Application of magnetic diagnostics to determine basic energy characteristics of plasma

Method of determination of plasma parameters and magnetic configuration of toroidal magnetic traps according to measurement results of magnetic fields of plasma currents out of volume of plasma confinement is implied now by magnetic diagnostics [1-3]. Rokosovskiy coil, diamagnetic loop and saddle co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Pashnev, V.K.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111025
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Application of magnetic diagnostics to determine basic energy characteristics of plasma / V.K. Pashnev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 225-226. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111025
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1110252025-02-09T14:51:44Z Application of magnetic diagnostics to determine basic energy characteristics of plasma Застосування магнітної діагностики для визначання основних енергетичних характеристик плазми Применение магнитной диагностики для определения основных энергетических характеристик плазмы Pashnev, V.K. Plasma diagnostics Method of determination of plasma parameters and magnetic configuration of toroidal magnetic traps according to measurement results of magnetic fields of plasma currents out of volume of plasma confinement is implied now by magnetic diagnostics [1-3]. Rokosovskiy coil, diamagnetic loop and saddle coil are now used most often to determine macroscopic plasma parameters; they allow to determine longitudinal current magnitude and energy content of plasma in the confinement volume. The most important characteristics of plasma are energy confinement time of plasma tE and power W injected into plasma. Possibility to determine tE, W and Z (average charge value) values using sensors of magnetic diagnostics in stellarators is discussed. Показано, що при стрибкоподібній зміні потужності нагріву плазми за допомогою датчиків магнітною діагностики може бути визначена величина енергетичного часу життя плазми, потужність, що вводиться в плазму, средний заряд плазми, а також з'являється можливість з'ясування механізмів збудження струму в плазмі. Показано, что при скачкообразном изменении мощности нагрева плазмы с помощью датчиков магнитной диагностики может быть определена величина энергетического времени жизни плазмы tE, вводимая в плазму мощность W, средний заряд плазмы Z, а также появляется возможность выяснения механизмов возбуждения тока в плазме. 2008 Article Application of magnetic diagnostics to determine basic energy characteristics of plasma / V.K. Pashnev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 225-226. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.55.Dy, 52.55.Hc, 52.70.Ds https://nasplib.isofts.kiev.ua/handle/123456789/111025 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma diagnostics
Plasma diagnostics
spellingShingle Plasma diagnostics
Plasma diagnostics
Pashnev, V.K.
Application of magnetic diagnostics to determine basic energy characteristics of plasma
Вопросы атомной науки и техники
description Method of determination of plasma parameters and magnetic configuration of toroidal magnetic traps according to measurement results of magnetic fields of plasma currents out of volume of plasma confinement is implied now by magnetic diagnostics [1-3]. Rokosovskiy coil, diamagnetic loop and saddle coil are now used most often to determine macroscopic plasma parameters; they allow to determine longitudinal current magnitude and energy content of plasma in the confinement volume. The most important characteristics of plasma are energy confinement time of plasma tE and power W injected into plasma. Possibility to determine tE, W and Z (average charge value) values using sensors of magnetic diagnostics in stellarators is discussed.
format Article
author Pashnev, V.K.
author_facet Pashnev, V.K.
author_sort Pashnev, V.K.
title Application of magnetic diagnostics to determine basic energy characteristics of plasma
title_short Application of magnetic diagnostics to determine basic energy characteristics of plasma
title_full Application of magnetic diagnostics to determine basic energy characteristics of plasma
title_fullStr Application of magnetic diagnostics to determine basic energy characteristics of plasma
title_full_unstemmed Application of magnetic diagnostics to determine basic energy characteristics of plasma
title_sort application of magnetic diagnostics to determine basic energy characteristics of plasma
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Plasma diagnostics
url https://nasplib.isofts.kiev.ua/handle/123456789/111025
citation_txt Application of magnetic diagnostics to determine basic energy characteristics of plasma / V.K. Pashnev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 225-226. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pashnevvk applicationofmagneticdiagnosticstodeterminebasicenergycharacteristicsofplasma
AT pashnevvk zastosuvannâmagnítnoídíagnostikidlâviznačannâosnovnihenergetičnihharakteristikplazmi
AT pashnevvk primeneniemagnitnojdiagnostikidlâopredeleniâosnovnyhénergetičeskihharakteristikplazmy
first_indexed 2025-11-27T00:34:03Z
last_indexed 2025-11-27T00:34:03Z
_version_ 1849901603330457600
fulltext APPLICATION OF MAGNETIC DIAGNOSTICS TO DETERMINE BASIC ENERGY CHARACTERISTICS OF PLASMA V.K. Pashnev Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology”, 61108 Kharkov, Ukraine Method of determination of plasma parameters and magnetic configuration of toroidal magnetic traps according to measurement results of magnetic fields of plasma currents out of volume of plasma confinement is implied now by magnetic diagnostics [1-3]. Rokosovskiy coil, diamagnetic loop and saddle coil are now used most often to determine macroscopic plasma parameters; they allow to determine longitudinal current magnitude and energy content of plasma in the confinement volume. The most important characteristics of plasma are energy confinement time of plasma τE and power W injected into plasma. Possibility to determine τE, W and Z (average charge value) values using sensors of magnetic diagnostics in stellarators is discussed. PACS: 52.55.Dy, 52.55.Hc, 52.70.Ds THE OBTAINED RESULTS Longitudinal unidirectional plasma current ∫= a rdrjI 0 02π (1) is measured by Rogovski coil. Here, α – average small radius of plasma column, j0 – density of longitudinal current and r – current radius. Longitudinal current is usually generated by ohmic discharge or is a consequence of “neoclassical effects” (bootstrap-current) [4]. Longitudinal current can also be a result of heating process (drag current) at heating using neutral injection, RF or HF waves. Diamagnetic flow ΔΦ is bounded in magnetic traps with plasma parameters and magnetic configuration with the following ratio [5] ∆Φ = drdxxr r j cRBc Idr B a a st a ∫ ∫∫       ∂ ∂++ 0 0 2 0 2 0 0 2 2 0 2 44Pr8 ιπππ . (2) Here, B0 – magnetic field value on the axis of facility, P – gas-kinetic plasma pressure and ιst – angle of rotational transformation generated by stellarator field. As it is clear from the expression (2), diamagnetic flow consists of two terms that are general for tokamaks and stellarators (the first and the second component) and stellarator additive. This additive can turn out rather essential in a number of cases. Magnetic field flow generated by Pfirsch-Schlüter currents j = ϑ ι cos'2 0B cP− (3) is measured by saddle coil and is described by the expression [5] dr b rj R rj R N B cP c b R cR I s a st 2 2 0 00 0 '1'22 18ln ∫     +∆+    ∆+ −    −=Λ Ψ ι ι π , (4) where ι = ιc + ιst – is a total angle of rotational transformation, ιc – current angle of rotational transformation, ϑ - poloidal angle, S – area of saddle coil, b – radius where the coil is located, Δ – drift of magnetic surfaces, N – number of stellarator field periods and ()’ – dash means radius derivative. As it is seen from expressions (1), (2) and (4), using magnetic sensors one can determine value of plasma energy content Г, knowing basic characteristics of magnetic system and plasma current PRa222π=Γ , ∫= a dr a P 0 2 Pr2 . (5) Plasma energy balance is described by the known expression W t E =Γ+Γ ∂ ∂ τ2 3 2 3 , (6) In statical situation, as it is known, expression (6) is simplified to the following form: E W τ Γ= 2 3 . (7) Study of transient process while measuring power injected into plasma is of a certain interest. If the discharge process passes a step-like increase of power on a value of WW < <δ for the time Et τ< < , then, according to the expression (6), temporal modification of energy-content of plasma can be described in the following way: )1()( / 0 Etet τδδ −−Γ=Γ . (8) Here, 0Γδ - value on which energy content increases for the time Et τ> > . From the expression (8) it is clear, that at a step-like increase of power the energy-content of plasma will change with typical time Et τ≅ . Value of energy life time can be determined by the expression 0 0 → Γ ∂ ∂ Γ = t E t δ τ . (9) At emergency shut-down of power for the time Et τ< < changes of energy-content of plasma are determined according to (6) by the following expression: Ete τδδ / 0 −Γ=Γ . (10) i.e. after shut-down of heating source the energy-content of plasma decreases exponentially with typical time Et τ≅ . Energy time Eτ According to (10) is determined by the expression: PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. 225 Series: Plasma Physics (14), p. 225-226. 0 0 →∂ Γ∂ Γ −= t E t δ τ . (11) It is clear from the given expressions (9) and (11) that step-like change of power injected into plasma allows to determine value Eτ . While according to expression (7), knowing value Eτ allows to determine the power injected into plasma. Assuming that longitudinal current in plasma is generated by “increasing” effect. Then, in case of step- like increase of heating power the change of current Iδ will be described by the expression UIRI t L δδδ =+ ∂ ∂ (12) Here, Uδ - change of electromotive force related to the change of heating power value. Solution to this equation at constU =δ will be )1( / 0 τδδ teII −−= , (13) where 0Iδ - increase of current value for the time R Lt => > τ . According to the expression (13), value τ can be determined by the following way 0 0 →∂ ∂ = t I t I δ δτ . (14) If longitudinal current is determined by neoclassical effects (bootstrap-current), then, in case of step-like change of the injected power of the expression (12) it is changed to the following format )1( / 0 EteUIRI t L τδδδ −−=+ ∂ ∂ . (15) Here, 0Uδ - electromotive force change related to influence of neoclassical effects. As a result of solution of this equation we will obtain       − + − −= −− ττ ττ τ ττ τδδ // 0 1 t E t E E eeII E , (16) and 0 0 = ∂ ∂ →t I t δ . (17) Then, expression (7) can be rewritten in the format 0 2 2 0 →∂ ∂ = t E t I I τ δτ . (18) Comparison of expressions (14) and (18) shows that different mechanisms of current excitation give different speed of current changes at sharp change of plasma heating power. By the known value R L=τ and the known profile )(rTe - electron temperature one can determine an average plasma charge Z. Ties between average plasma charge and value R L=τ can be easily obtained from ratio ∫    −= − a e rdrT a RZ 0 2/3 4 5.18ln10*14.1 τ . (19) CONCLUSIONS Possibilities to use sensors of magnetic diagnostics (Rogovski coil, diamagnetic loop and saddle coil) to determine basic energy characteristics of plasma are discussed in this work. It is shown that at sharp changes of plasma heating power Et τ< < , R L=τ using the enumerated above sensors of magnetic diagnostics one can determine the following: Eτ - energy life time of plasma, W is absorbed power injected into plasma, Z is average charge of plasma and there is a possibility to find out mechanisms of current excitation. The most important advantage of the discussed methodology is absence of necessity to conduct absolute measurements of plasma parameters to determine Eτ . REFERENCES 1. V.D. Shafranov. // Plasma Phys. 13, 1971, p. 757. 2. L.E. Zakharov, V.D. Shafranov. // Sov. Journal theoretical physics, v. 43, 1973, p. 225 (in Russian). 3. V.K. Pasnev. Vozmoznosti magnitnoj diagnostiki v stelaratorach. Preprint KIPT 91- 35. Moskow, 1991. 4. A.A. Galeev, R.Z. Sagdeev. Voprosy teorii plazmy (Problems of Plasma Theory) v. 7, (ed. by Leontovich M.A.), Atomizdat, Moscow, 1973, p.205 (in Russian). 5. V.K.Pasnev, V.V. Nemov. Use of magnetic diagnostics in stellarators // Nuclear Fusion, v. 33, N. 3, 1993, p.435. Article received 15.10.08. ПРИМЕНЕНИЕ МАГНИТНОЙ ДИАГНОСТИКИ ДЛЯ ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПЛАЗМЫ В.К. Пашнев Показано, что при скачкообразном изменении мощности нагрева плазмы с помощью датчиков магнитной диагностики может быть определена величина энергетического времени жизни плазмы τE, вводимая в плазму мощность W, средний заряд плазмы Z, а также появляется возможность выяснения механизмов возбуждения тока в плазме. ЗАСТОСУВАННЯ МАГНІТНОЇ ДІАГНОСТИКИ ДЛЯ ВИЗНАЧЕННЯ ОСНОВНИХ ЕНЕРГЕТИЧНИХ ХАРАКТЕРИСТИК ПЛАЗМИ В.К. Пашнєв Показано, що при стрибкоподібній зміні потужності нагріву плазми за допомогою датчиків магнітною діагностики може бути визначена величина енергетичного часу життя плазми, потужність, що вводиться в плазму, средний заряд плазми, а також з'являється можливість з'ясування механізмів збудження струму в плазмі. 226