Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV

The differential cross sections of elastic dd-scattering at Ed = 36.9 MeV in the angular range 30° ≤ Θ c.m. ≤ 116° are measured. For describing of main peak at Θc.m. ≤ 60° we used the diffraction nuclear model taking into account the structure of the colliding nuclei. Satisfactory agreement of the p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Beliuskina, O.O., Grantsev, V.I., Kisurin, K.K., Omelchuk, S.E., Palkin, G.P., Roznyuk, Yu.S., Rudenko, B.A., Semenov, V.S., Slusarenko, L.I., Struzhko, B.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111465
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV / O.O. Beliuskina, V.I. Grantsev, K.K. Kisurin, S.E. Omelchuk, G.P. Palkin, Yu.S. Roznyuk, B.A. Rudenko, V.S. Semenov, L.I. Slusarenko, B.G. Struzhko // Вопросы атомной науки и техники. — 2011. — № 5. — С. 10-15. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111465
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1114652025-02-09T16:47:00Z Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV Пружне розсiяння дейтронiв на дейтронах при Ed ≤ 85 MeB Упругое рассеяние дейтронов на дейтронах при Ed ≤ 85 MэB Beliuskina, O.O. Grantsev, V.I. Kisurin, K.K. Omelchuk, S.E. Palkin, G.P. Roznyuk, Yu.S. Rudenko, B.A. Semenov, V.S. Slusarenko, L.I. Struzhko, B.G. Ядерная физика и элементарные частицы The differential cross sections of elastic dd-scattering at Ed = 36.9 MeV in the angular range 30° ≤ Θ c.m. ≤ 116° are measured. For describing of main peak at Θc.m. ≤ 60° we used the diffraction nuclear model taking into account the structure of the colliding nuclei. Satisfactory agreement of the present results with published data at energies of 12.1MeV ≤ Ed ≤ 85 MeV was obtained. For the theoretical interpretation of the angular distributions the identity of the colliding deuterons is taken into account. Було виміряно диференціальні перерізи пружного розсіювання дейтронів з енергією Ed = 36.9 МеВ ядрами дейтерію в діапазоні кутів 30° ≤ Θ c.m. ≤ 116°. Для опису основго максимуму Θc.m. ≤ 60° використовувалась дифракційна ядерна модель, яка враховує структуру ядер, що зіштовхуються. Отримано задовільне узгодження з експериментом для кутів Θc.m. ≤ 60° і з нашими експериментальними даними, і з даними інших робіт для енергій 12 МеВ ≤ Ed ≤ 85 МеВ. Для теоретичної інтерпретації кутових розподілів було враховано тотожність дейтронів, що зіштовхуються. Измерены дифференциальные сечения упругого рассеяния дейтронов с энергией Ed = 36.9 МэВ ядрами дейтерия в диапазоне углов 30° ≤ Θ c.m. ≤ 116°. Для описания основного максимума Θc.m. ≤ 60° использовалась дифракционная ядерная модель, учитывающая структуру сталкивающихся ядер. Получено удовлетворительное согласие с экспериментом для углов Θc.m. ≤ 60° как с нашими экспериментальными данными, так и с данными других работ для энергий 12 МэВ ≤ Ed ≤ 85 МэВ. При теоретической интерпретации угловых распределений учтена тождественность сталкивающихся дейтронов. 2011 Article Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV / O.O. Beliuskina, V.I. Grantsev, K.K. Kisurin, S.E. Omelchuk, G.P. Palkin, Yu.S. Roznyuk, B.A. Rudenko, V.S. Semenov, L.I. Slusarenko, B.G. Struzhko // Вопросы атомной науки и техники. — 2011. — № 5. — С. 10-15. — Бібліогр.: 18 назв. — англ. 1562-6016 PACS: 24.30.Cz, 13.75.Cs, 21.30.Fe, 21.60.Jz https://nasplib.isofts.kiev.ua/handle/123456789/111465 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Beliuskina, O.O.
Grantsev, V.I.
Kisurin, K.K.
Omelchuk, S.E.
Palkin, G.P.
Roznyuk, Yu.S.
Rudenko, B.A.
Semenov, V.S.
Slusarenko, L.I.
Struzhko, B.G.
Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
Вопросы атомной науки и техники
description The differential cross sections of elastic dd-scattering at Ed = 36.9 MeV in the angular range 30° ≤ Θ c.m. ≤ 116° are measured. For describing of main peak at Θc.m. ≤ 60° we used the diffraction nuclear model taking into account the structure of the colliding nuclei. Satisfactory agreement of the present results with published data at energies of 12.1MeV ≤ Ed ≤ 85 MeV was obtained. For the theoretical interpretation of the angular distributions the identity of the colliding deuterons is taken into account.
format Article
author Beliuskina, O.O.
Grantsev, V.I.
Kisurin, K.K.
Omelchuk, S.E.
Palkin, G.P.
Roznyuk, Yu.S.
Rudenko, B.A.
Semenov, V.S.
Slusarenko, L.I.
Struzhko, B.G.
author_facet Beliuskina, O.O.
Grantsev, V.I.
Kisurin, K.K.
Omelchuk, S.E.
Palkin, G.P.
Roznyuk, Yu.S.
Rudenko, B.A.
Semenov, V.S.
Slusarenko, L.I.
Struzhko, B.G.
author_sort Beliuskina, O.O.
title Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
title_short Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
title_full Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
title_fullStr Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
title_full_unstemmed Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV
title_sort elastic scattering of deuterons by deuterons at ed ≤ 85 mev
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Ядерная физика и элементарные частицы
url https://nasplib.isofts.kiev.ua/handle/123456789/111465
citation_txt Elastic scattering of deuterons by deuterons at Ed ≤ 85 MeV / O.O. Beliuskina, V.I. Grantsev, K.K. Kisurin, S.E. Omelchuk, G.P. Palkin, Yu.S. Roznyuk, B.A. Rudenko, V.S. Semenov, L.I. Slusarenko, B.G. Struzhko // Вопросы атомной науки и техники. — 2011. — № 5. — С. 10-15. — Бібліогр.: 18 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT beliuskinaoo elasticscatteringofdeuteronsbydeuteronsated85mev
AT grantsevvi elasticscatteringofdeuteronsbydeuteronsated85mev
AT kisurinkk elasticscatteringofdeuteronsbydeuteronsated85mev
AT omelchukse elasticscatteringofdeuteronsbydeuteronsated85mev
AT palkingp elasticscatteringofdeuteronsbydeuteronsated85mev
AT roznyukyus elasticscatteringofdeuteronsbydeuteronsated85mev
AT rudenkoba elasticscatteringofdeuteronsbydeuteronsated85mev
AT semenovvs elasticscatteringofdeuteronsbydeuteronsated85mev
AT slusarenkoli elasticscatteringofdeuteronsbydeuteronsated85mev
AT struzhkobg elasticscatteringofdeuteronsbydeuteronsated85mev
AT beliuskinaoo pružnerozsiânnâdejtronivnadejtronahpried85meb
AT grantsevvi pružnerozsiânnâdejtronivnadejtronahpried85meb
AT kisurinkk pružnerozsiânnâdejtronivnadejtronahpried85meb
AT omelchukse pružnerozsiânnâdejtronivnadejtronahpried85meb
AT palkingp pružnerozsiânnâdejtronivnadejtronahpried85meb
AT roznyukyus pružnerozsiânnâdejtronivnadejtronahpried85meb
AT rudenkoba pružnerozsiânnâdejtronivnadejtronahpried85meb
AT semenovvs pružnerozsiânnâdejtronivnadejtronahpried85meb
AT slusarenkoli pružnerozsiânnâdejtronivnadejtronahpried85meb
AT struzhkobg pružnerozsiânnâdejtronivnadejtronahpried85meb
AT beliuskinaoo uprugoerasseâniedejtronovnadejtronahpried85méb
AT grantsevvi uprugoerasseâniedejtronovnadejtronahpried85méb
AT kisurinkk uprugoerasseâniedejtronovnadejtronahpried85méb
AT omelchukse uprugoerasseâniedejtronovnadejtronahpried85méb
AT palkingp uprugoerasseâniedejtronovnadejtronahpried85méb
AT roznyukyus uprugoerasseâniedejtronovnadejtronahpried85méb
AT rudenkoba uprugoerasseâniedejtronovnadejtronahpried85méb
AT semenovvs uprugoerasseâniedejtronovnadejtronahpried85méb
AT slusarenkoli uprugoerasseâniedejtronovnadejtronahpried85méb
AT struzhkobg uprugoerasseâniedejtronovnadejtronahpried85méb
first_indexed 2025-11-28T02:08:07Z
last_indexed 2025-11-28T02:08:07Z
_version_ 1849998126450999296
fulltext ELASTIC SCATTERING OF DEUTERONS BY DEUTERONS AT Ed ≤ 85 MeV O.O. Beliuskina∗, V.I. Grantsev, K.K. Kisurin, S.E. Omelchuk, G.P. Palkin, Yu.S. Roznyuk, B.A. Rudenko, V.S. Semenov, L.I. Slusarenko, B.G. Struzhko Institute For Nuclear Research of NAS of Ukraine, 03680, Kiev, Ukraine (Received June 30, 2011) The differential cross sections of elastic dd-scattering at Ed = 36.9 MeV in the angular range 30◦ ≤ θc.m. ≤ 116◦ are measured. For describing of main peak at θc.m. ≤ 60◦ we used the diffraction nuclear model taking into account the structure of the colliding nuclei. Satisfactory agreement of the present results with published data at energies of 12.1 MeV ≤ Ed ≤ 85 MeV was obtained. For the theoretical interpretation of the angular distributions the identity of the colliding deuterons is taken into account. PACS: 24.30.Cz, 13.75.Cs, 21.30.Fe, 21.60.Jz 1. INTRODUCTION The deuteron is the simplest bound nuclear system of nucleons in which nuclear interaction takes place, and processes with participation of deuterons are valuable and convenient method to study some aspects of nu- clear forces and the structure of the deuteron. Con- taining only two nucleons it is better investigated in many aspects in comparison with the majority of the rest nuclei, and allows to study some more fine details of the nuclear NN interaction, thus complementing information got from the nucleon-nucleon scattering. Elastic scattering of deuterons by deuterons at ener- gies 12 ≤ Ed ≤ 100 MeV devoted a small number of studies [1-9]. Generally the angular distributions of elastically scattered deuterons were investigated both experimentally and theoretically at energies up to 25 MeV . This is conditioned by the complexity of the theoretical interpretation of the data at Ed ≥ 30 MeV , and the paucity of experimental results. In this work experimental data on elastic scattering of deuterons with energy Ed = 36.9 MeV by deuterons and results of the elastic dd-scattering analysis at en- ergies of 12 < Ed < 85 MeV are presented. We used diffraction nuclear model with accounting of NN - interaction for theoretical interpretation of data on elastic scattering at angles θc.m. ≤ 60◦. Diffraction approximation considers collisions of two deuterons as two classical balls with accounting their identity was used to explain structural peculiarities of angu- lar distributions at different energies. 2. EXPERIMENT Experimental study of dd-scattering was carried out on the U − 240 cyclotron in the KINR of NAS of Ukraine on the external deuteron beam with the energy Ed = 36.9 MeV . Measurements were ful- filled with CD2 (deuterated polyethylene) and 12C targets. The statistical accuracy of measurements was 1...2% and absolute values of cross sections were determined with an accuracy of ∼ 5 percent. Mea- surements were carried out using installation and procedures, described earlier in works [10-12]. In the Fig.1 our angular distributions of deuterons scattered by deuterons in c.m. system are presented with pub- lished data in the energy range 12 < Ed < 85 MeV . Fig.1 Angular distributions of the elastic scattering deuterons by deuterons at energies: 12.1 [1], 12.3 [9], 25.3 [4], 36.9 (our data) and 50...85 MeV [5] in c.m.s. Energies of deuterons are presented in l.s. The differential cross section at energy Ed = 12.1 MeV reduces gradually with the growth ∗Corresponding author E-mail address: beliuskina@gmail.com 10 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N5. Series: Nuclear Physics Investigations (56), p.10-15. of the scattering angle up to θc.m. ≈ 90◦, and then increased also gradually with the growth of the scat- tering angle. With the growth of the deuteron energy, starting from Ed = 25 MeV (according available ex- perimental data) a strong energy dependence in cross section is observed (to up θc.m. ∼ 60◦). A structure in angular distributions (60◦ ≤ θc.m. ≤ 120◦), i.e. indi- cations on the minimum at θc.m. ≈ 60◦ and the broad maximum, centered at the angle θc.m. ≈ 90◦ starts to display. The similar trend is seen more clearly with the further growth of incoming deuteron energy [5]. But with increasing energy up to Ed = 85 MeV no- ticeable decrease in the cross sections observed (up to 2 mb) and structure is almost absent in the angular range 60◦ ≤ θc.m. ≤ 120◦. 3. THEORY At the energy of incoming deuteron in l.s. Ed ≈ 40 MeV , as in our experiment, collision of two deuterons can be considered as quasi-classical one. In this case product of the relative wave vector k and the radius of nuclear interaction R will exceed a unity a few times. That is why the diffraction ap- proximation [10, 11] for small scattering angles in l.s. θ ≤ (kR)−1 <<1 can be used. 3.1. THE MICROSCOPIC DIFFRACTION MODEL The microscopic diffraction model [11, 12, 13] was used to describe deuteron-deuteron collisions. An in- teraction of each nucleon of the incoming deuteron with each nucleon of the target deuteron is taken into account. The nucleon-nucleon profile function was chosen in the form of Gaussian: ωij = ω (|ρij |) = α exp ( b2ρ2 ij ) , α = α1 − ια2 , (1) where ~ρij is the component of vector ~rij = ~ri + ~rj perpendicular to the incoming deuteron wave vector ~kd in l.s., while ~ri is a radius -vector for i-nucleon of deuteron target (i = 1, 2), and ~rj is a radius-vector of the nucleon j of the incoming deuteron (j = 3, 4). Functions ωij are connected with appropriate scatter- ing matrixes Ωij by a simple relation: Ωij = 1− ωij . Values of real interaction parameters a1, a2 and b in (1) were taken to be approximately the same as in works [13, 14]. The deuteron-deuteron elastic scattering ampli- tude in the diffraction approximation cab be build in the form as it was done in [11, 12] for scattering of a deuteron on a triton (θ is the scattering angle in the c.m. system) A(θ) = ∫ d(3)~r ∫ d(3)~s ∫ d(2) ~R⊥ϕ∗(~r)ϕ ~chi ∗( ~R⊥)× ×Ω13Ω14Ω23Ω24ϕ(~r)ϕ(~s)ϕ0( ~R⊥), (2) where inner (structural) wave functions of the deuteron-target ϕ(~r) and the incoming deuteron ϕ(~s) depend on relative radius-vectors ~r = ~r12 = ~r1 − ~r2 and ~s = ~r34 = ~r3 − ~r4 and wave function ϕ0( ~R⊥) and ϕ~ϕ( ~R⊥) describing the relative movement of deuterons before and after scattering, depend on he component ~R⊥ of the radius-vector ~R, connecting centers of mass of the two deuterons, perpendicular to the relative wave vector ~k = 1 2 ~kd and ~χ is the perpendicular to the vector ~k component of the mo- mentum of the scattered deuteron, while ~χ = −~q, where ~q is the transferred momentum [15]. So far as the amplitude in [2] contains rather high multiplicity of integration, we will use for calculation the wave functions of the simplest form [11, 12, 13] ϕ(~s) = ( 2λ2 π ) , λ = 0.267 fm−1 , (3) ϕ◦( ~R⊥) = 1 , ϕ~χ( ~R⊥) = ei~χ ~R⊥ , ~χ = −~q , χ = 2k sin θ 2 . (4) For our incoming deuteron energy the dd-scattering will take place in the c.m. system mainly in small angles range θ ≤ 600 (for l.s. θ ≤ 300). There- fore, to calculate amplitudes and cross sections for kinematical conditions of our experiment we can use the impulse approximation, which will be proved to be correct, when comparing calculated cross sections with our experimental data. Then the substitution of (1), (3) and (4) in (2) for diffraction elastic scatter- ing of the deuteron by the deuteron we will get the expression in the explicit form: A(θ) = 4πa b2 exp [ −χ2 ( 1 4b2 + 1 16λ2 )] , χ = 2k sin θ 2 , (5) and for the appropriate cross section of the diffraction scattering we will get formula dσ dΩ = k2 (2π)2 | A(θ) |2= 4 | a |2 k2 b4 × × exp [ −2k2 ( 1 b2 + 1 4λ2 ) sin2 θ 2 ] . (6) Accounting the identity of colliding deuterons we need to take the superposition of amplitude A(θ) and A(θ) [16] instead of the amplitude A(θ) in (5) and the cross section (for integer spins equal 1, as in our case) will be now dσ dΩ = k2 (2π)2 {| A(θ) |2 + | A(π − θ) |2 + + 3 2 Re[A(θ)A∗(π − θ)]}, (7) that leads to the following formula for the deuteron elastic scattering cross section dσ dΩ = 4 | a |2 k2 b4 {exp [ −2k2 ( 1 b2 + 1 4λ2 ) sin2 θ 2 ] + + exp [ −2k2 ( 1 b2 + 1 4λ2 ) cos2 θ 2 ] + + 2 3 exp [ −k2 ( 1 b2 + 1 4λ2 )] }, k2 = MEd , (8) 11 where M is nucleon mass. The way it should be, cross section is symmetric in the c.m. system relatively the angle θ = 90◦, in particular, the values of cross sec- tion at angles θ=0◦ and θ = 180◦ will be equal. The first term in the right part of the formula (8) is the cross section of elastic scattering (6) of the incoming deuteron by the deuteron-target and as k2( 1 b2 + 1 4λ2 ) >> 1, it gives the main contribution in the cross section (8) only for small angles of scatter- ing θ ≤ 60◦. The second terms in (8) is the cross sec- tion of the deuteron-target knocking-out, and it con- tributes significantly only for angles θ near to 180◦, i.e. when θ ≥ 120◦. The third terms in (8) for our model wave functions (3) and (4) does not depend on the angle θ and is an interference (quantum me- chanical) term and, as it has to be in quasi-classical approximation, it is negligibly small for our energy, thus we can retain in the cross section (8) only the first two (classical) terms in a good approximation. As our measurements of cross sections were limited only by angles θ < 120◦, the second term in (8) will have also only limited application for the description of the experiment for such scattering angles. 3.2 THE NON PENETRATING SPHERES APPROXIMATION The behavior of the observed cross section of dd- scattering for angles θ >> (kR)−1 in the diffraction approximation is not longer described with model functions (3) and (4), that is why for angles 60◦ ≤ θ ≤ 120◦, where the observed cross section is very small, one can try to use a version of quasi-classical approximation, in which deuterons are treated as two identical non penetrating collided balls [11, 12, 17]. In this approximation one can describe qualitatively the cross section for whole angle region 60◦ ≤ θ ≤ 180◦. At kR >> 1 for all angles θc.m. ≤ 180◦ the quasi- classical amplitude of two colliding identical particles will look like: F (θ) = i R 2 sin θ 2 J1 ( 2kR sin θ 2 ) − − iR 2 exp ( −2ikR sin θ 2 ) , (9) F1(π − θ) = i R 2 cos θ 2 J1 ( 2kR cos θ 2 ) − − iR 2 exp ( −2ikR cos θ 2 ) , (10) where first part - diffraction quantum amplitude fdif (θ), second - amplitude of classical isotropic scat- tering. The differential scattering cross section can be written as dσ dΩ = (| F1(θ) |)2 + + 2 3 Re [ F (θ) (| F1(θ) |)2 F1(θ) ] . (11) For small angle interval θ << (kR)− 1 3 the module of diffractional part of the amplitude fdif (θ) exceeds significantly the classical one fcl : | fdif (θ) |>>| fcl(θ) |, and for the angular interval θ >> (kR) 1 3 , on the contrary, | fcl(θ) |>>| fdif (θ) |. For the small angle region near θ ≈ (kR)− 1 3 amplitudes fdif (θ) and fcl(θ) are of the same order of magnitude and to find simple and ex- plicit expression for the amplitude is not easy, but the contribution for this angular region to the inte- gral cross section is negligibly small for kR >> 1. The explicit expression for amplitudes fdif (θ) and fcl(θ) were received in [17] for different conditions, that is why it is worth to examine separately dif- ferential cross sections of elastic scattering for two mentioned angular regions, not to sum up amplitudes fdif (θ) and fcl(θ). Then the cross section of diffrac- tion scattering, taking into account (9) and (10) can be written as dσ dΩ = R2 4 { J2 1 (2kR sin θ 2 ) sin2 θ 2 + J2 1 (2kR cos θ 2 ) cos2 θ 2 + + 2 3 J1(2kR sin θ 2 ) sin θ 2 J1(2kR cos θ 2 ) cos θ 2 } . (12) In the quasi-classical approximation kR >> 1 the first term in the braces of (12) gives the main con- tribution for θ ≤ (kR) 1 3 , the second term contributes for θ ≥ π − (kR) 1 3 , the third term, as a rule, can be neglected as being an interference quantum con- tribution in this approximation [18]. The classical cross section describes the isotropic distribution of scattered particles and has a very simple form dσcl dΩ = R2 4 . (13) 4. RESULTS OF CALCULATIONS AND COMPARISON WITH EXPERIMENTAL DATA Experimental dependencies of angular distributions dσ dΩ of scattered deuterons in dd- collisions in the c.m. system for a number of incoming deuteron energies Ed in laboratory system, presented in the Fig.1 and Fig.2, give the possibility to determine the general structure of the distributions, some trends and, in particular, the influence of incoming energy Ed on them. Diffraction nuclear model that takes into ac- count NN -interaction between the nucleons and the identity of the colliding deuterons as two identical bosons was used for theoretical description of elas- tic dd-scattering angular distributions in the region of the main peak. Calculations were carried out for energy of incoming deuterons 12.1 ≤ Ed ≤ 85 MeV . In follow we presented the results of our calculations of elastic dd-scattering differential cross sections dσ dΩ for energies of incoming deuterons 12.1, 36.9, 60 and 70 MeV which reflects the most characteristic fea- tures of angular distributions in this energy range. The theoretical curves obtained using a microscopic diffraction model by formulae (1) - (8) are shown in Fig.2 (as a thick solid curve 1). 12 Fig.2. Comparison experimental and theoretical angular distributions of elastic dd-scattering at energies: 12 MeV [1, 8, 9], 36.9 MeV (our data), 60 and 70 MeV [5]. Points - experiment. Curves 1 - calculation by microscopic diffraction model: (a) α1 = 0.7, α2 = 0.5, b2 = 0.355fm−2; (b)α1 = 0.5, α2 = 0.5, b2 = 0.45fm−2; (c)α1 = 0.6, α2 = 0.6, b2 = 0.52fm−2; (d)α1 = 0.45, α2 = 0.49, b2 = 0.49fm−2; curves 2 - diffraction scattering: (a) R=5.5, (b) R=3.8 (2a - R=4.4), (c) R=3.32, (d) R=3.0; curves 3 - calculation by classical approximation: (a) R=2.79, (b) R=5.5; curve 4–calculation by formula take into account interference of diffraction and classical amplitudes: (a) R=5.5 According to mentioned above, such model when using wave function (3) and (4) can lead to ade- quate description of experiments only for compara- tively small deuteron scattering angles in the c.m. system θ ≤ (kR)− 1 3 ≤ 60◦, i.e. in the region of the main (by height) first maximum of the cross sec- tion at θ = 0◦. If the deuterons (recoils) would be registered in experiments also for angles θ > 120◦, than, as it was marked earlier, we would have also the second observed high maximum at θ = 180◦, which would be same in the high (and the form) as the maximum at θ = 0◦ due to identity of colliding deuterons. That is why, as it could be expected, satisfactory agreement with experimen- tal distributions of scattered deuterons for all men- tioned energies of incoming deuterons was achieved for angle θ ≤ (kR)− 1 3 ≈ 60◦. Good agreement is ob- served also for angle interval 110◦ ≤ θc.m. ≤ 145◦ at deuteron energy Ed = 12 MeV . For angle inter- val 60◦ ≤ θc.m. ≤ 120◦, where this model should not work, qualitative description of the experiment is ob- served, i.e. the shape of experimental angular dis- tribution is reproduced. As follows from fig.1 mini- mum near θc.m. = 60◦ is observed both for our mea- sured angular distribution of deuterons scattered by deuterons at Ed = 36.9 MeV and for other data at Ed = 25.3 MeV and Ed = 50...85 MeV . But for the lowest energies (12.1...12.3 MeV ) such structure in angular distribution is not seen. Characteristic peculiarities of behavior of cross sections of elastic dd-scattering for different energies can be also quali- tatively described with the help of diffraction model of two colliding nonstructural hard balls-deuterons with the account of their identity. The angular dis- tributions of the scattering cross section dσdif dΩ were calculated by the formula (12) for all energies and are shown in Fig.2 by dashed curves. Here as well as for the microscopic diffraction model, conditions of model approximations can be satisfied only for angles 60◦ ≤ θc.m. ≤ 120◦ and 120◦ ≤ θc.m. ≤ 180◦. The theoretical cross sections calculated by the formula (12) lead to almost the same satisfactory description 13 of the experiment, as well as microscopic diffraction model in this angular region. This model clearly shows the presence of extremums in angular distribu- tions at θ ≈ 60◦ and θ ≈ 120◦ for energies of incoming deuterons Ed ≥ 25 MeV , and for smaller energies this model describes the change of angular dependence for angular interval 60◦ ≤ θc.m. ≤ 120◦. Positions of ex- tremums in the angular distribution of cross sections are qualitatively connected with the value of a bound- ary angle θ ≈ (kR)− 1 3 (see (9) and (10), and as well [17]), being dependent weakly on deuteron energy Ed for energy interval 25.3 MeV ≤ Ed ≤ 51.5 MeV . In the intermediate region of angles 60◦ ≤ θc.m. ≤ 120◦, where conditions of applicability of the model are al- ready violated to some extent, not only qualitative but also quantitative description of the experiment is achieved for Ed = 36.9...70 MeV for the region of small by height secondary diffraction maximum. As in the region of medium angles 60◦ ≤ θc.m. ≤ 120◦ conditions of applicability of used approximations for our deuteron energies are still violated than to describe cross sections in this wide angular region, where cross sections are getting very small almost permanent values, we used the simplified phenom- enological model for colliding nonpenetrating balls (with isotropic distributions of particles over angles) [1, 11, 12, 17]. According to this model observed cross sections are described approximately by the formula (13) with the radius of nuclear interaction R [10, 12] depending on energy. Appropriate dependences of cross sections at the energy Ed = 36.9 MeV are given in the Fig.2 by dense solid line 3. Analyzing the the- oretical angular distribution of elastic dd-scattering at Ed = 12, 1 (12, 3)MeV , we can note that the mi- croscopic (8) and diffraction (12) models qualitatively describe the shape of the angular distribution and in- dicate the presence of a minimum at θc.m. = 90◦ (and its absence at θc.m. = 60◦). Analyzing the experi- mental angular distributions (see Fig.1), we can note that the cross section at the minimum ( θc.m. = 90◦) at Ed = 12, 1 MeV roughly an order of magnitude higher then the cross sections in the secondary maxi- mum (θc.m. = 90◦) at energies Ed ≥ 36, 9 MeV . Cal- culations of the elastic scattering were carried out by the formula (11) taking into account interference of classical and diffraction amplitudes. The results are shown in Fig.2 (a) by dotted curve. Interfer- ence term in expression (11), which is usually ignored, was significant at low energies Ed, that perhaps ex- plains the nature of the appearance of a minimum at θc.m. = 90◦ at a given energy. It follows from the above analysis that both for our measured angu- lar distribution of deuterons scattered by deuterons at Ed = 36.9 MeV and for data of other works at Ed = 25.3 MeV [4] and Ed = 50...85 MeV [5] a mini- mum is observed near the angle θc.m. = 60◦. Position of this minimum is in accord with given earlier formu- lae for differential cross sections dσ dΩ . It has a diffrac- tion nature for energies Ed ≈ 25...50 MeV as well as the secondary not strictly expressed diffraction maxi- mum at θc.m. ≈ 90◦. Eerier (see, for example, [8]) the arising of the mentioned structure in cross sections dσ dΩ was treated theoretically by methods sometimes being some artificial and not very evident, while the observed extremums in cross sections, as we think, arise and are explained naturally with the help of simple diffraction mechanism. 5. SUMMARY 1.The angular distribution of deuterons scattered by deuterons at energy Ed = 36.9 MeV in the angle interval in the c.m. system 30◦ ≤ θc.m. ≤ 116◦ was measured. 2. Comparison of the present results with pub- lished data on elastic scattering of deuterons by deuterons at energies of 12.1 MeV ≤ Ed ≤ 85 MeV was conducted. It is shown that the energy depen- dence of angular distributions of dd-scattering char- acterized by decreasing cross sections with increasing energy Ed and by noticeable structural changes. 3.Diffraction nuclear model which takes into ac- count NN -interaction between the nucleons and the diffraction model of two colliding structureless hard spheres-deuterons were used to describe the angular distributions of elastic dd-scattering. Both mod- els take into account the identity of the colliding deuterons, which naturally explains the observed symmetry of the differential cross sections for the angle θc.m. = 90◦. 4.Our experimental data, as well as measured differential cross sections of elastic scattering from other works for energies of incoming deuterons 12.1 MeV ≤ Ed ≤ 85 MeV were satisfactory de- scribed with the help of microscopic diffraction nu- clear model which takes into account NN -interaction between the nucleons. 5. Structural peculiarities of angular dependences of elastic dd-scattering cross sections were qualita- tively explained with the help of the diffraction model of two colliding hard balls-deuterons with the ac- count of their identity and qualitative and quanti- tative explanation of the diffraction structure of the cross sections was achieved for scattering angles of 60◦ ≤ θc.m. ≤ 120◦ at energies of 12.1 MeV ≤ Ed ≤ 85 MeV . References 1. J.E.Brolly, T.M. Potman, L. Rosen, L. Stemart. Isotope Elastic Scattering Processes at Interme- diate Energies// Phys.Rev. 1960, v.117, p.1307. 2. J.E.Alys, and L. Lyons. The deuteron - deuteron interaction at 270 to 507 MeV/c // Nucl. Phys. 1965, v.74, p.261. 3. F.S. Shwieroth, Y.C. Tang, and D.R. Thompson. Study of d + d scattering with the resonating 14 - group method and an imaginary potential// Nucl.Phys. 1972, v.A189, p.1 4. W.T.H. vanOers, U. Arnold, and K.W.Brockman. Elastic scattering of deuterons by deuterons at 25.3 MeV // Nucl.Phys. 1963, v.46, p. 611-616. 5. C.Alderliesten, A. Djaloeis, J. Bojowald, et al. Two-body final states in the d + d interaction in the 50 - 85 MeV incident energy range// Phys.Rev.C. 1978, v.C18, N5, p.2001-2006. 6. A.C. Fonseca, P.E. Shanley. Soluble model involv- ing four identical particles// Phys. Rev. v.C14, N4, p.1343-1354. 7. N.M.Queen. Elastic d-d scattering at 64 MeV // Phys.Lett. 1964, v.13, p.236. 8. B.G. Struzhko, V.M. Lebedev, V.G.Neudachin. Elastic deuteron-deuteron scattering and rele- vant reaction involving the flip of deuteron spins and isospins into a singlet versus the predictions of the supermultiplet potential model for cluster interaction// Yad. Fiz. 2003, v.66, p.845 (in Rus- sia). 9. N. Jarmie, and J.H. Jett. Neutron source reaction cross sections// Pys.Rev. 1974, v.C10, N1, p.54- 56. 10. O.O.Beliuskina, S.V. Berednichenko, V.I.Grancev, et al. Investigation of nuclear re- actions in D+T system// Yad. Fiz. and Ener. 2007, v.3(21), p.54 (in Ukraine). 11. O.O.Beliuskina, V.I. Grancev, V.V.Davydovskyi, et al. Elastic Scattering of Deuterons by Tritons// UFZ. 2009, v.54, p.658 (in Ukraine). 12. O.O.Belyuskina, V.I. Grantsev, V.V.Davydovskyy, et al. Elastic deuteron-triton scattering at 37 MeV // Probl.At.Sci.Tech. 2009, N5(63), p.17 (in Ukraine). 13. V.K.Tartakovsty, A.V. Fursayev, B.I. Sidorenko. Diffractive Dissociation of Tritons by Incident Protons// Yad. Fiz. 2005, v.68, p.35 (in Russia). 14. B.I.Grancev, V.V.Davidovsky, K.K. Kisurin, et al. Excitation of States of Medium-Mass Nuclei in the Region of Giant Resonances in Inelas- tic Deuteron Scattering// Yad. Fiz. 2008, v.71, p.1742 (in Russia). 15. A.I. Akhiezer and A.G. Sitenko. Scattering of Fast Deuterons by Nuclei// Phys.Rev. 1957, v.106, p.1236. 16. L.D. Landau, E.M. Lifshyts. Kvantova Mehanika. M.: ”Nauka”, 1974. 17. V.M.Galitsky, B.M. Kornakov, V.I. Kogan. Zadachi po kvantovoi mehanike. M.: ”Nauka”, 1981. 18. M.V.Evlanov, A.M. Sokolov, V.K.Tartakovsky. About diffraction break-up of deuterons and ex- otic nuclei 6He and 19C // Yad. Fiz. 2003, v.66, p.278 (in Russia). УПРУГОЕ РАССЕЯНИЕ ДЕЙТРОНОВ НА ДЕЙТРОНАХ ПРИ Ed ≤ 85МэВ О.О. Белюскина, В.И. Гранцев, К.К. Кисурин, С.Е. Омельчук, Г.П. Палкин, Ю.С. Рознюк, Б.А. Руденко, В.С. Семенов, Л.И. Слюсаренко, Б.Г. Стружко Измерены дифференциальные сечения упругого рассеяния дейтронов с энергией Ed = 36, 9МэВ яд- рами дейтерия в диапазоне углов 30◦ ≤ θc.m. ≤ 116◦. Для описания основного максимума θc.m. ≤ 60◦ использовалась дифракционная ядерная модель, учитывающая структуру сталкивающихся ядер. По- лучено удовлетворительное согласие с экспериментом для углов θc.m. ≤ 60◦ как с нашими эксперимен- тальными данными, так и с данными других работ для энергий 12МэВ≤ Ed ≤ 85МэВ. При теорети- ческой интерпретации угловых распределений учтена тождественность сталкивающихся дейтронов. ПРУЖНЕ РОЗСIЯННЯ ДЕЙТРОНIВ НА ДЕЙТРОНАХ ПРИ Ed ≤ 85МеВ О.О. Белюскiна, В.I. Гранцев, К.К. Кiсурiн, С.Є. Омельчук, Г.П. Палкiн, Ю.С. Рознюк, Б.А. Руденко, В.С. Семенов, Л.I. Слюсаренко, Б.Г. Стружко Було вимiряно диференцiальнi перерiзи пружного розсiювання дейтронiв з енергiєю Ed = 36, 9МеВ ядрами дейтерiю в дiапазонi кутiв 30◦ ≤ θc.m. ≤ 116◦. Для опису основго максимуму θc.m. ≤ 60◦ вико- ристовувалась дифракцiйна ядерна модель, яка враховує структуру ядер, що зiштовхуються. Отри- мано задовiльне узгодження з експериментом для кутiв θc.m. ≤ 60◦ i з нашими експериментальними даними, i з даними iнших робiт для енергiй 12МеВ≤ Ed ≤ 85МеВ. Для теоретичної iнтерпретацiї кутових розподiлiв було враховано тотожнiсть дейтронiв, що зiштовхуються. 15