Simplified transportation model of thermal neutrons through the matter

The effective model providing simulation of thermal neutrons transportation through various matters was scrutinized. Calculation of neutron trajectory is carried out by Monte-Carlo method. The model was tested on the tasks with analytical solutions of diffusion equation. The developed model can be u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Buki, A.Yu., Kalenik, S.A., Shapoval, I.M.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111133
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simplified transportation model of thermal neutrons through the matter / A.Yu. Buki, S.A. Kalenik, I.M. Shapoval // Вопросы атомной науки и техники. — 2011. — № 3. — С. 50-53. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111133
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1111332025-02-09T18:04:39Z Simplified transportation model of thermal neutrons through the matter Спрощена модель проходження теплових нейтронiв крiзь речовину Упрощённая модель прохождения тепловых нейтронов через вещество Buki, A.Yu. Kalenik, S.A. Shapoval, I.M. Ядернo-физические методы и обработка данных The effective model providing simulation of thermal neutrons transportation through various matters was scrutinized. Calculation of neutron trajectory is carried out by Monte-Carlo method. The model was tested on the tasks with analytical solutions of diffusion equation. The developed model can be used for the practical important problems of activation analysis and neutron spectrometry etc. due to model simplicity and high speed of code calculations. Розглянута ефективна модель, що забезпечує симуляцію розповсюдження теплових нейтронів у різноманітних речовинах. Розрахунок траєкторії руху нейтрона здійснюється методом Монте-Карло. Модель протестована на задачах, які мають аналітичний розв'язок рівняння дифузії. Розроблена модель, з огляду на простоту та високу швидкість розрахунків її програмної реалізації, може бути корисною при розв'язанні практичних задач активаційного аналізу, спектрометрії нейтронів та ін. Раcсмотрена эффективная модель, обеспечивающая симуляцию распространения тепловых нейтронов в различных веществах. Расчет траектории движения нейтрона осуществляется методом Монте-Карло. Модель протестирована на задачах, которые имеют аналитическое решение уравнения диффузии. Разработанная модель ввиду простоты и высокой скорости счёта её программной реализации может быть полезной при решении практических задач активационного анализа, спектрометрии нейтронов и т.п. In summary authors consider as a pleasant duty express to A.V. Torgovkin gratitude for useful remarks and for the idea that the considered design procedure can be applied not only to thermal neutrons but also for neutrons with energy up to several MeV. 2011 Article Simplified transportation model of thermal neutrons through the matter / A.Yu. Buki, S.A. Kalenik, I.M. Shapoval // Вопросы атомной науки и техники. — 2011. — № 3. — С. 50-53. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 28.20.Gd, 07.05.Tp https://nasplib.isofts.kiev.ua/handle/123456789/111133 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Buki, A.Yu.
Kalenik, S.A.
Shapoval, I.M.
Simplified transportation model of thermal neutrons through the matter
Вопросы атомной науки и техники
description The effective model providing simulation of thermal neutrons transportation through various matters was scrutinized. Calculation of neutron trajectory is carried out by Monte-Carlo method. The model was tested on the tasks with analytical solutions of diffusion equation. The developed model can be used for the practical important problems of activation analysis and neutron spectrometry etc. due to model simplicity and high speed of code calculations.
format Article
author Buki, A.Yu.
Kalenik, S.A.
Shapoval, I.M.
author_facet Buki, A.Yu.
Kalenik, S.A.
Shapoval, I.M.
author_sort Buki, A.Yu.
title Simplified transportation model of thermal neutrons through the matter
title_short Simplified transportation model of thermal neutrons through the matter
title_full Simplified transportation model of thermal neutrons through the matter
title_fullStr Simplified transportation model of thermal neutrons through the matter
title_full_unstemmed Simplified transportation model of thermal neutrons through the matter
title_sort simplified transportation model of thermal neutrons through the matter
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Ядернo-физические методы и обработка данных
url https://nasplib.isofts.kiev.ua/handle/123456789/111133
citation_txt Simplified transportation model of thermal neutrons through the matter / A.Yu. Buki, S.A. Kalenik, I.M. Shapoval // Вопросы атомной науки и техники. — 2011. — № 3. — С. 50-53. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bukiayu simplifiedtransportationmodelofthermalneutronsthroughthematter
AT kaleniksa simplifiedtransportationmodelofthermalneutronsthroughthematter
AT shapovalim simplifiedtransportationmodelofthermalneutronsthroughthematter
AT bukiayu sproŝenamodelʹprohodžennâteplovihnejtronivkrizʹrečovinu
AT kaleniksa sproŝenamodelʹprohodžennâteplovihnejtronivkrizʹrečovinu
AT shapovalim sproŝenamodelʹprohodžennâteplovihnejtronivkrizʹrečovinu
AT bukiayu uproŝënnaâmodelʹprohoždeniâteplovyhnejtronovčerezveŝestvo
AT kaleniksa uproŝënnaâmodelʹprohoždeniâteplovyhnejtronovčerezveŝestvo
AT shapovalim uproŝënnaâmodelʹprohoždeniâteplovyhnejtronovčerezveŝestvo
first_indexed 2025-11-29T06:58:15Z
last_indexed 2025-11-29T06:58:15Z
_version_ 1850106974179426304
fulltext SIMPLIFIED TRANSPORTATION MODEL OF THERMAL NEUTRONS THROUGH THE MATTER A.Yu. Buki, S.A. Kalenik∗, I.M. Shapoval National Scientific Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received April 27, 2011) The effective model providing simulation of thermal neutrons transportation through various matters was scrutinized. Calculation of neutron trajectory is carried out by Monte-Carlo method. The model was tested on the tasks with analytical solutions of diffusion equation. The developed model can be used for the practical important problems of activation analysis and neutron spectrometry etc. due to model simplicity and high speed of code calculations. PACS: 28.20.Gd, 07.05.Tp 1. INTRODUCTION The simulation of neutrons transportation through matters configured in elements of installation is the actual task for modern nuclear and radiation physics. Calculation of neutrons field in various environments and volumes is very interesting in designing experi- mental and industrial installations in which neutrons are used, for example, in installations for the neutron activation analysis, radioisotopes production, neu- tron spectrometry etc. The distribution of neutrons, which have slowed down in the non-uniform environments with given geometrical configuration to velocity of thermal bal- ance (thermal neutrons), presents the important as- pect of the task. The neutron fields from the neu- tron sources, which are surrounded by the moderator or the field into studied object, which are also sur- rounded by moderator, are often of interest. The experimental research methods of such problems are far away from being always fitted within accessible scientific resources while dealing with them and are limited by requirements of personnel safety. The an- alytical methods use assumptions of uniformity, sim- plicity and symmetry for interaction domain geome- try. For these reasons the research with the usage of Monte-Carlo simulation methods for the basic processes of neutrons interaction with the matter has advantages. MCNP [1] and GEANT [2] packages are commonly used tools to simulate the given class of tasks. Authors could not use both widely known sim- ulation package MCNP (Fermi Lab, USA) since its license isn’t free, and GEANT 3 one, which due to its bottom energy thresholds limits is out of the ther- mal neutrons simulation domain. Package GEANT 4, version 4.9.3, already covers the given transportation task of neutrons. However its validity in this energy range is still in the stage of verification. Should be also mentioned that there are non-negligible distinc- tions between GEANT and MCNP simulation results for the same problems. The authors point of view is that advantages of the above mentioned software products present signif- icant difficulties in solving of specific tasks in which is required to develop the effective and transparent representation of object. Such advantages are: wide scope of processes on types of interactions and mech- anisms, participating particles, combinational oppor- tunities of geometry and physical and chemical prop- erties of materials, the interface of management and processing of results, etc. The development of ther- mal neutrons effective models is also covered by such class of tasks. 2. DESCRIPTION OF THE MODEL The simulation of the thermal neutrons interaction with matter has shown that the distributions of neu- tron velocities and thermal atoms movement are of Maxwell’s type. However this task can be consid- erably simplified. In the present work the following approach to the thermal neutrons field calculation is offered: • all thermal neutrons move with constant of av- erage for the given temperature velocity; • the fluctuation of molecules are negligible; • the elastic neutrons scattering with atoms changes of their initial trajectory but the mod- ule of velocity is saved.1 ∗Corresponding author. E-mail address: kalesha@kipt.kharkov.ua 1Note, that such neutron transportation simplified model was given in [3]; however one doesn’t contain the verification of simplification. Moreover work [3] doesn’t analyze the reduction of computer resources consumption by simplified model. 50 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N3. Series: Nuclear Physics Investigations (55), p.50-53. Physical simplicity of the approach reduces probabil- ity of mistakes into algorithms. The fact that our model does not consider Maxwell’s distribution of neutrons velocity reduces speed of the calculations es- sentially. The last is very importance when the need calculation time of a task exceeds reasonable limits. Fig.1. Transportation of thermal neutrons through plates by various materials, N is the relative output of neutrons, z is a thickness of a plate, L is a length of diffusion. Points are the simulation results, the curves are the analytical calculations (formula (2)), µc is macroscopical cross-section of capture, µe is macroscopical cross-section of elastic scattering By the realization of this approach the method of Monte-Carlo is used. The pseudo-random gen- erators algorithm is applied to support of the basic processes similarly applied in [2]. The spatial step l between events of realization of these processes cal- culates using formula: l = − 1 µ · ln(1− ξ), (1) where ξ - the random uniformly distributed num- ber in [0, 1], µ - the cross-section, corresponding the mechanism of interaction. By means of formula (1) the steps for each of processes taken into considera- 51 tion are generated. Then the process with the mini- mal generated value of step length l is taken out. So as the energy of thermal neutrons is small, the in- teraction of neutrons with matter take place in two channels only, which are capture and elastic scatter- ing. The cross-sections of these processes are pre- sented in [4] and designated as µc, µe, accordingly. Thus by means of formula (1) the step for the chan- nel of capture (lc) and for the channel of scattering (le) are generated. The calculation of neutron trajec- tory stops in the case if the least step length value corresponds to the capture process. The interacting particle has a new pulse direction and neutron con- tinues the motion with velocity of the same absolute value in the case of scattering process The choice of direction of movement after elastic scattering is de- fined from the solution of collision task for two bodies, one from which is basic (atom - the scattering cen- ter). The value of a impact parameter is generated to obtain the new direction of movement. The neutron finding into the given volume during transportation is controlled permanently. 3. RESULTS OF MODELING In view of assumptions are made in the considered approach, the created model and its program real- ization should be verified. We’ll use for this purpose the analytical calculations describing distribution of thermal neutrons for cases of tasks with simple geom- etry. Such tasks are: the distribution of neutrons in the plate from a parallel flat source and the distrib- ution of neutrons in a sphere with a point source in its center. The solutions of the diffusion equation for these cases with condition of µc << µe are: N = N0 · e−z/L for the plate, (2) N = N0 · (1/r + 1/L) · e−r/L for the sphere,(3) where N is output of neutrons from a plate/sphere, N0 is number of neutrons gone out from source, z is thickness of plate, r is sphere radius, L is length of diffusion. Fig.1 shows results of mathematical simulating of neutron distribution in plates from various mate- rials and calculation with formula (2). Simulation and formula (3) distributions of thermal neutrons in spherical volumes of water and heavy water are shown in Fig.2. Each point corresponds to calcu- lation with 107 neutrons emitted by source. Two calculated curves are resulted in some graphics as for the same matters value L in reference books [4] and [5] are various. From the presented figures the good accordance of simulation results and analytical calculations is clear. The is an exception for the case of iron, where requirement for analytical calculation approximation µc << µe is not valid. We notice that this requirement is not restriction of the developed model and it is possible to investigate the neutrons transportation through matter with any values µc and µe. For example, in case of cadmium (for which µc/µe = 350) the developed model can be used, how- ever additional testing for similar cases is desirable. 4. THE CONCLUSIONS The good accordance of simulation results and ana- lytical calculations shows suitability of the developed model for the solution of tasks with more general geometry and non-uniform structure of matters. The reason of this is that the geometry peculiarities and structure heterogeneities of object cannot cancel the correct character of simulating of thermal neutrons interaction with matter. Fig.2. An output of neutrons from spherical volume. r - radius of sphere, other designations as on Fig.1. The program realization for practical application proves that the important advantage of our approach is the increasing of the calculation speed in com- parison with standard packages. The most of neu- tron sources (the gamma-neutron converter, division of nucleus) have the average energy nearby 2 MeV. Therefore our further work will be directed to expan- sion of a range of simulating neutrons energy up to 10 MeV in order to solve of wider range of tasks in the nuclear and radiation physics. 52 ACKNOWLEDGEMENTS In summary authors consider as a pleasant duty ex- press to A.V. Torgovkin gratitude for useful remarks and for the idea that the considered design procedure can be applied not only to thermal neutrons but also for neutrons with energy up to several MeV. 2 References 1. MCNP - A General Monte-Carlo N-Particle Transport Code. Version 4B, Transport Meth- ods Group Los Alamos National Laboratory, 25 March 1997. 2. GEANT Detector Description and Simulation Tool. CERN, Geneva, 1993. 3. I. Sobol. Monte-Carlo method. - M: ”Nauka”, 1968, p.64. 4. Tables of physical sizes/ Under ed. Acad. I.K. Kikoina. M: ”Atomizdat”, 1976, p.1006. 5. B. Prays, K. Horton, K. Spinni. Protection from nuclear radiations. M: ”Izd. I.L.”, 1959, p.490. УПРОЩЁННАЯ МОДЕЛЬ ПРОХОЖДЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ ЧЕРЕЗ ВЕЩЕСТВО А.Ю. Буки, С.А. Каленик, И.Н. Шаповал Раcсмотрена эффективная модель, обеспечивающая симуляцию распространения тепловых нейтронов в различных веществах. Расчет траектории движения нейтрона осуществляется методом Монте-Карло. Модель протестирована на задачах, которые имеют аналитическое решение уравнения диффузии. Раз- работанная модель, ввиду простоты и высокой скорости счёта её программной реализации, может быть полезной при решении практических задач активационного анализа, спектрометрии нейтронов и т.п. СПРОЩЕНА МОДЕЛЬ ПРОХОДЖЕННЯ ТЕПЛОВИХ НЕЙТРОНIВ КРIЗЬ РЕЧОВИНУ О.Ю. Буки, С.О. Каленик, I.М. Шаповал Розглянута ефективна модель, що забезпечує симуляцiю розповсюдження теплових нейтронiв у рiзно- манiтних речовинах. Розрахунок траєкторiї руху нейтрона здiйснюється методом Монте-Карло. Мо- дель протестована на задачах, якi мають аналiтичний розв’язок рiвняння дифузiї. Розроблена модель, з огляду на простоту та високу швидкiсть розрахункiв її програмної реалiзацiї, може бути корисною при розв’язаннi практичних задач активацiйного аналiзу, спектрометрiї нейтронiв та iн. 2It is possible in case when by transportation through matter the neutron energy loss is not great. For example, such case can be realized often in practice the calculation of neutrons transportation through a lead plate with thickness in some centimeters. 53