n lZ Z ick E Zδ δ∂ = , ( ) (t n l k n lE Z ick Z Zδ δ∂ = − 2 { ( ) 2 }n l k nl ki Z Z T ck δ πδΩ − − δ , (27) where max min 3 1 k Tk d kq kε − = ∫ , max min 3 1 4 | | k n n k d k kk r k kπ σ − ′ ′ ≡ ′ −∫ ; T mσα σ = , 1 T m α = , 3 2T m σε = , 2 3 Tw = . (28) According to the mentioned above here , ( r is the Debye radius, r is the average interparicle distance). Equations (27) are based on non- dissipative hydrodynamic fluxes and expressions for energy density and pressure 1 min ~ Dk r− 1 max 0~k r− D 0 3 2T mε σ= , p T mσ= in ideal gas approximation. Hydrodynamic equations (27) without correlations of the field describe sound waves with dispersion law (sound velocity s0 ( )k kω = 5 3u T= m k ). Equations for correlations (27) contain only transversal , parts of the field correlations. In the case of equilibrium medium these equations describe waves with dispersion law . ( )tr kZZδ ( )tr kEZδ f0 ( )kω 5. CONNECTED SOUND AND CORRELATION OF THE FIELD WAVES Equations (27) in the terms of variables , , , , give kδσ l k n nu k uδ δ≡ k kTδ ( )tr kZZδ ( )tr kEZδ l t k ik uδσ σδ∂ = − , 22 ( )l t t k k kT ikw u i EZ qc δ δ δΩ ∂ = − + r , 2 2 2( ) { ( )l t t k k T k k ku ik T i ZZ T r cσδ α δσ α δ δ πδΩ − + + − , 2 }r 2 2 2 2 2( ) { } ( )tr tr t k k iEZ c k ZZ i T ck ck πδ δ Ω ∂ = − +Ω + kδ k k , ( ) ( )tr tr t kZZ ick EZδ δ∂ = . (29) The matrix of coefficients of this set of linear equations for , , , 2 , 2 has the form kδσ l k n nu k uδ δ≡ kTδ ( )tr kEZδ ( )tr kZZδ 2 2 2 2 2 2 2 0 0 0 0 4 0 0 0 40 0 0 0 0 0 0 T ik ik ik i i r c r c ikw i q c i i k c k c i kc σ σ α α π π −    Ω Ω − − −     Ω −     Ω Ω − −    −  0 0 ikc (30) 338 Nonzero eigenvalues of this matrix, which correspond to frequencies of own oscillations in the system, can be written as it follows 4 3 2 2 2 2 2 1{ ( ( 2 i c k qr c kqr k u c kqr λ = ± + +Ω ) ) 4 2) Ω } 2 2 2 2 3 2 24 ( ) {( (k qw r c k qr c uπ+ Ω + Ω ± + 2 2( 4 ) 4kq c r k w rπ π+ + Ω + Ω 2 3 4 3 2 2 2 24 ( ( 4 )c k qr c k qru c kq ru k wπ− + + 4 1 2 1 24 )} )T rπα / /+ Ω . (31) In general solution of equations (30) all combinations of the signs must be used. In the leading order in dispersion laws is given by formula 1c− 1 2 2 2 2 2( ) 2 { ( )k k c uω −= + +Ω ± 2 2 2 2 2 2 3 1 2 1 2(( ( ) ) 16 ) }k c u w k rπ± − +Ω − Ω . (32) In the small interaction limit field correlation and sound frequencies (32) take the form 2 f ( ) 2 k ck ck ω Ω = + 2 2 4 3 2 2 3 (16 ) 16 16 8 ( ) Tc k q r qru qwk r k c qr c u k π π πα− + + − + − σ 5( )O ΩΩ + , 2 s 2 2( ) wk uk c ru πω Ω = + 2 2 2 2 2 2 4 2 4 4 2 3 2 2 2 { (2 ( ) Tqu w k c qru w qw k r u u c qr u c u k π π απ − + + − + − )}σ Ω 5( )O+ Ω . (33) In the leading approximation in c these expressions can be written as 1− 2 4 5 f 3 3 (16 )( ) ( ) 2 8 k qk ck O ck c qk πω Ω − + + Ω + Ω , 2 s 2 2( ) wk uk c ru πω Ω + (34) 2 2 2 4 2 0 4 4 2 3 2 ( )2 Tqru w qw k r u u c qr u k π α σπ + + − − Ω + 5( )O Ω . 6. CONCLUSION Obtained on the base of the Bogolyubov reduced description method results [5], were applied to the system of the electromagnetic field in hydrodynamic plasma considered as an ideal gas [6,7]. A closed system of equations (24), (25) for density, mass velocity and temperature of plasma and field correlations was built, which linearized near the equilibrium. The subdynamics of correlations with zero radius was considered. New modes of oscillations in this system were studied (31), which correspond to coupled due to electromagnetic interaction sound and transversal correlation modes. The case of small interaction (33) was considered. This work was supported by the State Foundation for Fundamental Research of Ukraine (project No. 2.7/418). REFERENCES 1. Electrodynamics of Plasma. Editor A.I. Akhiezer. M.: “Nauka”, 1974, 720 p. (in Russian). 2. D. Bohm. General Theory of Collective Coordinates. London: “Methuen”, 1959. 3. A.I. Akhiezer, S.V. Peletminskii. Methods of statistical physics. M.: “Nauka”, 1977, 368 p. (in Russian). 4. M.Yu. Kovalevsky, S.V. Peletminskii. Statistical mechanics of quantum liquids and crystals. M.: “FizMatLit”, 2006, 368 p. (in Russian). 5. A. Sokolovsky, A. Stupka. Equations of electro- dynamics in hydrodynamic medium with regard for nonequilibrium fluctuations //Ukrainian Mathe- matical Journal. 2005, v. 57, N.6, p. 1004-1019. 6. A. Sokolovsky, A. Stupka. Waves of electro- magnetic field correlations in hydrodynamic plasma //Proc. Of the 11th MMET Conf. 2006, p. 434-436. 7. A. Sokolovsky, A. Stupka. Linear fluctuation electrodynamics //Journal of Physical Studies. 2006, N1, p. 12-23 (in Ukrainian). КОРРЕЛЯЦИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ЗВУКОВЫЕ ВОЛНЫ А.И. Соколовский, А.А. Ступка Статистический оператор многокомпонентной плазмы найден на основе метода сокращенного описания Боголюбова и квазирелятивистской квантовой электродинамики. Вычисления проведены в калибровке Гамильтона с точностью до второго порядка теории возмущений по взаимодействию. Получена замкнутая система уравнений для бинарных корреляций электромагнитного поля и гидродинамических переменных среды и исследована около равновесия. Изучено приближение классической максвелловской плазмы. Предсказаны связанные состояния звуковых волн и волн поперечных корреляций поля. Волны корреляций электромагнитного поля могут быть возбуждены звуковыми волнами в плазме. КОРЕЛЯЦІЇ ЕЛЕКТРОМАГНІТНОГО ПОЛЯ ТА ЗВУКОВІ ХВИЛІ О.Й. Соколовський, А.А. Ступка Статистичний оператор багатокомпонентної плазми знайдено на основі метода скороченого опису Боголюбова та квазірелятивістської квантової електродинаміки. Обчислення проведено у калібровці Гамільтона з точністю до другого порядку теорії збурень за взаємодією. Одержано замкнену систему рівнянь для бінарних кореляцій поля та гідродинамічних змінних середовища і досліджено біля рівноваги. Вивчено наближення класичної максвеллівської плазми. Передбачено зв’язані стани звукових хвиль та хвиль поперечних кореляцій поля. Хвилі кореляцій електромагнітного поля можуть бути збуджені звуковими хвилями у плазмі. 339