Recovery kinetics and ordering in irradiated bulk metallic glasses

Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements. The linear dose dependence of resistance is a manifestat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2008
Hauptverfasser: Petrusenko, Y., Bakai, A., Neklyudov, I., Borysenko, V., Barankov, D., Astakhov, O., Macht, M.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111098
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111098
record_format dspace
spelling Petrusenko, Y.
Bakai, A.
Neklyudov, I.
Borysenko, V.
Barankov, D.
Astakhov, O.
Macht, M.P.
2017-01-08T10:15:41Z
2017-01-08T10:15:41Z
2008
Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/111098
544.032.6:669.017.15:539.213
Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements. The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was obtained for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved. The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the activation energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the polycluster model of metallic glass structure.
Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ з використанням методу низькотемпературного електронного опромінення та вимірів електричного опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу 85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю металічного скла.
Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ с использованием метода низкотемпературного электронного облучения и измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью металлического стекла.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Физика радиационных повреждений и явлений в твердых телах
Recovery kinetics and ordering in irradiated bulk metallic glasses
Кинетика вертання та упорядкування в опромінених об’ємних металічних стеклах
Кинетика возврата и упорядочение в облученных объемных металлических стеклах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Recovery kinetics and ordering in irradiated bulk metallic glasses
spellingShingle Recovery kinetics and ordering in irradiated bulk metallic glasses
Petrusenko, Y.
Bakai, A.
Neklyudov, I.
Borysenko, V.
Barankov, D.
Astakhov, O.
Macht, M.P.
Физика радиационных повреждений и явлений в твердых телах
title_short Recovery kinetics and ordering in irradiated bulk metallic glasses
title_full Recovery kinetics and ordering in irradiated bulk metallic glasses
title_fullStr Recovery kinetics and ordering in irradiated bulk metallic glasses
title_full_unstemmed Recovery kinetics and ordering in irradiated bulk metallic glasses
title_sort recovery kinetics and ordering in irradiated bulk metallic glasses
author Petrusenko, Y.
Bakai, A.
Neklyudov, I.
Borysenko, V.
Barankov, D.
Astakhov, O.
Macht, M.P.
author_facet Petrusenko, Y.
Bakai, A.
Neklyudov, I.
Borysenko, V.
Barankov, D.
Astakhov, O.
Macht, M.P.
topic Физика радиационных повреждений и явлений в твердых телах
topic_facet Физика радиационных повреждений и явлений в твердых телах
publishDate 2008
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Кинетика вертання та упорядкування в опромінених об’ємних металічних стеклах
Кинетика возврата и упорядочение в облученных объемных металлических стеклах
description Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements. The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was obtained for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved. The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the activation energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the polycluster model of metallic glass structure. Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ з використанням методу низькотемпературного електронного опромінення та вимірів електричного опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу 85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю металічного скла. Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ с использованием метода низкотемпературного электронного облучения и измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью металлического стекла.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111098
citation_txt Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT petrusenkoy recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT bakaia recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT neklyudovi recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT borysenkov recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT barankovd recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT astakhovo recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT machtmp recoverykineticsandorderinginirradiatedbulkmetallicglasses
AT petrusenkoy kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT bakaia kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT neklyudovi kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT borysenkov kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT barankovd kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT astakhovo kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT machtmp kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah
AT petrusenkoy kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT bakaia kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT neklyudovi kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT borysenkov kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT barankovd kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT astakhovo kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
AT machtmp kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah
first_indexed 2025-11-26T01:42:42Z
last_indexed 2025-11-26T01:42:42Z
_version_ 1850604907193696256
fulltext UDC 544.032.6:669.017.15:539.213 RECOVERY KINETICS AND ORDERING IN IRRADIATED BULK METALLIC GLASSES Yu. Petrusenko1, A.Bakai1, I. Neklyudov1, V. Borysenko1, D. Barankov1, O. Astakhov1, M.-P. Macht2 1 National Science Center “Kharkov Institute of Physics & Technology”, Kharkov, 61108, Ukraine; 2 Hahn-Meitner-Institut, Berlin, Germany Accumulation and recovery kinetics of radiation damages in Zr46.8Ti8.2Cu7.5Ni10Be27.5 and Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measure- ments. The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was ob- tained for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved. The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the acti- vation energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the poly- cluster model of metallic glass structure. INTRODUCTION Owing to their unique mechanical and electrophysi- cal properties, including improved radiation resistance, new bulk multicomponent amorphous metallic com- pounds find an increasingly wide application in various fields of industry, while the research into them becomes more extensive and intensified. The recent experimental data indicate that the atomic structure of metallic glass is much similar to the struc- ture of supercooled melt. Not being in equilibrium state, the glass is crystallized so slowly that it appears perti- nent to use the “freezing” concept for its structure. The main property of the metallic glass structure is the con- figurational disorder. Correlations in the positional rela- tionship of atoms in the metallic glass quickly disappear as the interatomic spacing increases, and become negli- gibly small at distances that are equal to approximately ten atomic diameters. It is natural to assume that irradia- tion cannot increase anymore the structural disorder of the amorphous substance that has already a “perfect dis- order”. It is just this property that underlies the assump- tions about a higher radiation resistance of amorphous alloys. When planning experimental studies we proceeded from the existence of two most developed theoretical structural models for amorphous solids, namely, the model of random closely packed spheres [1-4] and the polycluster model [5-7]. Each of these structural models implies radically different kinds of primary configura- tion, lifetime, diffusion length and other properties of point defects. As a result, the kinetics of accumulation and thermal annealing of radiation damages is also ex- pected to be different. Thus, the sensitivity of radiation effects to the structural peculiarities of metallic glass opens up a real possibility for investigating the structure and structural defects in these glasses through investi- gating the kinetics of accumulation and relaxation of ra- diation damages. The data obtained in this case may serve as a criterion in choosing this or that structural model of metallic glass. EXPERIMENTAL Five-component amorphous alloys of Zr41Ti14Cu12,5Ni10Be22,5 and Zr52.5Ti5Cu17.9Ni14.6Al10 compositions that refer to bulk metallic glasses were prepared for the present experiments by the spinning method. The initial structure and the quali- ty of samples were examined and controlled by the use of X-ray diffraction and electron microscopy methods. A typical halo of the X-ray diffraction pattern shows that the as-prepared materials are amorphous. The method of low-temperature electron irradiation of the above-mentioned metallic glasses with their subsequent isochronal annealing and electrical re- sistance measurements was used in our experiments The irradiation experiments were carried out at the NSC KIPT Van-de-Graaff accelerator ELIAS. The samples were irradiated with 2.5 MeV electrons in a special two-loop nitrogen cryostat providing the ultrapure liquid nitrogen environment. The temper- ature of samples under irradiation did not exceed 85 K. After irradiation, the samples were subjected to isochronal annealing at temperatures between 85 and 300 K with a 10 K step. The annealing took 15 minutes at each step. The electrical resistance mea- surements of the samples were performed by the standard four-probe method using an automated measuring system with two-channel nanovoltmeter Agilent 34420A as the basis. The circuit made it possible to measure simultaneously the current and temperature of the sample and the potential across the sample. To attain better accuracy, 50 to 60 re- sistance measurements of each sample were made in the temperature range 79…82 K. The obtained results were approximated by the linear depen- dence, and the resistance value at T=80.5 K was calculated. In this case, the relative error was not ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2. Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65. 62 higher than 5 ppm. These sensitivity and precision are not attained with other research methods. The electrical resistance of the samples was measured before irradiation and after each step of irradiation and isochronal annealing. RESULTS AND DISCUSSION As it follows from our first experiments, the irradia- tion of bulk metallic glasses by high-energy electrons to a dose of ~7⋅1019 е-/cm2 does not cause any appreciable structural change that can be detected by common meth- ods of X-ray diffraction and electron microscopy. It is evident that here one must use the method providing a much higher sensitivity to primary radiation damages than the above-mentioned methods do. For this reason we have used low-temperature electrical resistance mea- surements to study the kinetics of accumulation and an- nealing of radiation damages in bulk metallic glasses. DOSE DEPENDENCES OF ELECTRICAL RESISTANCE Dose dependences of electrical resistance of the samples irradiated with 2.5 MeV electrons are presented in Fig. 1. The data show that the electron irradiation re- ally changes the electrical resistance of metallic glasses. It means that irradiation generates atomic replacements and displacements that result in the resistance changes. The linear dependence of Rirr/Ro on the dose is a mani- festation of accumulation of irradiation defects without considerable interactions of the cumulative damages. 0 20 40 60 80 0,9992 0,9994 0,9996 0,9998 1,0000 1,0002 1,0004 1,0006 1,0008 1,0010 1,0012 1,0014 1,0016 ZrTiCuNiAl ZrTiCuNiBe D, x1018 e-/cm2 R ir r/R 0 Fig. 1. Dose dependences of relative electrical resis- tance for ZrTiCuNiBe and ZrTiCuNiAl irradiated with 2.5 MeV electrons at 85 K The remarkable feature of the present data is that the Rirr(D) line for ZrTiCuNiBe has a positive slope, while for ZrTiCuNiAl glass we have dRirr/dD<0. The main compositional difference of the glasses under study is the presence or absence of Be atoms. It is just this difference that causes the observed dramatic changes in Rirr (D). The origin of the observed difference in the slopes, dRirr(D)/dD, for different glasses can be understood as follows. In the Be-containing glass, the interstitials of Cu-Be or Ni-Be dumbbell types have the lowest energy formation of all possible interstitial compositional configurations. The same phenomenon is well known for all crystalline alloys, where atoms of the host metal and the undersize impurities form stable interstitial dumbbells with a low diffusion activation energy. Due to this fact, the segregation of undersize atoms on the sinks takes place. Accordingly, the Rirr(D) increase with increasing irradiation dose can be explained as a result of Be segregation on intercluster boundaries, just as in the crystals [8, 9]. In the ZrTiCuNiAl bulk glass, the interstitial dumbbell formation is questionable. In this case no undersize impurities are segregated at the boundaries, and therefore, electron scattering at the boundaries does not increase too much. But this property cannot account for the decrease in electrical resistance under irradiation and during the following annealing. This feature can be explained as a result of irradiation-induced atomic replacements that lead to short-range ordering of the alloy. The ordering process enhanced by electron irradiation can take place in both the cluster body and at the intercluster boundaries. This process does not need a long-range diffusion (as Be atoms do within ZrTiCuNiBe glass). Of course, the short-range ordering- induced decrease in the resistance is accompanied by the increase in resistance due to the conducting electron scattering on the irradiation-generated defects and heterogeneities. The observed result shows that the last process is weaker than the first one, in other words, the short-range ordering is a dominant process. RECOVERY KINETICS IN IRRADIATED METALLIC GLASSES The recovery curves of irradiation-induced electrical resistance changes on isochronal annealing of ZrTiCu- NiBe and ZrTiCuNiAl bulk metallic glasses are shown in Figs. 2 and 4, respectively. The first derivatives, dR/d T, are presented in Figs. 3 and 5. 50 100 150 200 250 300 0 20 40 60 80 100 10 0- (R ir r-R a n n)/ (R ir r-R o) , % Tann , K Fig. 2. Recovery of irradiation-induced resistance changes of ZrTiCuNiBe irradiated with 2.5 MeV elec- trons at 85 K to a dose of 7.5⋅1019 e-/cm2. Here Ro, Rirr and Rann are the electrical resistances before irradia- tion, after irradiation and after annealing at T = Tann, respectively As it is clearly seen from Figs. 3 and 5, two anneal- ing peaks located at T~150 K and T~225 K are resolved for ZrTiCuNiBe glass. The only difference of the recov- ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2. Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65. 63 ery result for the ZrTiCuNiAl bulk MG is a shift of the first peak towards ~130 K. It is necessary to note that in this case there is no real recovery, but a further decrease in resistance occurs during annealing. This feature can be attributed to a continued short-range ordering in the previously irradiated alloy. From the location of annealing stages (peaks in Figs. 3 and 5) the effective activation energy of relaxation processes can be estimated as Eeff(eV) = 3⋅10-3x Tpeak(K) [10]. As a result, we have for ZrTiCuNiAlBe: E150K = 0.46 eV and E225K = 0.69 eV and for ZrTiCuNiAl: E135K = 0.40 eV and E225K = 0.69 eV. Accordingly, the activa- tion energies responsible for the relaxation stages do not exceed 1 eV. 50 100 150 200 250 300 -1,0x10-6 0,0 1,0x10-6 2,0x10-6 3,0x10-6 4,0x10-6 5,0x10-6 dR / dT Tann , K Fig. 3. Recovery spectrum of irradiation-induced resis- tance changes for ZrTiCuNiBe irradiated with 2.5 MeV electrons at 85 K to a dose of 7.5⋅1019 e-/cm2 50 100 150 200 250 300 -180 -170 -160 -150 -140 -130 -120 -110 -100 -1 00 -( R irr -R an n)/ (R irr -R o) Tann , K Fig. 4. Recovery of irradiation-induced resistance changes of ZrTiCuNiAl irradiated with 2.5 MeV elec- trons at 85 K to a dose of 7.5⋅1019 e-/cm2 50 100 150 200 250 300 -1,0x10-6 -5,0x10-7 0,0 5,0x10-7 1,0x10-6 1,5x10-6 2,0x10-6 2,5x10-6 dR /d T Tann , K Fig. 5. Recovery spectrum of irradiation-induced resis- tance changes for ZrTiCuNiAl irradiated with 2.5 MeV electrons at 85 K to a dose of 7.5⋅1019 e-/cm2 The relaxation kinetics of interstitial and vacancy complexes in the crystals within the mentioned tempera- ture range, as a rule, has a similar characteristic activa- tion energy. It is worthy of note that in crystalline Zr- based alloys the diffusion migration energies are higher than 1 eV [11]. The observed annealing stages present the most im- portant result of the undertaken recovery experi- ments. They show that stable point defects – va- cancies and interstitials – do exist in the metallic glasses under study. CONCLUSION The present data show that the point defects are sta- ble in metallic glasses and the defect mobility is a ther- mally activated process. The activation energy of defect migration in metallic glasses is lower than that in crys- tals. This experimental result allows us to conclude that (i) the structural model of densely random-packed spheres is irrelevant to bulk metallic glasses under study; (ii) the results are in accord with the polycluster structure of ZrTiCuNiBe and ZrTiCuNiAl bulk metallic glasses. These results were partially reported at 2007 MRS Fall Meeting [12]. REFERENCES 1. J. Bernal //Proc. Roy. Soc. 1964, v. A280, p. 299– 322. 2. Topics in Appl. Phys. 1981, v. 46. Glassy Metals I. H.-J. Guentherodt and H. Beck, Eds. (Springer- Verlag, Heidelberg-Berlin). 3. Topics in Appl. Phys. 1983, v. 53. Glassy Metals II, H.-J. Guentherodt and H. Beck, Eds. (Springer- Verlag, Heidelberg-Berlin). 4. P. Chaudhary, S. Spapen, P.J. Steinhard //Topics in Appl. Phys. Glassy Metals II /H.-J. Guentherodt and H. Beck, Eds. Springer-Verlag, Heidelberg-Berlin. 1983, v. 53. 5. A.S. Bakai. Polycluster amorphous solids. Moscow: Ehnergoatomizdat, 1987 (In Russian). 6. A.S. Bakai //Topics in Appl. Phys. Glassy Metals III /H. Beck, H.-J. Guentherodt, Eds. Springer, Heidelberg, 1994, v. 72, p. 208-255. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2. Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65. 64 7. A.S. Bakai. Structure and radiation damage of metallic glasses //Uspekhi Fiziki Metallov. 2002, v. 3, p. 87–106. 8. A.D. Marwick //J. Phys. F. 1978, v. 8, p. 1849–1861. 9. H. Wiedersich, P. Okamoto, N. Lam // J. Nucl. Mater. 1979, v. 83, p. 98–108. 10. Wollenberger H. Interaction of self-interstitials with solutes //J. Nucl. Mater. 1978, v. 69, 70, p. 362–371. 11. L.N. Larikov, V.I. Isaychev. Diffusion in metals and alloys: Reference book. Kiev: «Naukova Dumka», 1987, 509 p. (In Russian) 12.Yu. Petrusenko, A. Bakai, V. Borysenko, D. Baran- kov, O. Astakhov, M.-P. Macht, Point Defects, Re- covery Kinetics and Ordering in Irradiated Bulk Metallic Glasses //Mater. Res. Soc. Symp. Proc. 2008, v. 1049, Materials Research Society, 1049- Z05-13. КИНЕТИКА ВОЗВРАТА И УПОРЯДОЧЕНИЕ В ОБЛУЧЕННЫХ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКЛАХ Ю. Петрусенко, А. Бакай, И. Неклюдов, В. Борисенко, Д. Баранков, А. Астахов, М.-П. Махт Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах Zr46.8Ti8.2Cu7.5Ni10Be27.5 и Zr52.5Ti5Cu17.9Ni14.6Al10 с использованием метода низкотемпературного электронного облучения и измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью металлического стекла. КИНЕТИКА ВЕРТАННЯ ТА УПОРЯДКУВАННЯ В ОПРОМІНЕНИХ ОБ’ЄМНИХ МЕТАЛІЧНИХ СТЕКЛАХ Ю. Петрусенко, О. Бакай, І. Неклюдов, В. Борисенко, Д. Баранков, О. Астахов, М.-П. Махт Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr46.8Ti8.2Cu7.5Ni10Be27.5 та Zr52.5Ti5Cu17.9Ni14.6Al10 з використанням методу низькотемпературного електронного опромінення та вимірів електричного опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу 85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю металічного скла. ________________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2. Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65. 65