The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field

The response of the ideal gas consisting of hydrogen-like atoms to the perturbation by the external electromagnetic field in low temperature region is studied. Consideration is based on using the Green functions formalism [1] and the second quantization method in the presence of bound states of part...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2007
Main Authors: Slyusarenko, Yu.V., Sotnikov, A.G.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/111048
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field / Yu.V. Slyusarenko, A.G. Sotnikov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 390-393. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111048
record_format dspace
spelling Slyusarenko, Yu.V.
Sotnikov, A.G.
2017-01-07T19:07:49Z
2017-01-07T19:07:49Z
2007
The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field / Yu.V. Slyusarenko, A.G. Sotnikov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 390-393. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 05.30.d, 05.30.Jp, 03.75.Mn, 03.75.Hh
https://nasplib.isofts.kiev.ua/handle/123456789/111048
The response of the ideal gas consisting of hydrogen-like atoms to the perturbation by the external electromagnetic field in low temperature region is studied. Consideration is based on using the Green functions formalism [1] and the second quantization method in the presence of bound states of particles [2]. As the most interesting phenomenon, the perturbation of system in Bose-condensation state is studied. The dispersion characteristics of such system at frequencies close to the energy interval between alkali atoms energy levels are investigated.
Вивчено відгук ідеального газу, що складається із водневоподібних атомів, на збурення зовнішнім електромагнітним полем у низькотемпературній області. Дослідження базуються на використанні формалізму функцій Гріна [1] та методу вторинного квантування, що враховує можливість утворення зв’язаних станів частинок [2]. Як найбільш цікаве явище вивчено збурення системи, яка знаходиться у стані бозе-конденсації. Досліджені дисперсійні характеристики бозе-конденсату в області частот, близьких до інтервалів енергій між рівнями атомів лужних металів.
Изучен отклик идеального газа, состоящего из водородоподобных атомов, на возмущение внешним электромагнитным полем в низкотемпературной области. Исследования основаны на формализме функций Грина [1] и методе вторичного квантования в присутствии связанных состояний частиц [2]. В качестве наиболее интересного явления изучено возмущение системы, находящейся в состоянии бозе-конденсации. Исследованы дисперсионные характеристики такой системы в области частот, близких к интервалам энергий между уровнями атомов щелочных металлов.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Phase transformations in condensed matter
The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
Відгук ідеального газу водневоподібних атомів на збурення зовнішнім електромагнітним полем
Отклик идеального газа водородоподобных атомов на возмущение внешним электромагнитным полем
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
spellingShingle The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
Slyusarenko, Yu.V.
Sotnikov, A.G.
Phase transformations in condensed matter
title_short The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
title_full The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
title_fullStr The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
title_full_unstemmed The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
title_sort ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field
author Slyusarenko, Yu.V.
Sotnikov, A.G.
author_facet Slyusarenko, Yu.V.
Sotnikov, A.G.
topic Phase transformations in condensed matter
topic_facet Phase transformations in condensed matter
publishDate 2007
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Відгук ідеального газу водневоподібних атомів на збурення зовнішнім електромагнітним полем
Отклик идеального газа водородоподобных атомов на возмущение внешним электромагнитным полем
description The response of the ideal gas consisting of hydrogen-like atoms to the perturbation by the external electromagnetic field in low temperature region is studied. Consideration is based on using the Green functions formalism [1] and the second quantization method in the presence of bound states of particles [2]. As the most interesting phenomenon, the perturbation of system in Bose-condensation state is studied. The dispersion characteristics of such system at frequencies close to the energy interval between alkali atoms energy levels are investigated. Вивчено відгук ідеального газу, що складається із водневоподібних атомів, на збурення зовнішнім електромагнітним полем у низькотемпературній області. Дослідження базуються на використанні формалізму функцій Гріна [1] та методу вторинного квантування, що враховує можливість утворення зв’язаних станів частинок [2]. Як найбільш цікаве явище вивчено збурення системи, яка знаходиться у стані бозе-конденсації. Досліджені дисперсійні характеристики бозе-конденсату в області частот, близьких до інтервалів енергій між рівнями атомів лужних металів. Изучен отклик идеального газа, состоящего из водородоподобных атомов, на возмущение внешним электромагнитным полем в низкотемпературной области. Исследования основаны на формализме функций Грина [1] и методе вторичного квантования в присутствии связанных состояний частиц [2]. В качестве наиболее интересного явления изучено возмущение системы, находящейся в состоянии бозе-конденсации. Исследованы дисперсионные характеристики такой системы в области частот, близких к интервалам энергий между уровнями атомов щелочных металлов.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111048
citation_txt The ideal gas of hydrogen-like atoms response to the perturbation by the external electromagnetic field / Yu.V. Slyusarenko, A.G. Sotnikov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 390-393. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT slyusarenkoyuv theidealgasofhydrogenlikeatomsresponsetotheperturbationbytheexternalelectromagneticfield
AT sotnikovag theidealgasofhydrogenlikeatomsresponsetotheperturbationbytheexternalelectromagneticfield
AT slyusarenkoyuv vídgukídealʹnogogazuvodnevopodíbnihatomívnazburennâzovníšnímelektromagnítnimpolem
AT sotnikovag vídgukídealʹnogogazuvodnevopodíbnihatomívnazburennâzovníšnímelektromagnítnimpolem
AT slyusarenkoyuv otklikidealʹnogogazavodorodopodobnyhatomovnavozmuŝenievnešnimélektromagnitnympolem
AT sotnikovag otklikidealʹnogogazavodorodopodobnyhatomovnavozmuŝenievnešnimélektromagnitnympolem
AT slyusarenkoyuv idealgasofhydrogenlikeatomsresponsetotheperturbationbytheexternalelectromagneticfield
AT sotnikovag idealgasofhydrogenlikeatomsresponsetotheperturbationbytheexternalelectromagneticfield
first_indexed 2025-11-25T04:21:28Z
last_indexed 2025-11-25T04:21:28Z
_version_ 1850506122535895040
fulltext THE IDEAL GAS OF HYDROGEN-LIKE ATOMS RESPONSE TO THE PERTURBATION BY THE EXTERNAL ELECTROMAGNETIC FIELD Yu.V. Slyusarenko and A.G. Sotnikov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; e-mail: emvg@ukr.net The response of the ideal gas consisting of hydrogen-like atoms to the perturbation by the external electromag- netic field in low temperature region is studied. Consideration is based on using the Green functions formalism [1] and the second quantization method in the presence of bound states of particles [2]. As the most interesting phe- nomenon, the perturbation of system in Bose-condensation state is studied. The dispersion characteristics of such system at frequencies close to the energy interval between alkali atoms energy levels are investigated. PACS: 05.30.d, 05.30.Jp, 03.75.Mn, 03.75.Hh 1. INTRODUCTION In the process of describing a behavior of many- particle systems a class of problems appear, that are concerned with the system response to the perturbing action of the external, in particular, electromagnetic field. Widespread approach to solving such kind of problems is based on using the Green functions formal- ism (see in that case e.g. Ref. [1]). It is well known that the most convenient method of describing physical processes in quantum many-particle theory is the second quantization method. Thus, within the framework of the second quantization it is the sim- plest way to formulate an approach to a description of the system response to the perturbation by the external field that is based on Green functions. However, if we try to realize such an approach, we can come across an essential difficulty, connected with the possible occur- rence of the particle bound states. As it has been shown in [2] for a system that con- sists of two types of fermions (e.g. ions and electrons) and bound states (atoms or molecules) in low kinetic energies region we can use the approximate formulation of the second quantization method. It makes the mathe- matical description of such kind of systems rather sim- ple, but preserves the required information concerning internal degrees of freedom for the bound states. If the creation and annihilation operators for the dif- ferent kind of particles are constructed, it is not difficult to broaden this theory on the external fields’ existence situation. In this case the physical quantities operators (such as charge and current density operators) and the Maxwell-Lorentz system of equations that includes con- tribution of neutral bound states can be constructed (see Ref. [3]). In order to simplify the following mathematical de- scription it is convenient to consider such system (ideal low-temperature hydrogen-like plasma) in the equilib- rium state (including its photon component). In this case (as it has been shown in Ref. [4]) we can neglect of free fermions contribution in the different physical processes that are observed in the system at extremely low tem- peratures. 2. BASIC OPERATORS As we consider the system in low temperature re- gion, the creation and annihilation operators for the hy- drogen-like atoms (as the bound states of two different particles, see Ref. [2]) can be written as 1 1 2 2 1 2 1 2 1 2 1 2 * x x ˆ ˆ(x , x ) (x) (X), ˆ(x , x ) (x) (X), x x x , X .m m m m α α α α α α ϕ ϕ η ϕ ϕ η + + + + = = = − = ∑ ∑ ˆ (1) Here m1, x1 and m2, x2 are the atomic core and the outer electron masses and coordinates, respectively, α is the set of quantum numbers of the atom in the certain state, characterized by the wave function , is the annihilation operator of boson in α state. (x)αϕ ˆ (X)αη The expression for the Hamiltonian of non- interacting atoms can be written as: 1 p ˆ ˆ(p) (p) (p)p V α α α α ε η η− += ∑∑H , (2) where , is the energy of an atom in quantum state ( ), M is the bound state mass, is the system volume. Using Eqs. (1)-(2) one can find the expressions for the charge and current den- sity operators (accordingly to Ref. [1]), which in the Heisenberg representation take the form: 2 2(p) p / Mα αε ε= + α αε V αε 0< ( ) 1 1 2 − −− − − + − −− − − + + = × − = × − + − ∑∑ ∑∑ iti iti M V e e V e e ( (p) (p '))x(p p ') p,p ' , ( (p) (p '))x(p p ') p,p ' , (p p') ˆ (x) ˆ ˆ (p p') (p) (p'), ĵ(x) ˆ ˆ(p p') I (p p') (p) (p'). α β α β ε ε α β αβ α β ε ε α β αβ αβ α β σ σ η η σ η η (3) Here for the compactness we have introduced the charge density σαβ(k) and the current density Iαβ(k) ma- trix elements, which can be represented in terms of the atomic wave functions by the following formulas (see also Ref. [2]): PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 390-393. 390 ( )2 1 2 1 1 2 1 1 m m M M m m M M e d i i e d i i m m αβ α β β α αβ α β σ ϕ ϕ ϕ ϕ ϕ ϕ =  × − −  ∂ ∂ = +  ∂ ∂    × + −    ∫ ∫ * * * (k) y (y) (y) exp ky exp( ky) , (y) (y) I (k) y (y) (y) y y exp ky exp( ky) , (4) where e corresponds to the absolute value of electron’s charge. 3. MAXWELL EQUATIONS AND GREEN FUNCTIONS We have introduced the operators of charge and current density of ideal gas that consists of neutral atoms, and then it is not difficult to build the Maxwell-Lorentz system of equations that can describe the system response to the perturbation by the external electromagnetic field. These equa- tions for the mean values of operators have the following form: ( ) ( ) rot , rot 4 ( ), div 0, div 4 ( ), H EE H J J H E e e c c t t π π σ σ ∂ ∂ = − = − + ∂ ∂ = = + (5) where values σ(e) and J(e) are the external charge and current densities. If to assume that the pertur- bation of the system by the external field source is rather small, and the Hamiltonian of interaction is linear in respect to the external electromagnetic field, the mean values for the charge and current densities in Eq. (5) can be represented in terms of the Green functions (see Ref. [1], [3]) 3 ( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( , ) ' ' ( ', ') 1 ( ', ') ( ', ') ( ', ') , ( , ) ' ' ( ', ') 1 ( ', ') ( ', ') ( ', ') . i e i k kl e e l k t dt d x G t t A t G t t t c J t dt d x G t t A t G t t t c σ ϕ ϕ ∞ + −∞ + ∞ + −∞ + = − − − × + − −  = − − − × + − −  ∫ ∫ ∫ ∫ x x x x x x x x x x x x x x e ] }T − (6) Here are retarded scalar, vector and tensor Green functions respectively. Introduc- ing the equilibrium state distribution functions for the ideal gas of hydrogen-like (alkali) atoms ( ) ( ) ( ), ,k klG G G+ + + [{ 1 ( ) exp ( ( ) ) / 1p pfα α αε µ − = − , (7) where is the atomic chemical potential, is the temperature in the energy units, the Fourier transforms of these Green functions, according to Ref. [3], can be written as follows: αµ T ( ) 1 , ( ) 1 , ( ) 1 , ( , ) ( ) ( ) ( ) ( ) , ( ) ( ) 0 (2 )( , ) ( ) 2 ( ) ( ) ( ) ( ) , ( ) ( ) 0 (2 )( , ) ( ) 2 ( ) l l lj G V f f i G V M f f i G V M αβ βα α β α β α β αβ α β βα α β αβ α β αβ α β αβ ω σ σ ε ε ω ω σ σ ε ε ω ω σ + − + − + − = − − − × − − + + −=   − − −+  − − + + −=  + ∑∑ ∑∑ ∑∑ p p p k k p k p p p k p kk k k p k p I k p p k p kk k I k  k (2 ) ( ) ( ) 2 ( ) ( ) . ( ) ( ) 0 l jM f f i βα βα α β α β σ ε ε ω −  − + −    − − × − − + + p k k I k p k p p p k (8) 4. THE IDEAL GAS IN THE BEC STATE As the hydrogen-like atoms obey the Bose-statistics, our system can also exhibit different properties peculiar only to Bose-gases. The most interesting feature of such systems (for our opinion) is a capability to produce the Bose-Einstein condensate (BEC) at extremely low tem- peratures (see more in that case in Ref. [4]). Moreover, analyzing most of experiments with dilute gases of al- kali atoms in BEC state (see e.g. Refs. [5], [6]) it is clear that interaction of such system with an external field plays one of the main roles in the investigated phenomena. 4.1. MACROSCOPIC PARAMETERS To find the macroscopic parameters of the system in BEC state ( T ) we shall consider the case of zero temperature that is equivalent to the assumption when we can neglect the over-condensate particles contribu- tion. Therefore, one can state that the bound states dis- tribution functions are proportional to the Dirac delta-function. According to (8) after integration over momentum p the scalar Green function of the ideal gas in BEC state will take the form: cT<< ( )pfα ( ) 3( ) , ( , ) 2 ( ) ( ) , 0 0k k G nn i i αβ βα α β βα αβ αβ ω π σ σ ε ε ω ε ε ω −+ = −   × −  ∆ − + + ∆ + + +   ∑k k k (9) where is the density of condensed atoms in the cer- tain state, is the energy interval and the quantity (we shall neglect it below). Note, that analogously to Eq. (9) the vector and tensor Green functions (see Eq. (8)) for the system in BEC state can be found. nα ε αβ α βε ε ε∆ = − 2 2/k k M= If the Green functions are known, it is not difficult to find out the macroscopic parameters (see, for exam- ple Ref. [1]), characterizing the system response to the perturbation by the external electromagnetic field (e.g. the laser radiation). The expressions for the permittivity 391 and magnetic permeability in terms of the Green func- tions can be written as follows: 1 ( ) 2 1 2 2 4( , ) 1 ( , ), 4( , ) 1 ( ), k k k l t G k ic k πω ω πωµ ω σ σ − + − = + = + − ε (10) n where and are longitudinal and transversal con- ductivity coefficients, respectively: lσ tσ ( ) 2 ( ) 2 2 2 ( ) 2 2 2 ( ) ( ) ( ) 2 ( , )( , ) 4 ( , ) ( , )( , ) , ( ) 4 ( , 1( , ) ( , ), 2 kk , k kk k k k l t i j ij ij i G k G k c i k c k k G k ω ωσ ω π ω ω ωσ ω ω ω π ω ω δ + + + + + + = + − = − +   = −    G G G ) ω where is the Kronekker symbol. ijδ 4.2. LIGHT DELAY PHENOMENON As it is known from the experiments (see Ref. [6]), if to set the frequency of the laser (as an external field source) close to some of the atomic levels, the group velocity of such signal can be slow down to the ex- tremely little values. We assume that the developed the- ory also can describe such kind of peculiarities. Let us demonstrate it on the system that is close by the energy structure to alkali atom’s levels (see Fig. 1). l=0 2 1 3 l=1 Fig. 1. Three-level system. Atoms are occupying mostly the first and the second states (hyperfine struc- ture levels); the third state (non-occupied) corresponds to the dipole-exited state. The laser frequency (arrow vertical line) is dephased relatively to the energy inter- vals and 13ε∆ 23ε∆ In that case (when we can neglect the contribution of the other states of atoms), using Eqs. (9)-(10), one can find the following expression for the permittivity: 1 2 2 2 13 1 23 2 13 13 23 23 2( , ) 1 (2 ) ( ) ( ) , k n n i i ω π σ σ ω ε γ ω ε γ − = +   × +  − ∆ + − ∆ +   k k k ε 2 ω (11) where the quantities and are linewidths related to the probability of the spontaneous transition from the dipole-excited state to the lower and upper states of hyperfine structure levels, respectively. As it is easy to see from Eq. (11), the permittivity in general case is the complex quantity . 13γ 23γ ( , )k ωε ( , ) '( , ) ''( , )k k kiω ω= +ε ε ε 2 2 2 2 1 2 1 2 ' '' ' '' ' n ς = + = + ε ε ε ε ε ε 1.002 1.002 Using well-known relations for the refractive index and for the dissipation factor ς ',+ − one can find the refractive index and the intensity of passed light dependencies (see Fig. 2,3) 1.015 1.010 1.005 1.000 0.095 0.090 0.085 0.0980.096 1.000 n Fig. 2. Refractive index behavior for the three-level system. . Left and right steep slopes ( ) correspond to the frequen- cies and , respectively 0 13 12 2/ω ε ε= ∆ + ∆ 0 0 099 1 001/ , ; ,ω ω= = 13ε= ∆ 23ω ε= ∆ x ω 0.0980.096 1.000 0.1 0.2 0.3 0.4 0.5 Ip Fig. 3. Relative intensity of the passed light de- pendence on the relative frequency. At the frequencies and the dissipation is large and light doesn’t propagate. At frequencies that is dephased relatively to the energy intervals, the transparency win- dow can exist 13ω ε= ∆ 23ω ε= ∆ In the regions where the dissipation is not large one can use the expression for the group velocity: ( / )g cv n dn dω = + ω . (12) From the Fig. 2, Fig. 3 and Eq. (12) it is clear that the group velocity depends greatly from the steepness of the central slope. If the levels marked by 1 and 2 (levels of hyperfine structure for alkali atoms) are situated suf- 392 ficiently close to each other, the light can be slow down to the extremely little values (see Ref. [6]). Note, that such phenomenon cannot be observed for the frequen- cies and because of large dissipa- tion (see Fig. 3). 13ω ε= ∆ 23ω ε= ∆ Finally, one can conclude that if the frequency of the illuminating laser is dephased relatively to the energy intervals, and ground state levels (marked here by num- bers 1 and 2) are situated close to each other, the light delay phenomenon can be observed. REFERENCES 1. A.I. Akhiezer and S.V. Peletminskii. Methods of Statistical Physics. Pergamon, Oxford, 1981. 2. S.V. Peletminskii, Yu.V. Slyusarenko. Second quan- tization method in the presence of bound states of particles //J. Math. Phys. 2005, v. 46, 022301. 3. Yu.V. Slyusarenko and A.G. Sotnikov. On the re- sponse of a system with bound states of particles to the perturbation by the external electromagnetic field //Cond. Mat. Phys. 2006, v. 9, №3(47), p. 459-471. 4. Yu.V. Slyusarenko and A.G. Sotnikov. On the in- fluence of internal atomic structure on Bose– Einstein condensation in an ideal gas of hydrogen- like atoms //Fiz. Nizk. Temp. 2007, v. 33, №1, p. 41- 50 (in Russian). 5. C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E. Wieman //Phys. Rev. Lett. 1997, v. 78, p. 586. 6. L.V. Hau, S.E. Harris, Z. Datton, and C.H. Beh- voozi //Nature. 1999, v. 397, p. 594. ОТКЛИК ИДЕАЛЬНОГО ГАЗА ВОДОРОДОПОДОБНЫХ АТОМОВ НА ВОЗМУЩЕНИЕ ВНЕШНИМ ЭЛЕКТРОМАГНИТНЫМ ПОЛЕМ Ю.В. Слюсаренко, А.Г. Сотников Изучен отклик идеального газа, состоящего из водородоподобных атомов, на возмущение внешним элек- тромагнитным полем в низкотемпературной области. Исследования основаны на формализме функций Грина [1] и методе вторичного квантования в присутствии связанных состояний частиц [2]. В качестве наи- более интересного явления изучено возмущение системы, находящейся в состоянии бозе-конденсации. Ис- следованы дисперсионные характеристики такой системы в области частот, близких к интервалам энергий между уровнями атомов щелочных металлов. ВІДГУК ІДЕАЛЬНОГО ГАЗУ ВОДНЕВОПОДІБНИХ АТОМІВ НА ЗБУРЕННЯ ЗОВНІШНІМ ЕЛЕКТРОМАГНІТНИМ ПОЛЕМ Ю.В. Слюсаренко, А.Г. Сотніков Вивчено відгук ідеального газу, що складається із водневоподібних атомів, на збурення зовнішнім елек- тромагнітним полем у низькотемпературній області. Дослідження базуються на використанні формалізму функцій Гріна [1] та методу вторинного квантування, що враховує можливість утворення зв’язаних станів частинок [2]. Як найбільш цікаве явище вивчено збурення системи, яка знаходиться у стані бозе- конденсації. Досліджені дисперсійні характеристики бозе-конденсату в області частот, близьких до інтервалів енергій між рівнями атомів лужних металів. 393