Recovery kinetics and ordering in irradiated bulk metallic glasses
Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements. The linear dose dependence of resistance is a manifestat...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/111098 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111098 |
|---|---|
| record_format |
dspace |
| spelling |
Petrusenko, Y. Bakai, A. Neklyudov, I. Borysenko, V. Barankov, D. Astakhov, O. Macht, M.P. 2017-01-08T10:15:41Z 2017-01-08T10:15:41Z 2008 Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/111098 544.032.6:669.017.15:539.213 Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements. The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was obtained for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved. The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the activation energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the polycluster model of metallic glass structure. Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ з використанням методу низькотемпературного електронного опромінення та вимірів електричного опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу 85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю металічного скла. Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ с использованием метода низкотемпературного электронного облучения и измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью металлического стекла. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика радиационных повреждений и явлений в твердых телах Recovery kinetics and ordering in irradiated bulk metallic glasses Кинетика вертання та упорядкування в опромінених об’ємних металічних стеклах Кинетика возврата и упорядочение в облученных объемных металлических стеклах Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Recovery kinetics and ordering in irradiated bulk metallic glasses |
| spellingShingle |
Recovery kinetics and ordering in irradiated bulk metallic glasses Petrusenko, Y. Bakai, A. Neklyudov, I. Borysenko, V. Barankov, D. Astakhov, O. Macht, M.P. Физика радиационных повреждений и явлений в твердых телах |
| title_short |
Recovery kinetics and ordering in irradiated bulk metallic glasses |
| title_full |
Recovery kinetics and ordering in irradiated bulk metallic glasses |
| title_fullStr |
Recovery kinetics and ordering in irradiated bulk metallic glasses |
| title_full_unstemmed |
Recovery kinetics and ordering in irradiated bulk metallic glasses |
| title_sort |
recovery kinetics and ordering in irradiated bulk metallic glasses |
| author |
Petrusenko, Y. Bakai, A. Neklyudov, I. Borysenko, V. Barankov, D. Astakhov, O. Macht, M.P. |
| author_facet |
Petrusenko, Y. Bakai, A. Neklyudov, I. Borysenko, V. Barankov, D. Astakhov, O. Macht, M.P. |
| topic |
Физика радиационных повреждений и явлений в твердых телах |
| topic_facet |
Физика радиационных повреждений и явлений в твердых телах |
| publishDate |
2008 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Кинетика вертання та упорядкування в опромінених об’ємних металічних стеклах Кинетика возврата и упорядочение в облученных объемных металлических стеклах |
| description |
Accumulation and recovery kinetics of radiation damages in Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ and Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀
metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measurements.
The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without
considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was obtained
for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved.
The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the activation
energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the polycluster
model of metallic glass structure.
Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ з використанням методу низькотемпературного електронного опромінення та вимірів електричного опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу 85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю металічного скла.
Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах
Zr₄₆.₈Ti₈.₂Cu₇.₅Ni₁₀Be₂₇.₅ і Zr₅₂.₅Ti₅Cu₁₇.₉Ni₁₄.₆Al₁₀ с использованием метода низкотемпературного электронного облучения и измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии
миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью
металлического стекла.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111098 |
| citation_txt |
Recovery kinetics and ordering in irradiated bulk metallic glasses / Y. Petrusenko, A.Bakai, I. Neklyudov, V. Borysenko, D. Barankov, O. Astakhov, M.P. Mach // Вопросы атомной науки и техники. — 2008. — № 2. — С. 62-65. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT petrusenkoy recoverykineticsandorderinginirradiatedbulkmetallicglasses AT bakaia recoverykineticsandorderinginirradiatedbulkmetallicglasses AT neklyudovi recoverykineticsandorderinginirradiatedbulkmetallicglasses AT borysenkov recoverykineticsandorderinginirradiatedbulkmetallicglasses AT barankovd recoverykineticsandorderinginirradiatedbulkmetallicglasses AT astakhovo recoverykineticsandorderinginirradiatedbulkmetallicglasses AT machtmp recoverykineticsandorderinginirradiatedbulkmetallicglasses AT petrusenkoy kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT bakaia kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT neklyudovi kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT borysenkov kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT barankovd kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT astakhovo kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT machtmp kinetikavertannâtauporâdkuvannâvopromínenihobêmnihmetalíčnihsteklah AT petrusenkoy kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT bakaia kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT neklyudovi kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT borysenkov kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT barankovd kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT astakhovo kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah AT machtmp kinetikavozvrataiuporâdočenievoblučennyhobʺemnyhmetalličeskihsteklah |
| first_indexed |
2025-11-26T01:42:42Z |
| last_indexed |
2025-11-26T01:42:42Z |
| _version_ |
1850604907193696256 |
| fulltext |
UDC 544.032.6:669.017.15:539.213
RECOVERY KINETICS AND ORDERING IN IRRADIATED BULK
METALLIC GLASSES
Yu. Petrusenko1, A.Bakai1, I. Neklyudov1, V. Borysenko1, D. Barankov1,
O. Astakhov1, M.-P. Macht2
1 National Science Center “Kharkov Institute of Physics & Technology”,
Kharkov, 61108, Ukraine;
2 Hahn-Meitner-Institut, Berlin, Germany
Accumulation and recovery kinetics of radiation damages in Zr46.8Ti8.2Cu7.5Ni10Be27.5 and Zr52.5Ti5Cu17.9Ni14.6Al10
metallic glasses was investigated by means of low temperature electron irradiation and electrical resistance measure-
ments. The linear dose dependence of resistance is a manifestation of accumulation of irradiation defects without
considerable interaction between them. The recovery spectrum of irradiation-induced electrical resistance was ob-
tained for the 85…300 K temperature range. Two annealing peaks located at T~150 K and ~225 K were resolved.
The present data suggest the conclusions that the defect mobility is a thermally activated process, and that the acti-
vation energy is not as high as that for vacancies in crystalline alloys. These results are in agreement with the poly-
cluster model of metallic glass structure.
INTRODUCTION
Owing to their unique mechanical and electrophysi-
cal properties, including improved radiation resistance,
new bulk multicomponent amorphous metallic com-
pounds find an increasingly wide application in various
fields of industry, while the research into them becomes
more extensive and intensified.
The recent experimental data indicate that the atomic
structure of metallic glass is much similar to the struc-
ture of supercooled melt. Not being in equilibrium state,
the glass is crystallized so slowly that it appears perti-
nent to use the “freezing” concept for its structure. The
main property of the metallic glass structure is the con-
figurational disorder. Correlations in the positional rela-
tionship of atoms in the metallic glass quickly disappear
as the interatomic spacing increases, and become negli-
gibly small at distances that are equal to approximately
ten atomic diameters. It is natural to assume that irradia-
tion cannot increase anymore the structural disorder of
the amorphous substance that has already a “perfect dis-
order”. It is just this property that underlies the assump-
tions about a higher radiation resistance of amorphous
alloys.
When planning experimental studies we proceeded
from the existence of two most developed theoretical
structural models for amorphous solids, namely, the
model of random closely packed spheres [1-4] and the
polycluster model [5-7]. Each of these structural models
implies radically different kinds of primary configura-
tion, lifetime, diffusion length and other properties of
point defects. As a result, the kinetics of accumulation
and thermal annealing of radiation damages is also ex-
pected to be different. Thus, the sensitivity of radiation
effects to the structural peculiarities of metallic glass
opens up a real possibility for investigating the structure
and structural defects in these glasses through investi-
gating the kinetics of accumulation and relaxation of ra-
diation damages. The data obtained in this case may
serve as a criterion in choosing this or that structural
model of metallic glass.
EXPERIMENTAL
Five-component amorphous alloys of
Zr41Ti14Cu12,5Ni10Be22,5 and Zr52.5Ti5Cu17.9Ni14.6Al10
compositions that refer to bulk metallic glasses
were prepared for the present experiments by the
spinning method. The initial structure and the quali-
ty of samples were examined and controlled by the
use of X-ray diffraction and electron microscopy
methods. A typical halo of the X-ray diffraction
pattern shows that the as-prepared materials are
amorphous.
The method of low-temperature electron irradiation
of the above-mentioned metallic glasses with their
subsequent isochronal annealing and electrical re-
sistance measurements was used in our experiments
The irradiation experiments were carried out at the
NSC KIPT Van-de-Graaff accelerator ELIAS. The
samples were irradiated with 2.5 MeV electrons in
a special two-loop nitrogen cryostat providing the
ultrapure liquid nitrogen environment. The temper-
ature of samples under irradiation did not exceed 85
K. After irradiation, the samples were subjected to
isochronal annealing at temperatures between 85
and 300 K with a 10 K step. The annealing took 15
minutes at each step. The electrical resistance mea-
surements of the samples were performed by the
standard four-probe method using an automated
measuring system with two-channel nanovoltmeter
Agilent 34420A as the basis. The circuit made it
possible to measure simultaneously the current and
temperature of the sample and the potential across
the sample. To attain better accuracy, 50 to 60 re-
sistance measurements of each sample were made
in the temperature range 79…82 K. The obtained
results were approximated by the linear depen-
dence, and the resistance value at T=80.5 K was
calculated. In this case, the relative error was not
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2.
Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65.
62
higher than 5 ppm. These sensitivity and precision
are not attained with other research methods. The
electrical resistance of the samples was measured
before irradiation and after each step of irradiation
and isochronal annealing.
RESULTS AND DISCUSSION
As it follows from our first experiments, the irradia-
tion of bulk metallic glasses by high-energy electrons to
a dose of ~7⋅1019 е-/cm2 does not cause any appreciable
structural change that can be detected by common meth-
ods of X-ray diffraction and electron microscopy. It is
evident that here one must use the method providing a
much higher sensitivity to primary radiation damages
than the above-mentioned methods do. For this reason
we have used low-temperature electrical resistance mea-
surements to study the kinetics of accumulation and an-
nealing of radiation damages in bulk metallic glasses.
DOSE DEPENDENCES OF ELECTRICAL
RESISTANCE
Dose dependences of electrical resistance of the
samples irradiated with 2.5 MeV electrons are presented
in Fig. 1. The data show that the electron irradiation re-
ally changes the electrical resistance of metallic glasses.
It means that irradiation generates atomic replacements
and displacements that result in the resistance changes.
The linear dependence of Rirr/Ro on the dose is a mani-
festation of accumulation of irradiation defects without
considerable interactions of the cumulative damages.
0 20 40 60 80
0,9992
0,9994
0,9996
0,9998
1,0000
1,0002
1,0004
1,0006
1,0008
1,0010
1,0012
1,0014
1,0016
ZrTiCuNiAl
ZrTiCuNiBe
D, x1018 e-/cm2
R
ir
r/R
0
Fig. 1. Dose dependences of relative electrical resis-
tance for ZrTiCuNiBe and ZrTiCuNiAl irradiated with
2.5 MeV electrons at 85 K
The remarkable feature of the present data is that the
Rirr(D) line for ZrTiCuNiBe has a positive slope, while
for ZrTiCuNiAl glass we have dRirr/dD<0. The main
compositional difference of the glasses under study is
the presence or absence of Be atoms. It is just this
difference that causes the observed dramatic changes in
Rirr (D). The origin of the observed difference in the
slopes, dRirr(D)/dD, for different glasses can be
understood as follows.
In the Be-containing glass, the interstitials of Cu-Be
or Ni-Be dumbbell types have the lowest energy
formation of all possible interstitial compositional
configurations. The same phenomenon is well known
for all crystalline alloys, where atoms of the host metal
and the undersize impurities form stable interstitial
dumbbells with a low diffusion activation energy. Due
to this fact, the segregation of undersize atoms on the
sinks takes place. Accordingly, the Rirr(D) increase with
increasing irradiation dose can be explained as a result
of Be segregation on intercluster boundaries, just as in
the crystals [8, 9].
In the ZrTiCuNiAl bulk glass, the interstitial
dumbbell formation is questionable. In this case no
undersize impurities are segregated at the boundaries,
and therefore, electron scattering at the boundaries does
not increase too much. But this property cannot account
for the decrease in electrical resistance under irradiation
and during the following annealing. This feature can be
explained as a result of irradiation-induced atomic
replacements that lead to short-range ordering of the
alloy. The ordering process enhanced by electron
irradiation can take place in both the cluster body and at
the intercluster boundaries. This process does not need a
long-range diffusion (as Be atoms do within
ZrTiCuNiBe glass). Of course, the short-range ordering-
induced decrease in the resistance is accompanied by
the increase in resistance due to the conducting electron
scattering on the irradiation-generated defects and
heterogeneities. The observed result shows that the last
process is weaker than the first one, in other words, the
short-range ordering is a dominant process.
RECOVERY KINETICS IN IRRADIATED
METALLIC GLASSES
The recovery curves of irradiation-induced electrical
resistance changes on isochronal annealing of ZrTiCu-
NiBe and ZrTiCuNiAl bulk metallic glasses are shown
in Figs. 2 and 4, respectively. The first derivatives, dR/d
T, are presented in Figs. 3 and 5.
50 100 150 200 250 300
0
20
40
60
80
100
10
0-
(R
ir
r-R
a
n
n)/
(R
ir
r-R
o)
,
%
Tann , K
Fig. 2. Recovery of irradiation-induced resistance
changes of ZrTiCuNiBe irradiated with 2.5 MeV elec-
trons at 85 K to a dose of 7.5⋅1019 e-/cm2. Here Ro, Rirr
and Rann are the electrical resistances before irradia-
tion, after irradiation and after annealing at T = Tann,
respectively
As it is clearly seen from Figs. 3 and 5, two anneal-
ing peaks located at T~150 K and T~225 K are resolved
for ZrTiCuNiBe glass. The only difference of the recov-
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2.
Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65.
63
ery result for the ZrTiCuNiAl bulk MG is a shift of the
first peak towards ~130 K. It is necessary to note that in
this case there is no real recovery, but a further decrease
in resistance occurs during annealing. This feature can
be attributed to a continued short-range ordering in the
previously irradiated alloy.
From the location of annealing stages (peaks in Figs.
3 and 5) the effective activation energy of relaxation
processes can be estimated as Eeff(eV) = 3⋅10-3x Tpeak(K)
[10]. As a result, we have for ZrTiCuNiAlBe: E150K =
0.46 eV and E225K = 0.69 eV and for ZrTiCuNiAl: E135K
= 0.40 eV and E225K = 0.69 eV. Accordingly, the activa-
tion energies responsible for the relaxation stages do not
exceed 1 eV.
50 100 150 200 250 300
-1,0x10-6
0,0
1,0x10-6
2,0x10-6
3,0x10-6
4,0x10-6
5,0x10-6
dR
/
dT
Tann , K
Fig. 3. Recovery spectrum of irradiation-induced resis-
tance changes for ZrTiCuNiBe irradiated with 2.5 MeV
electrons at 85 K to a dose of 7.5⋅1019 e-/cm2
50 100 150 200 250 300
-180
-170
-160
-150
-140
-130
-120
-110
-100
-1
00
-(
R irr
-R
an
n)/
(R
irr
-R
o)
Tann , K
Fig. 4. Recovery of irradiation-induced resistance
changes of ZrTiCuNiAl irradiated with 2.5 MeV elec-
trons at 85 K to a dose of 7.5⋅1019 e-/cm2
50 100 150 200 250 300
-1,0x10-6
-5,0x10-7
0,0
5,0x10-7
1,0x10-6
1,5x10-6
2,0x10-6
2,5x10-6
dR
/d
T
Tann , K
Fig. 5. Recovery spectrum of irradiation-induced resis-
tance changes for ZrTiCuNiAl irradiated with 2.5 MeV
electrons at 85 K to a dose of 7.5⋅1019 e-/cm2
The relaxation kinetics of interstitial and vacancy
complexes in the crystals within the mentioned tempera-
ture range, as a rule, has a similar characteristic activa-
tion energy. It is worthy of note that in crystalline Zr-
based alloys the diffusion migration energies are higher
than 1 eV [11].
The observed annealing stages present the most im-
portant result of the undertaken recovery experi-
ments. They show that stable point defects – va-
cancies and interstitials – do exist in the metallic
glasses under study.
CONCLUSION
The present data show that the point defects are sta-
ble in metallic glasses and the defect mobility is a ther-
mally activated process. The activation energy of defect
migration in metallic glasses is lower than that in crys-
tals. This experimental result allows us to conclude that
(i) the structural model of densely random-packed
spheres is irrelevant to bulk metallic glasses under
study; (ii) the results are in accord with the polycluster
structure of ZrTiCuNiBe and ZrTiCuNiAl bulk metallic
glasses. These results were partially reported at 2007
MRS Fall Meeting [12].
REFERENCES
1. J. Bernal //Proc. Roy. Soc. 1964, v. A280, p. 299–
322.
2. Topics in Appl. Phys. 1981, v. 46. Glassy Metals I.
H.-J. Guentherodt and H. Beck, Eds. (Springer-
Verlag, Heidelberg-Berlin).
3. Topics in Appl. Phys. 1983, v. 53. Glassy Metals II,
H.-J. Guentherodt and H. Beck, Eds. (Springer-
Verlag, Heidelberg-Berlin).
4. P. Chaudhary, S. Spapen, P.J. Steinhard //Topics in
Appl. Phys. Glassy Metals II /H.-J. Guentherodt and
H. Beck, Eds. Springer-Verlag, Heidelberg-Berlin.
1983, v. 53.
5. A.S. Bakai. Polycluster amorphous solids. Moscow:
Ehnergoatomizdat, 1987 (In Russian).
6. A.S. Bakai //Topics in Appl. Phys. Glassy Metals III
/H. Beck, H.-J. Guentherodt, Eds. Springer,
Heidelberg, 1994, v. 72, p. 208-255.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2.
Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65.
64
7. A.S. Bakai. Structure and radiation damage of
metallic glasses //Uspekhi Fiziki Metallov. 2002, v.
3,
p. 87–106.
8. A.D. Marwick //J. Phys. F. 1978, v. 8, p. 1849–1861.
9. H. Wiedersich, P. Okamoto, N. Lam // J. Nucl.
Mater. 1979, v. 83, p. 98–108.
10. Wollenberger H. Interaction of self-interstitials with
solutes //J. Nucl. Mater. 1978, v. 69, 70,
p. 362–371.
11. L.N. Larikov, V.I. Isaychev. Diffusion in metals and
alloys: Reference book. Kiev: «Naukova Dumka»,
1987, 509 p. (In Russian)
12.Yu. Petrusenko, A. Bakai, V. Borysenko, D. Baran-
kov, O. Astakhov, M.-P. Macht, Point Defects, Re-
covery Kinetics and Ordering in Irradiated Bulk
Metallic Glasses //Mater. Res. Soc. Symp. Proc.
2008, v. 1049, Materials Research Society, 1049-
Z05-13.
КИНЕТИКА ВОЗВРАТА И УПОРЯДОЧЕНИЕ В ОБЛУЧЕННЫХ
ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКЛАХ
Ю. Петрусенко, А. Бакай, И. Неклюдов, В. Борисенко, Д. Баранков, А. Астахов, М.-П. Махт
Исследована кинетика накопления и отжига радиационных повреждений в металлических стеклах
Zr46.8Ti8.2Cu7.5Ni10Be27.5 и Zr52.5Ti5Cu17.9Ni14.6Al10 с использованием метода низкотемпературного электронного облучения и
измерений электрического сопротивления. Линейная дозовая зависимость электросопротивления свидетельствует об
аккумулировании радиационных дефектов без существенного их взаимодействия. Определены спектры возврата
радиационно-индуцированного электросопротивления для температурного интервала 85…300 K, выделены два пика
отжига при температурах T~150 и ~225 K. Полученные данные позволяют сделать вывод о том, что подвижность
дефектов является термоактивированным процессом с энергией активации, не превышающей значений энергии
миграции вакансий в кристаллических сплавах. Эти результаты согласуются с поликластерной структурной моделью
металлического стекла.
КИНЕТИКА ВЕРТАННЯ ТА УПОРЯДКУВАННЯ В ОПРОМІНЕНИХ
ОБ’ЄМНИХ МЕТАЛІЧНИХ СТЕКЛАХ
Ю. Петрусенко, О. Бакай, І. Неклюдов, В. Борисенко, Д. Баранков, О. Астахов, М.-П. Махт
Досліджена кінетика накопичення та відпалу радіаційних пошкоджень в металічних стеклах Zr46.8Ti8.2Cu7.5Ni10Be27.5 та
Zr52.5Ti5Cu17.9Ni14.6Al10 з використанням методу низькотемпературного електронного опромінення та вимірів електричного
опору Лінійна дозова залежність електричного опору свідчить про акумулювання радіаційних дефектів без суттєвої їх
взаємодії. Визначені спектри вертання спричиненого опроміненням електричного опору для температурного інтервалу
85...300 K та вірізнені два піки відпалу з температурами T~150 та ~225 K. Отримані дані дозволяють зробити висновок
про те, що рухливість дефектів є термоактивованим процесом з енергією активації, що не перевищує значень енергії
міграції вакансій в кристалічних сплавах. Ці результати узгоджуються з полікластерною структурною моделлю
металічного скла.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2008. № 2.
Серия: Физика радиационных повреждений и радиационное материаловедение (92), с. 62-65.
65
|