Using of numerical modeling for verification of the functional hypothesis

One-dimensional harmonic oscillator in a quasi-equilibrium medium which consists of non-interacting harmonic oscillators has been considered. Kinetic equation for this Brownian particle has been derived on the basis of the Bogolyubov functional hypothesis. Solution of the kinetic equation was numeri...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2007
Main Authors: Sokolovsky, A.I., Chelbaevsky, Z.Yu.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/111016
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Using of numerical modeling for verification of the functional hypothesis / A.I. Sokolovsky, Z.Yu. Chelbaevsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 331-334. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111016
record_format dspace
spelling Sokolovsky, A.I.
Chelbaevsky, Z.Yu.
2017-01-07T17:33:17Z
2017-01-07T17:33:17Z
2007
Using of numerical modeling for verification of the functional hypothesis / A.I. Sokolovsky, Z.Yu. Chelbaevsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 331-334. — Бібліогр.: 3 назв. — англ.
1562-6016
PACS: 02.70.-c, 05.20.Dd
https://nasplib.isofts.kiev.ua/handle/123456789/111016
One-dimensional harmonic oscillator in a quasi-equilibrium medium which consists of non-interacting harmonic oscillators has been considered. Kinetic equation for this Brownian particle has been derived on the basis of the Bogolyubov functional hypothesis. Solution of the kinetic equation was numerically compared with an exact solution obtained by Bogolyubov. The results of this comparison are presented in a simple graphic form.
Розглянуто одновимірний гармонічний осцилятор у квазірівноважному середовищі, яке складається з гармонічних осциляторів, що не взаємодіють. На основі функціональної гіпотези Боголюбова одержано кінетичне рівняння для цієї броунівської частинки. Розв’язок кінетичного рівняння чисельно порівняно з точним розв’язком, одержаним Боголюбовим. Підсумки порівняння представлені в простій графічній формі.
Рассмотрен одномерный гармонический осциллятор в квазиравновесной среде, которая состоит из невзаимодействующих гармонических осцилляторов. На основе функциональной гипотезы Боголюбова получено кинетическое уравнение для этой броуновской частицы. Решение кинетического уравнения численно сравнено с точным решением, полученным Боголюбовым. Результаты сравнения представлены в простой графической форме.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Kinetic theory
Using of numerical modeling for verification of the functional hypothesis
Використання чисельного моделювання для перевірки функціональної гіпотези
Использование численного моделирования для проверки функциональной гипотезы
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Using of numerical modeling for verification of the functional hypothesis
spellingShingle Using of numerical modeling for verification of the functional hypothesis
Sokolovsky, A.I.
Chelbaevsky, Z.Yu.
Kinetic theory
title_short Using of numerical modeling for verification of the functional hypothesis
title_full Using of numerical modeling for verification of the functional hypothesis
title_fullStr Using of numerical modeling for verification of the functional hypothesis
title_full_unstemmed Using of numerical modeling for verification of the functional hypothesis
title_sort using of numerical modeling for verification of the functional hypothesis
author Sokolovsky, A.I.
Chelbaevsky, Z.Yu.
author_facet Sokolovsky, A.I.
Chelbaevsky, Z.Yu.
topic Kinetic theory
topic_facet Kinetic theory
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Використання чисельного моделювання для перевірки функціональної гіпотези
Использование численного моделирования для проверки функциональной гипотезы
description One-dimensional harmonic oscillator in a quasi-equilibrium medium which consists of non-interacting harmonic oscillators has been considered. Kinetic equation for this Brownian particle has been derived on the basis of the Bogolyubov functional hypothesis. Solution of the kinetic equation was numerically compared with an exact solution obtained by Bogolyubov. The results of this comparison are presented in a simple graphic form. Розглянуто одновимірний гармонічний осцилятор у квазірівноважному середовищі, яке складається з гармонічних осциляторів, що не взаємодіють. На основі функціональної гіпотези Боголюбова одержано кінетичне рівняння для цієї броунівської частинки. Розв’язок кінетичного рівняння чисельно порівняно з точним розв’язком, одержаним Боголюбовим. Підсумки порівняння представлені в простій графічній формі. Рассмотрен одномерный гармонический осциллятор в квазиравновесной среде, которая состоит из невзаимодействующих гармонических осцилляторов. На основе функциональной гипотезы Боголюбова получено кинетическое уравнение для этой броуновской частицы. Решение кинетического уравнения численно сравнено с точным решением, полученным Боголюбовым. Результаты сравнения представлены в простой графической форме.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111016
citation_txt Using of numerical modeling for verification of the functional hypothesis / A.I. Sokolovsky, Z.Yu. Chelbaevsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 331-334. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT sokolovskyai usingofnumericalmodelingforverificationofthefunctionalhypothesis
AT chelbaevskyzyu usingofnumericalmodelingforverificationofthefunctionalhypothesis
AT sokolovskyai vikoristannâčiselʹnogomodelûvannâdlâperevírkifunkcíonalʹnoígípotezi
AT chelbaevskyzyu vikoristannâčiselʹnogomodelûvannâdlâperevírkifunkcíonalʹnoígípotezi
AT sokolovskyai ispolʹzovaniečislennogomodelirovaniâdlâproverkifunkcionalʹnoigipotezy
AT chelbaevskyzyu ispolʹzovaniečislennogomodelirovaniâdlâproverkifunkcionalʹnoigipotezy
first_indexed 2025-11-27T06:57:10Z
last_indexed 2025-11-27T06:57:10Z
_version_ 1850802695634419712
fulltext USING OF NUMERICAL MODELING FOR VERIFICATION OF THE FUNCTIONAL HYPOTHESIS A.I. Sokolovsky and Z.Yu. Chelbaevsky Dnipropetrovsk National University, Dnipropetrovsk, Ukraine; e-mail: alexsokolovsky@mail.ru One-dimensional harmonic oscillator in a quasi-equilibrium medium which consists of non-interacting harmonic oscillators has been considered. Kinetic equation for this Brownian particle has been derived on the basis of the Bo- golyubov functional hypothesis. Solution of the kinetic equation was numerically compared with an exact solution obtained by Bogolyubov. The results of this comparison are presented in a simple graphic form. PACS: 02.70.-c, 05.20.Dd 1. INTRODUCTION This work is devoted to justification of applicability domain of the Bogolyubov functional hypothesis and his reduced description method (RDM) on the basis of an exact solvable model. The RDM (which is based on the functional hypothesis) is one of basic approaches to investigation of nonequilibrium processes, therefore the interest in its verification has become clear. The kinetics of a one-dimensional harmonic oscilla- tor in a quasi-equilibrium medium which consists of non-interacting harmonic oscillators is investigated in this work. The interaction between the oscillator and the environment is supposed to be weak. This model was considered in the paper of Bogolyubov [1], where he has found its exact solution in a very complex form. The state of the aforesaid system is completely de- scribed by the distribution function , where are phase variables of the oscillator and are phase variables of the medium. The quasi-equilibrium environment is described by the equilibrium thermody- namic parameters, which in general can depend on time because of a reverse influence of the oscillator on the medium. The energy of the medium is selected as such parameter. 0( , , )x X tρ ( )mE t 0x X We consider simplification in description of the sys- tem when its state is determined by the distribution function of energy of the oscillator and by the energy of the medium . According to the func- tional hypothesis the distribution function of the system at long times has the structure . We have derived an integral equation for the distribu- tion , and also a system of kinetic equa- tions ( , )w E t 0( , ,x X ( )mE t ( ), ( ))mw t E tρ 0( , , , )mx X w Eρ ( , ) ( , ( ), ( ))mw E t L E w t E t= , ( ) ( ( ), ( ))m m mE t L w t E t= . The mentioned values were calculated in a perturbation theory in small interaction between the Brownian oscil- lator and the medium. The analytical results obtained for by the RDM are numerically compared with the Bogolyubov exact solution. ( , )w E t 2. THE KINETIC EQUATION OF BOGOLUBOV’S MODEL IN THE REDUCED DESCRIPTION METHOD The Hamiltonian for our model is the following b m bH H H H= + + m , (1) where the subscript refers to the Brownian harmonic oscillator with a frequency b 0ω 2 2 2 0 0 0 1 ( ) 2bH p qω= + , (2) the subscript m refers to the medium consisting of a big number of harmonic oscillators with frequencies aω 2 2 2 1 1 ( ) 2 N m a a a H p ω = = +∑ aq q . (3) The Hamiltonian of interaction is given by bmH 0 1 N bm a a a H qα = = ∑ , (4) where αa are the small values ( , ). ~aα ε 1ε Let the initial (when ) phase variables of the Brownian oscillator are , ; and phase variables of the medium { are canonical distributed random variables: 0t = 0 0 0 0pq , }a aq p T HF b b ew − = (5) (here and further stands for ). T kT The Liouville equation for the distribution function of the system is the following ),,(),,( 00 tXxtXx ρρ L= , (6) where 0b m bm bm= + + = +L L L L L L , 2 0 0 0 0 0 m p q q p ω∂ ∂ = − + ∂ ∂ L , 2 1 1 N N b a a a a aa a p q q p ω = = ∂ ∂ = − + ∂ ∂∑ ∑L , 0 01 1 N N bm a a a aa a q q p p α α = = ∂ = + ∂ ∂∑ ∑L ∂ (7) and PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 331-334. 331 ),( 000 qpx ≡ , , . (8) ),( aaa qpx ≡ ),,( 1 nxxX …≡ The distribution function satisfies the nor- malization condition 0( , , )x X tρ ∫ =1),,( 00 tXxdXdx ρ . (9) The formal solution of the Liouville equation can be written as ),(),,( 000 XxetXx tρρ L= , (10) (ρ where 0 0 0( , ) ( , ,0)x X x Xρ ρ= . m ) We will consider a kinetic stage of the evolution, when the simplification in the description of the system state takes place and it is determined by the distribution function of the Brownian oscillator energy and by the medium energy . It means that at time, considerably larger that time τ ( , )w E t ( )mE t , )x X t 0, according to a func- tional hypothesis, should have the following structure 0( ,ρ 00 0( , , ) ( , , ( ), ( ))mtx X t x X w t E tτρ ρ→ , (11) where reduced description parameters , and are defined by relations ( , )w E t ( )mE t 00 0( , , ) ( ) ( , )s tdx dX x X t E H w E tτρ δ − →∫ , 00 0( , , ) ( )m tdx dX x X t H E tτρ →∫ . (12) The Liouville equation (6) at times takes the form 0t τ 0 0( , , ( ), ( )) ( , , ( ), ( )).m mx X w t E t x X w t E tρ ρ= L (13) This equation and definitions Eqs.(14) lead to the following equation for ( , )w E t ( , ) ( , ( ), ( ))mw E t L E w t E t= , , (14) 0(t τ where ( , , )mL E w E ≡ ( )0 0 1 , , , ( ) N m s a a dx dX x X w E E H q p E ρ δ α = ∂ ≡ − ∂ ∑∫ 0a , .aα .(15) The kinetic equation for is given by the for- mula ( )mE t ( ) ( ( ), ( ))m m mE t L w t E t= , (16) 0( )t τ where ( , )m mL w E ≡ . ( )0 0 0 1 , , , N m a a dx dX x X w E q pρ = ≡ − ∑∫ (17) The Liouville equation at the reduced description Eq.(13) can be written due to Eqs. (14), (16) in the form 0 0 ( , , , ) ( , , , ) ( , , ) ( ) m m m x X w E x X w E dE L E w E w E δρ ρ δ = ∫L 0( , , , ) ( , ).b b b b x X w E L w E E ρ∂ + ∂ (18) For this equation we use the following boundary condi- tion of the complete correlation 0 0 00 0( , , , ) ( , , , )m qte x X w E e x X w Eτ τ τρ ρ→L L m , 0( , ) ( ) ( ). 2q m b m mw E w H w E ω ρ π ≡ (19) By an usual way [2,3] Eq. (18) with condition (19) give the following integral equation for distribution function , )mw E {0 0 ( , ) ( , ) ( , )m q m bm mw E w E d e w Eτρ ρ τ ρ +∞ = + ∫ L L }) .m ( , ) ( , ) ( , , ) ( , ( ) m m m m w E w E dE L E w E L w E w E E δρ ρ δ ∂ − − ∂∫ m .(20) We solve this Eq. (20) for with expres- sions Eqs. (15), (17) for and by iterations in a perturbation theory in interaction constant . 0( , , , )mx X w Eρ ( , , )mL E w E ( , )m mL w E ε The results of the calculations up to second order in ε are the following (0) ( , )q mw Eρ ρ= ; , ; (1) 0L = (1) 0mL = 0(1) 0 0 10 ( ) 2 N b a a a w Ew d e q p E τω ρ τ α π ∞ = ∂=  ∂ ∑∫ L 0 1 ( ) b a E H q p w E T → −   , (21) (2) 0.mL = The formula for gives kinetic equation for (1)ρ ( , )w E t 0 1( , ) ( ) ( , ) , 2 w E t TI E w E t E E T π ω ∂  ∂  = +  ∂ ∂   (22) where 2 2 1 ( ) ( ). N a a a a I α ω δ ω ω= = −∑ ω (23) So, we have obtained the necessary kinetic equation on the basis of the RDM. In the considered approximation the dependence of the medium energy on time is absent. ( )mE t 3. NUMERICAL COMPARISON OF THE RESULTS OF DIFFERENT APPROACHES Bogolyubov has obtained the exact expression for distribution function of the Brownian oscillator in thermodynamic limit (when ) in form 0 0( , , )b q p tρ N →∞ * * 0 0 0 0( , , ) ( ( ), ( ), )b q p t q q t p p t tρ = Φ − − , (24) where * 0 0 0 0( ) ( ) ( )q t q v t p v t′= + , * 0 0 0 0( ) ( ) ( )p t q v t p v t′′ ′= + , (25) and 2 2 22 1 2( , , ) exp 2( )2 C B At B ACAC B ξ ξη ηξ η π  − + Φ =  −−   . (26) The functions A(t), B(t), C(t) are coefficients of the quadratic form 332 2 2( ) 2 ( ) ( )A t B t B tλ λµ+ + µ 2 0 0 ( ) { ( ) ( )} . t iT d I d e ωτω ω τ λν τ µν τ ∞ −′= +∫ ∫ (27) Here function is the solution of the following differential equation ( )tν 2 0 0 ( ) ( ) ( ) ( ) t v t v t d Q t vω τ τ′′ ′+ = −∫ τ , (28) with initial conditions , , where (0) 0ν = (0) 1ν ′ = 0 ( ) ( )(1 cos ).Q t d I tω ω ω ∞ = −∫ (29) The comparison of the exact solution and the result of the RDM consists in analysis of the difference be- tween exact distribution of energy 0 0 0 0 ( ) ( , ) ( , , ) b b H E P E t dq dp q p tρ < = ∫ 0 0 ( , )2 0 0 0 ( , )2 ( , , ) q E pE b q E pE dp dq q p tρ −− = ∫ ∫ 0 , 0 2 0 0 2 ),( ω pE pEq − = (30) and distribution 0 0 ( , ) ( , ) E P E t dE w E t′ ′= ∫ (31) calculated on the basis of the RDM. Kinetic equation (22) for distribution function is solved by us numerically in dimensionless form ( , )w E t ( , ) 1 ( , ) 2 w E t E w E t E E π∂ ∂  ∂ = +  ∂ ∂ ∂   t  , EE T = , t t , , (32) 2λ= 0( )Iλ ω≡ with the following boundary conditions ( , ) Ew E t e−→ , t ; →+∞ 0( , ) ( )w E t E Eδ→ − 0→, t ; ( , ) 0w E t → , (33) .E → +∞ The differential equation (30) has a form of the second Newton's law with a complex dissipative force and is numerically integrated too. The results of a graphical comparison of the distributions and at different times are shown in the figure. The parameters of this experiment are 0P E( , )t )t( ,P E 1 0 00.006, 2.5, 0.001 .E sλ ω −= = = First two graphics show essential distinctions between the distributions at initial time, but their further evolu- tion (when t ) is almost identical and they ap- proach to the equilibrium distribution. 20.5λ− Thus, we have performed the comparison of exact and approximate solutions and have displayed their closeness at long times. Comparison of the distributions and at different times. Dotted line shows the exact solution, solid line shows the result of the reduced de- scription method ( , )P E t 0 ( , )P E t 333 4. CONCLUSION We have numerically compared solution of the ap- proximate kinetic equation, which is obtained with the help of functional hypothesis, with the exact solution. It was shown that at long times the RDM leads to energy distributions which are close to one another. In the next paper we plan to compare the Bo- golyubov exact result with consequences of the kinetic equation of the third order approximation in interaction. REFERENCES 1. N.N. Bogolyubov. Elementary example of transition to equilibrium in system, connected with a bath /In: N.N. Bogolyubov. About some statistical methods in mathematical physics. Kiev: AN USSR, 1945, p. 115–137 (in Russian). 2. A.I. Akhiezer, S.V. Peletminsky. Methods of statis- tical physics. M.: “Nauka”, 1977, 368 p. (in Rus- sian). 3. A.I. Sokolovsky, M.Yu. Tseitlin. On the theory of the Brownian motion in the reduced description method //Тeor. i Mat. Fizika. 1977, v. 33, N3, p. 409-418 (in Russian). ИСПОЛЬЗОВАНИЕ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ДЛЯ ПРОВЕРКИ ФУНКЦИОНАЛЬНОЙ ГИПОТЕЗЫ А.И. Соколовский, З.Ю. Челбаевский Рассмотрен одномерный гармонический осциллятор в квазиравновесной среде, которая состоит из не- взаимодействующих гармонических осцилляторов. На основе функциональной гипотезы Боголюбова полу- чено кинетическое уравнение для этой броуновской частицы. Решение кинетического уравнения численно сравнено с точным решением, полученным Боголюбовым. Результаты сравнения представлены в простой графической форме. ВИКОРИСТАННЯ ЧИСЕЛЬНОГО МОДЕЛЮВАННЯ ДЛЯ ПЕРЕВІРКИ ФУНКЦІОНАЛЬНОЇ ГІПОТЕЗИ О.Й. Соколовський, З.Ю. Челбаєвський Розглянуто одновимірний гармонічний осцилятор у квазірівноважному середовищі, яке складається з га- рмонічних осциляторів, що не взаємодіють. На основі функціональної гіпотези Боголюбова одержано кіне- тичне рівняння для цієї броунівської частинки. Розв’язок кінетичного рівняння чисельно порівняно з точним розв’язком, одержаним Боголюбовим. Підсумки порівняння представлені в простій графічній формі. 334