On the pulsar secondary electron-positron plasma production in low-energy region

An analytical description of low-energy falling-off of the secondary electron and positron distribution functions is proposed with the account of the effect of the inverse Compton scattering (ICS) on particle acceleration and plasma production. The resulting particle distribution with the described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Kontorovich, V.M., Flanchik, A.B.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111020
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the pulsar secondary electron-positron plasma production in low-energy region / V.M. Kontorovich, A.B. Flanchik // Вопросы атомной науки и техники. — 2007. — № 3. — С. 312-316. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111020
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1110202025-02-09T13:38:45Z On the pulsar secondary electron-positron plasma production in low-energy region Про генерацію вторинної електронно-позітронної плазми у магнітосфері пульсару в області малих енергій О генерации вторичной электронно-позитронной плазмы в магнитосфере пульсара в области малых энергий Kontorovich, V.M. Flanchik, A.B. Kinetic theory An analytical description of low-energy falling-off of the secondary electron and positron distribution functions is proposed with the account of the effect of the inverse Compton scattering (ICS) on particle acceleration and plasma production. The resulting particle distribution with the described low-energy falling-off may lead to the instability in magnetosphere plasma. Пропонується аналітичний опис низькоенергетичного завалу функцій розподілу електронів та позитронів, які породжуються у магнітосфері пульсару. Враховується вплив зворотнього комптонівського розсіювання на прискорення часток та народження пар Комптонівськими фотонами. Виникаючий розподіл часток вторинної плазми с завалом в області малих енергій може приводити до розвитку нестійкості. Предложено аналитическое описание низкоэнергетического завала функций распределения электронов и позитронов, порождаемых в магнитосфере пульсара, с учетом влияния обратного комптоновского рассеяния на ускорение частиц и рождение пар Комптоновскими фотонами. Возникающее распределение частиц вторичной плазмы с завалом в области малых энергий может приводить к развитию неустойчивости. The authors thank V.S. Beskin for useful discussion of the problem setup. 2007 Article On the pulsar secondary electron-positron plasma production in low-energy region / V.M. Kontorovich, A.B. Flanchik // Вопросы атомной науки и техники. — 2007. — № 3. — С. 312-316. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 97.60.-Gb, 41.75.-Ht, 52.25.-Dg https://nasplib.isofts.kiev.ua/handle/123456789/111020 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Kinetic theory
Kinetic theory
spellingShingle Kinetic theory
Kinetic theory
Kontorovich, V.M.
Flanchik, A.B.
On the pulsar secondary electron-positron plasma production in low-energy region
Вопросы атомной науки и техники
description An analytical description of low-energy falling-off of the secondary electron and positron distribution functions is proposed with the account of the effect of the inverse Compton scattering (ICS) on particle acceleration and plasma production. The resulting particle distribution with the described low-energy falling-off may lead to the instability in magnetosphere plasma.
format Article
author Kontorovich, V.M.
Flanchik, A.B.
author_facet Kontorovich, V.M.
Flanchik, A.B.
author_sort Kontorovich, V.M.
title On the pulsar secondary electron-positron plasma production in low-energy region
title_short On the pulsar secondary electron-positron plasma production in low-energy region
title_full On the pulsar secondary electron-positron plasma production in low-energy region
title_fullStr On the pulsar secondary electron-positron plasma production in low-energy region
title_full_unstemmed On the pulsar secondary electron-positron plasma production in low-energy region
title_sort on the pulsar secondary electron-positron plasma production in low-energy region
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Kinetic theory
url https://nasplib.isofts.kiev.ua/handle/123456789/111020
citation_txt On the pulsar secondary electron-positron plasma production in low-energy region / V.M. Kontorovich, A.B. Flanchik // Вопросы атомной науки и техники. — 2007. — № 3. — С. 312-316. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kontorovichvm onthepulsarsecondaryelectronpositronplasmaproductioninlowenergyregion
AT flanchikab onthepulsarsecondaryelectronpositronplasmaproductioninlowenergyregion
AT kontorovichvm progeneracíûvtorinnoíelektronnopozítronnoíplazmiumagnítosferípulʹsaruvoblastímalihenergíj
AT flanchikab progeneracíûvtorinnoíelektronnopozítronnoíplazmiumagnítosferípulʹsaruvoblastímalihenergíj
AT kontorovichvm ogeneraciivtoričnojélektronnopozitronnojplazmyvmagnitosferepulʹsaravoblastimalyhénergij
AT flanchikab ogeneraciivtoričnojélektronnopozitronnojplazmyvmagnitosferepulʹsaravoblastimalyhénergij
first_indexed 2025-11-26T08:09:33Z
last_indexed 2025-11-26T08:09:33Z
_version_ 1849839671249469440
fulltext ON THE PULSAR SECONDARY ELECTRON-POSITRON PLASMA PRODUCTION IN LOW-ENERGY REGION V.M. Kontorovich and A.B. Flanchik Institute of Radioastronomy of NAS of Ukraine, Kharkov, Ukraine; e-mail: vkont@ira.kharkov.ua; alex_svs_fl@vk.kh.ua An analytical description of low-energy falling-off of the secondary electron and positron distribution functions is proposed with the account of the effect of the inverse Compton scattering (ICS) on particle acceleration and plasma production. The resulting particle distribution with the described low-energy falling-off may lead to the in- stability in magnetosphere plasma. PACS: 97.60.-Gb, 41.75.-Ht, 52.25.-Dg 1. INTRODUCTION It is known that a pulsar activity is related to ultrare- lativistic electron-positron plasma which is produced near neutron star polar cap (PC) and moves along open magnetic force lines [1,2]. The plasma production is determinated by the neutron star rotation in super-strong magnetic field (about 10 G). It results from the particle acceleration in a vacuum gap above the polar cap which is a part of open force line region where a longitudinal (along the magnetic field) electric field exists. The plasma production process undergoes in several steps [2,3]. 12 Electrons being torn from the pulsar surface are ac- celerated in the longitudinal field of the gap up to gamma-factors . There are two mechanisms of energy losses for such electrons – a cur- vature radiation (CR) and an inverse Compton scatter- ing (ICS). CR arises due to motion of fast electron along curved magnetic force line; the energy maximum of CR belongs to frequencies , with being a curvature radius of magnetic force line. ICS of primary electrons may take place by photons of thermal emission of hot polar cap (with temperature about K [4,5]), by the pulsar low-frequency emis- sion near light cylinder [2] and by low-energy photons of eigenmodes of the gap [6]. In this work we are to consider the last factor influence. 72 10/ ≥ε=Γ mcprpr cr ,3.0~ ωω cprcr Rc 2/3 3Γ= cR 105 CR and ICS photons propagating in the pulsar curved magnetic field create 1-st generation electron- positron pairs. The electrons and positrons of 1-st gen- eration are born at high Landau levels going down to the normal state they emit synchrophotons which also are capable to produce pairs (of 2-nd generation). In previous paper [7] we obtained the low-energy asymptotic of distribution function with falling-off without influence of ICS. We showed that it was deter- minated by exponential factor )(Γf ( )2exp Γ (Γf 2 0 /Γ− , where is the maximum position of the function . Here we consider the ICS acting on primary particle acceleration and pair production in low-energy region. 0Γ ) 2. THE ICS ACTING ON THE PRIMARY ELECTRON ACCELERATION The primary particle equation of motion in vacuum gap is [3] ICS pr CR pr pr zE mc e dz d c Γ−Γ−= Γ )(|| , (2.1) where is the longitudinal electric field in the gap, are the energy losses due to CR and ICS. They are given by )(|| zE ICS prΓCR prΓ , 2 22 42 3 4, 3 2 pr TICS pr c prCR pr mc u Rcm e Γ σ =Γ Γ =Γ , (2.2) with being the Thomson cross-section and being the energy density of low- energy radiation required for ICS. 222 )/()3/8( cmeT π=σ u The energy density is a parameter characterizing the ICS acting on entire considered process. For the thermal emission of the pulsar polar cap one has . For the low-energy radiation in the pulsar gap according to radio observation data we have . u erg/cm 36 erg/cm10≤u ≤38 erg/cm10 u 31010≤ The detailed description of the primary electron ac- celeration process using the equation (2.1) has not been possible yet because there is not the exact solving of the problem about the determination of the longitudinal field with taking into account its screening by produced plasma. To obtain simple approximate solution and ana- lytical estimations let us use the equation for the longi- tudinal field in framework of Arons’ model [1]: )()1()(3)( 2 || zzzzz cR BzE cc НЗ s −Θξ−− Ω ≈ , (2.3) where PCϑϑ=ξ / , , is an angle between the magnetic axes and a line undergoing from the center of the star to the exit point of the given force line from polar cap. 10 ≤ξ≤ ϑ cRНЗ /Ω cz PC ≈ϑ is an angle radius of the polar cap and a value is the gap height depending on . ξ According to the procedure from [7], let us estimate characteristic length at which the energy losses due to PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 312-316. 312 ICS become dominant and corresponding primary elec- tron gamma-factor. If CR dominates then the estimation of the height at which the energy losses due to CR almost compensate acceleration process, is given by [7] CRz 7/327/12 32 3         Ωω        ≈ cH НЗ e c CR z cR r R z , where . For pulsar parame- ters s, G, cm we have cm, the numerical solving of the equa- tion (2.1) gives the dependence , shown in Fig. 1 (curve 1). The estimation of the maximum gamma-factor of primary electron is mceBmcer sHe /,/ 22 =ω= 1.0= 12103.1 ⋅=sB cz 4102.1 ⋅ prΓ P ≈ 4102 ⋅≈ (zprΓ= CRz ) ( ) 73/12max 10~)2/(3 CRecpr zrR≈Γ . Fig. 1. The dependence of primary particle gamma- factor on height z for various mechanisms of losses: 1−without ICS [7]; 2−with ICS ( u ); 3−with ICS ( u ) 3710 erg/cm= 39 /10 cmerg= Let us consider the ICS acting on primary particle acceleration with various values of . From (2.2) we obtain the value of gamma-factor Γ at which the energy losses due to CR and ICS become comparable u (eq pr ) euR Tc eq pr /2)( σ=Γ . (2.4) /= If then the CR energy losses dominate, in opposite case ICS losses are significant and for the last case we have from (2.1): then the gamma-factor of primary particle is given by )(eq prpr Γ>>Γ )()( 2 || zuzeE prT Γσ≈ ICSTpr zzzumcz ~),/()( 2 σ≈Γ , (2.5) e where is a height at which the particle almost compensated by ICS. For we obtain an equation ICSz ICSz )/()()( 222 || umczzeE TICSICS σ≈ . (2.6) For the Arons’ field (2.3) in case of z we ob- tain the estimation for cICS z<< ICSz 3/122 )(       σΩ ≈ uzBe cRmcz Tcs НЗ ICS , (2.7) Kx=Φ The maximum value of gamma-factor is then 3/22max )/( −∝σ≈Γ uzumc ICSTpr , (2.8) the estimations yield in this case cm, and with low-energy radiation density > u . The numerical integra- tion of (2.1) with various values of gives the depend- ences , shown in Fig. 1 (curves 2 ,3). 44 105.1...10~ ⋅ICSz 1010 3erg/cm > 810 )(zprpr Γ=Γ 6max 103~ ⋅Γpr u 7105.1... ⋅ 3erg/cm 3. PAIR PRODUCTION BY CURVATURE RADIATION AND ICS PHOTONS Let us consider the process of the electron-positron plasma production in the region above the pulsar vac- uum gap. Distribution functions of photons N and pro- duced particles satisfy the kinetic equations (KE) f ICSCR c qqNkwN R Bkc z Nc ++ε−= ε∂ ∂′ + ∂ ∂ γ ),( 4 3 , (3.1) ),(),( zQzQ z fc CRICS Γ+Γ= ∂ ∂ , (3.2) where , is an angle between the photon momentum and the magnetic field strength, is a dimensionless photon energy, , , and w is a probability of pair production by a photon [8]. Func- tions , q , ,Q are sources for the photons and secondary plasma particles: 2/ mck ω= 4/sinβ′B crBB / Bcr = CRq ICS CRQ β 2m 3=ε k B =′ )/(3 ec ICS ),( kεγ ∫ ΓΓΓ= prprCRprprCR dkPFq ),()( , (3.3) ∫ ΓΓ= 1 3 1)()( kddwkNFq prICSsoftprprICS , (3.4) (∫ β−Γδ= γ kdNwQ CRCR 3sin/1 ) ) , (3.5) (∫ β−Γδ= γ kdNwQ ICSICS 3sin/1 , (3.6) 2/3, 2 3 /2 2/5 2/1 Be k c w f ′≥εε α = ε− γ , (3.7) ( ). The condition in (3.7) corresponds to the pair production threshold . is the dis- tribution functions of photons of low-energy radiation in the gap, mc 2sin ≥βk softN ( ))(zprpr Γ− ICS )( nepr Γδ=Γ CRP w Fpr n is the distribution function of the primary electrons with the concentration . The values и are probabilities of the cur- vature radiation and ICS as functions of the energy of final photon [3, 9] 3 2 3, 2 3 ),( pr c c c pr c f prCR R k k k kR c kP Γ=      Φ Γ π α =Γ )cos1( cos1 cos1 )(2 5 1 1 222 2 ζ−         ζ− α− −δ Γ = pr pr pr pr e ICS vkk v v kk mcV rw , (3.8) with , dyyx x ∫ ∞ )()( 3/5 Γ−Γ= /12 prprv , and is an angle between primary electron and initial soft α 313 photon momenta, is an angle between primary elec- tron and final photon momenta, V is a volume of re- gion in which ICS is considered. Taking into account (3.8) one can rewrite (3.4) in a form ζ k )1 − − z ne )( − + cos cos sin2 /1 2 ||v ICS CRN c B′ (Γ cR B′ (ICS N   Φ k Ndk kV rq soft pr e ICS 1(5 12 2 ∝ Γ π = ∫ . (3.9) In equations (3.5) and (3.6) δ functions mean that a gamma-factor of secondary particle after synchrotron radiation is determinated only by the angle β of photon which produces the particle. Indeed, let be the elec- tron (positron) gamma-factor before synchrotron emis- sion. In pulsar magnetic field the relation [10] takes place; let us calculate the particle gamma-factor after synchrotron emission. May the pair components are produced at Landau levels and n with angles and to the magnetic field direction. As it is shown in [10], the pair production probability has a maximum under θ and . Then from conservation of the momentum projection to the field direction γ + = 2/k=γ 1>>= n n −θ +θ θ=θ= + −n +n β ω =θ+θ +−− coscos c pp the relation between angles and β arises θ cp /cos2 βω=θ , ( ) 2222/ cmcp e−ω= , or in an equivalent form )4/()4(sin 222 −−β=θ kk . (3.10) k sin Let us come to the frame , where the particle motion along magnetic field is absent, the velocity of this frame is K′ 2 || 1cos γ−θ=v . After synchrotron emission the particle gamma-factor in this frame is to be Γ , re- turning to the initial frame we have 1=′ 222 /cossin/11/ γθ+θ=−Γ′=Γ , then, using (3.10), we obtain . β=Γ sin/1 We find the solution of KEs (3.1) and (3.2) in a form CR NNN += , , (3.11) ICSCR fff += and distributions satisfy equations ,, ICSN ICSCR ff , CRCR CRCR qNkwN R ck z Nc +ε−= ε∂ ∂ + ∂ ∂ γ ),( 4 3 , ), zQ z fc CR CR = ∂ ∂ , (3.12) ICSICS ICSICS qNkwNck z Nc +ε−= ε∂ ∂ + ∂ ∂ γ ),( 4 3 , ), zQ z f c ICS Γ= ∂ ∂ . (3.13) =r The solutions for were obtained before [3] with the low-energy asymptotics [7] CRCR f, Bk Rzk k k k constN c c CR ′ ε ≥εφ    = 3 4,),(2 ,      ′≥ε        εϕ− ′<ε =εφ 2/3,)(exp 2/3,1 ),( 2 2 * B k k B k , (3.14) B R k cf ′ α = 62 2 * , ,)( 2/3 /2 dxex B x∫ ε ′ −=εϕ 2       −ΓΘΓ η =Γ       Γ Γ − − z Renf c CR CR CR 0 3/2)( , (3.15) Bc m eRk ′ −α ΛΒ′≈Γ 3 4 0 )(4.0 , (3.16) where is the concentration of the particles being produced by CR-photons and CRn ( )∫ Γ Γ −ΓΓ− ΓΓ=η max min 2 0 3/2/ deCR (3.17) is normalizing factor. From (3.14) we see that under k the CR-photon spectrum is a power-law: . The expo- nential decreasing of the photon distribution (3.14) in case of k ( ε ) is explained by the resulting photon deficit due to intensive pair production. According to [3], the pair production process becomes the most effective when ck< /1~) k 3/5(kNCR 2/3B′2sin >β ≥      =Λ Λ′ ≈β k kk kB *ln)(, )(3 4 . (3.18) In similar way we obtain the solutions for the distri- butions , (ICS contribution). From (3.13) we have for the ICS-photon distribution ICSICS fN , 2/),(const kkN ICS εφ⋅= . (3.19) Substituting the formulae (3.6), (3.19) to the equa- tion for and integrating, we obtain for the secon- dary plasma distribution ICSf       Λ′ Γ = Λ Γ = ∂ ∂ 02 ;, 3 44 zz B kN Rz f ICS c ICS . (3.20) Here is a height of photon emission point and is a photon path length. If β we have sim- ple relation . It can be obtained by writing the length of the interval between photon emission and pair production points and using the magnetic force line equation [2]: , , where the parameter of the magnetic force line is intro- duced . For the photon emission point we have . In case of ϑ and tiny changing of ξ (when one has ) we have , the angle difference is related to β . Actually, having written the equations of tangent (using coordinates , ) in the emission and the absorption points in a form , γ−= szz0 γ ≈γs ξ= /RA L 0 ϑ∆ϑA2 = rz s = 1<< 2)r∆ A ≈ ϑ∆ ϑ =z βcR 2s =γ ,2 RL A cos ( )20 (rr ≈− Ω= /c 0 2 0 sin ϑ ϑ = sinry ϑ= 2sinAr 1, 0 <<ϑ 0A const0 +yP ∆r 314 and , with , , we obtain tg . From here we have a relation β . Thus we obtain const+= yPz ( 0P=β≈β 2/3 ϑ∆= ϑ∆=∆≈γ rrs /2 )3/(4 ϑ= r Λ 00 3/2 ϑ=P )1 0PP+ β=ϑβ cR)3/( ϑ= 3/2P /()P− =ϑ r4 Γ Γ=′ eBRcf Λ     Γ Γ 2 2 0 Be ′ − 3 4 , Rc being a curvature radius of the dipolar field force line. Equations (3.18) and (3.20) lead to the following re- lation between and 6323 ΛαΛ , (3.21) hence the factor weakly (logarithmically) depends on . It can be seen from (3.14) and (3.16) that the low- energy behavior of the produced particle distributions is determinated by an exponential factor Γ     −exp , . (3.22) c m Rk α ΛΒ′≈Γ0 )(4.0 From (3.20) we obtain )()( 2 0 Γ−ΓΘ      −ΓΘ Γη =Γ       Γ Γ − ICS c ICS ICS ICS z Renf , (3.23) with being the concentration (in a point with coor- dinate ) of the particles produced by ICS photons, ICSn z ( )∫ Γ Γ −ΓΓ− ΓΓ=η ICS deICS min 2 0 1/ (3.24) is a normalizing factor and is a high-energy end of the spectrum, for which one can write ICSΓ )(~),( 4 3 2max zkkkkB prsoftICSICSICSICS ΓΛ′=Γ , (3.25) where is a maximum value of in the spectrum of low-energy initial photons. max softk k 4. THE RESULT DISCUSSION We have shown that taking into account pair produc- tion by ICS photons leads to the appearance of the addi- tional part in the spectrum of the secondary plasma par- ticles of 1-st generation (3.23). According to (3.19) ICS- photons have a power-law spectrum , that is why the power-law asymptotic of the distribution function of particles produced by ICS photons is given by . The fast falling-off of the distribu- tion function with decreasing (but still ) is described by the same absorption coeffi- cient (3.14), that in case of curvature radiation. There is an exponential factor 2)( −∝ kkN ICS k 1)( −Γ∝ΓICSf N 2sin ≥β ),( kεφ ICS k ( )22 0 /Γexp Γ− z which re- sults from coefficient in the spectrum (3.23), describing the decreasing of the distribution function in the low-energy region. The function (3.23) is a distribution function in a point (point O in Fig. 2) and it is determinated by all ICS-photons arriving to this point with various anglesβ (from different magnetic force lines). ),( kεφ )(ΓICSf Γ Fig. 2. A scheme demonstrating the secondary parti- cle distribution in the point O, are photon emis- sion points 41...PP In case of high values of energy density of low- energy radiation (which enters our model as a parame- ter) the particle production by ICS-photons may pre- dominate over the pair production by CR-photons. In this case a transition when between ICS- and CR-part of the secondary particle spectrum is expected and after it remains only the part related to the curvature radiation. The distribution function of secondary plasma particle (with low-energy, ICS- and CR-asymptotics) normalized by the concentration is shown in Fig. 3. ICSΓ= Fig. 3. The distribution function of the 1-st genera- tion particles (in a point with 2000 m). The low- energy falling-off, CR- and ICS-asymptotics are shown =z 5. CONCLUSIONS We have considered the ICS acting on the primary particle acceleration in the pulsar vacuum gap and the pair production by ICS-photons. It has been shown that 315 in case of high values of the energy density of the soft radiation in the gap ICS energy losses may predominate over CR-losses and determinate the maximum value of primary particle gamma-factor. The low-energy behavior of the distribution func- tions of the 1-st generation particles produced by curva- ture radiation and ICS photons has been considered in this work. It has been shown that the distributions con- tain exponential factor ( )22 0 /exp ΓΓ− , describing the fast distribution decreasing in the region of small gamma-factors. The expression for the distribution function maximum position has been obtained. We have obtained the ICS-photon distribution function and the distribution of the particle produced by ICS-photons. It is important to note that the distribution functions of secondary plasma obtained in the work with low- energy falling-off may lead to arising of the flux insta- bility and the wave generation that may be important for the pulsar radio emission theory. The authors thank V.S. Beskin for useful discussion of the problem setup. REFERENCES 1. V.S. Beskin. Axial symmetry stationary flows in as- trophysics. M.: “Fizmatlit”, 2006, 384 p. (in Rus- sian). 2. I.F. Malov. Radiopulsars. M.: “Nauka”, 2004, 192 p. (in Russian). 3. A.V. Gurevich, Y.N. Istomin. The generation of electron-positron plasma in pulsar magnetosphere //JETP. 1985, v. 89, p. 3-21. 4. N.S. Kardashev, I.G. Mitrofanov, I.D. Novikov . Inter- action with photons in neutron star magneto- spheres //Astronom. Zh. 1984, v. 61, p. 1113-1124. ±e 5. V.M. Kaspi, M.S. Roberts, A.K. Harding. Isolated neu- tron stars. astro-ph/0402136. 2004, 66 p. 6. V.M. Kontorovich. Dice and pulsars //Radiophysics and Radioastronomy. 2006, v. 11, p. 308-314. 7. V.M. Kontorovich, A.B. Flanchik. Low-energy be- havior of secondary plasma particle distribution function in pulsar magnetospheres //Problems of Atomic Science and Technology. Series: Plasma Electronics and New Acceleration Methods. 2006, N5, p. 171-175. 8. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii. Quan- tum electrodynamics. M.: “Nauka”, 1979, 703 p. (in Russian). 9. Y.P. Ochelkov, O.F. Prilutskii, I.L. Rozental, V.V. Usov. Relativistic hydrodynamics and kinetics. M.: “Atomizdat”, 1979, 200 p.(in Russian). 10. A.K. Harding, J.K. Daugherty. Pair Production in Pulsar Magnetosphere //Astrophys. J. 1983, v. 273, p. 761-782. О ГЕНЕРАЦИИ ВТОРИЧНОЙ ЭЛЕКТРОННО-ПОЗИТРОННОЙ ПЛАЗМЫ В МАГНИТОСФЕРЕ ПУЛЬСАРА В ОБЛАСТИ МАЛЫХ ЭНЕРГИЙ В.М. Конторович, А.Б. Фланчик Предложено аналитическое описание низкоэнергетического завала функций распределения электронов и позитронов, порождаемых в магнитосфере пульсара, с учетом влияния обратного комптоновского рассеяния на ускорение частиц и рождение пар комптоновскими фотонами. Возникающее распределение частиц вто- ричной плазмы с завалом в области малых энергий может приводить к развитию неустойчивости. ПРО ГЕНЕРАЦІЮ ВТОРИННОЇ ЕЛЕКТРОННО-ПОЗІТРОННОЇ ПЛАЗМИ У МАГНІТОСФЕРІ ПУЛЬСАРУ В ОБЛАСТІ МАЛИХ ЕНЕРГІЙ В.М. Конторович, О.Б. Фланчик Пропонується аналітичний опис низькоенергетичного завалу функцій розподілу електронів та позитро- нів, які породжуються у магнітосфері пульсару. Враховується вплив зворотного комптонівського розсію- вання на прискорення часток та народження пар комптонівськими фотонами. Виникаючий розподіл часток вторинної плазми с завалом в області малих енергій може приводити до розвитку нестійкості. 316