Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials

We considered GEANT4 version 4.9.4 with different Electromagnetic Physics Package for calculation of response functions of detectors based on semi-insulating materials. Computer simulations with GEANT4 packages were run in order to determine the energy deposition of gamma-quanta in detectors of spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2011
Hauptverfasser: Skrypnyk, A.I., Zakharchenko, A.A., Khazhmuradov, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111466
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials / A.I. Skrypnyk, A.A. Zakharchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 93-100. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111466
record_format dspace
spelling Skrypnyk, A.I.
Zakharchenko, A.A.
Khazhmuradov, M.A.
2017-01-10T11:46:02Z
2017-01-10T11:46:02Z
2011
Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials / A.I. Skrypnyk, A.A. Zakharchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 93-100. — Бібліогр.: 19 назв. — англ.
1562-6016
PACS: 29.40.Wk, 85.30De
https://nasplib.isofts.kiev.ua/handle/123456789/111466
We considered GEANT4 version 4.9.4 with different Electromagnetic Physics Package for calculation of response functions of detectors based on semi-insulating materials. Computer simulations with GEANT4 packages were run in order to determine the energy deposition of gamma-quanta in detectors of specified composition (HgI2 and TlBr) at various energies from 0.026 to 3 MeV. The uncertainty in these predictions is estimated by comparison of their results with EGSnrc simulations. A general good agreement is found for EGSnrc and GEANT4 with Penelope 2008 model of LowEnergy Electromagnetic package.
Досліджено можливості різних моделей електромагнітної взаємодії гамма-квантів у GEANT4 v.4.9.4 для розрахунку функцій відгуку детекторів на основі напівізолюючих матеріалів. GEANT4 використано для визначення втрат енергії гамма-квантами в детекторах з HgI2 і TlBr в діапазоні енергій від 0,026 до 3 МеВ. Похибки розрахунків GEANT4 було оцінено шляхом порівняння з даними моделювання EGSnrc. Виявлено добру відповідність між розрахунками EGSnrc та GEANT4 при використанні моделі електромагнітної взаємодії Penelope 2008.
Исследованы особенности различных моделей электромагнитных взаимодействий гамма-квантов в GEANT4 v.4.9.4 для расчета функций отклика детекторов на основе полуизолирующих материалов. GEANT4 использован для определения потерь энергии гамма-квантов в детекторах из HgI2 и TlBr в диапазоне энергий от 0,026 до 3 МэВ. Погрешности расчетов GEANT4 оценивались при сравнении с данными моделирования EGSnrc. Хорошее согласие обнаружено между расчетами EGSnrc и GEANT4 при использовании модели электромагнитных взаимодействий Penelope 2008.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Вычислительные и модельные системы
Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
Порiвняння можливостей GEANT4 та EGSnrc для моделювання детекторiв гамма-випромiнювання на основi напiвiзоляторiв
Сравнение возможностей GEANT4 и EGSnrc для моделирования детекторов гамма-излучения на основе полуизоляторов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
spellingShingle Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
Skrypnyk, A.I.
Zakharchenko, A.A.
Khazhmuradov, M.A.
Вычислительные и модельные системы
title_short Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
title_full Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
title_fullStr Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
title_full_unstemmed Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials
title_sort сomparison of geant4 with egsnrc for simulation of gamma-radiation detectors based on semi-insulating materials
author Skrypnyk, A.I.
Zakharchenko, A.A.
Khazhmuradov, M.A.
author_facet Skrypnyk, A.I.
Zakharchenko, A.A.
Khazhmuradov, M.A.
topic Вычислительные и модельные системы
topic_facet Вычислительные и модельные системы
publishDate 2011
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Порiвняння можливостей GEANT4 та EGSnrc для моделювання детекторiв гамма-випромiнювання на основi напiвiзоляторiв
Сравнение возможностей GEANT4 и EGSnrc для моделирования детекторов гамма-излучения на основе полуизоляторов
description We considered GEANT4 version 4.9.4 with different Electromagnetic Physics Package for calculation of response functions of detectors based on semi-insulating materials. Computer simulations with GEANT4 packages were run in order to determine the energy deposition of gamma-quanta in detectors of specified composition (HgI2 and TlBr) at various energies from 0.026 to 3 MeV. The uncertainty in these predictions is estimated by comparison of their results with EGSnrc simulations. A general good agreement is found for EGSnrc and GEANT4 with Penelope 2008 model of LowEnergy Electromagnetic package. Досліджено можливості різних моделей електромагнітної взаємодії гамма-квантів у GEANT4 v.4.9.4 для розрахунку функцій відгуку детекторів на основі напівізолюючих матеріалів. GEANT4 використано для визначення втрат енергії гамма-квантами в детекторах з HgI2 і TlBr в діапазоні енергій від 0,026 до 3 МеВ. Похибки розрахунків GEANT4 було оцінено шляхом порівняння з даними моделювання EGSnrc. Виявлено добру відповідність між розрахунками EGSnrc та GEANT4 при використанні моделі електромагнітної взаємодії Penelope 2008. Исследованы особенности различных моделей электромагнитных взаимодействий гамма-квантов в GEANT4 v.4.9.4 для расчета функций отклика детекторов на основе полуизолирующих материалов. GEANT4 использован для определения потерь энергии гамма-квантов в детекторах из HgI2 и TlBr в диапазоне энергий от 0,026 до 3 МэВ. Погрешности расчетов GEANT4 оценивались при сравнении с данными моделирования EGSnrc. Хорошее согласие обнаружено между расчетами EGSnrc и GEANT4 при использовании модели электромагнитных взаимодействий Penelope 2008.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111466
citation_txt Сomparison of GEANT4 with EGSnrc for simulation of gamma-radiation detectors based on semi-insulating materials / A.I. Skrypnyk, A.A. Zakharchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 93-100. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT skrypnykai somparisonofgeant4withegsnrcforsimulationofgammaradiationdetectorsbasedonsemiinsulatingmaterials
AT zakharchenkoaa somparisonofgeant4withegsnrcforsimulationofgammaradiationdetectorsbasedonsemiinsulatingmaterials
AT khazhmuradovma somparisonofgeant4withegsnrcforsimulationofgammaradiationdetectorsbasedonsemiinsulatingmaterials
AT skrypnykai porivnânnâmožlivosteigeant4taegsnrcdlâmodelûvannâdetektorivgammaviprominûvannânaosnovinapivizolâtoriv
AT zakharchenkoaa porivnânnâmožlivosteigeant4taegsnrcdlâmodelûvannâdetektorivgammaviprominûvannânaosnovinapivizolâtoriv
AT khazhmuradovma porivnânnâmožlivosteigeant4taegsnrcdlâmodelûvannâdetektorivgammaviprominûvannânaosnovinapivizolâtoriv
AT skrypnykai sravnenievozmožnosteigeant4iegsnrcdlâmodelirovaniâdetektorovgammaizlučeniânaosnovepoluizolâtorov
AT zakharchenkoaa sravnenievozmožnosteigeant4iegsnrcdlâmodelirovaniâdetektorovgammaizlučeniânaosnovepoluizolâtorov
AT khazhmuradovma sravnenievozmožnosteigeant4iegsnrcdlâmodelirovaniâdetektorovgammaizlučeniânaosnovepoluizolâtorov
first_indexed 2025-11-25T22:33:20Z
last_indexed 2025-11-25T22:33:20Z
_version_ 1850566693029412864
fulltext COMPUTING AND MODELLING SYSTEMS COMPARISON OF GEANT4 WITH EGSnrc FOR SIMULATION OF GAMMA-RADIATION DETECTORS BASED ON SEMI-INSULATING MATERIALS A.I. Skrypnyk∗, A.A. Zakharchenko, M.A. Khazhmuradov National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received August 1 , 2011) We considered GEANT4 version 4.9.4 with different Electromagnetic Physics Package for calculation of response functions of detectors based on semi-insulating materials. Computer simulations with GEANT4 packages were run in order to determine the energy deposition of gamma-quanta in detectors of specified composition (HgI2 and TlBr) at various energies from 0.026 to 3 MeV. The uncertainty in these predictions is estimated by comparison of their results with EGSnrc simulations. A general good agreement is found for EGSnrc and GEANT4 with Penelope 2008 model of LowEnergy Electromagnetic package. PACS: 29.40.Wk, 85.30De 1. INTRODUCTION The variety of electrophysical characteristics (spe- cific resistance, product of mobility µ and mean drift time τ for holes and electrons – (µτ)h,e) is a serious disadvantage of semi-insulating materials (wide band-gap semiconductor with high resistivity). Now this is a main cause that the semi-insulator gamma-radiation detectors could not be mass pro- duced. Wide band-gap semiconductor detectors have considerable spread of (µτ)h,e values (in order of mag- nitude and more) [1] even if they are produced from one ingot. As result the same size detectors biased to the same voltage U b have a different charge collec- tion efficiency (CCE ). It results in non-uniformity of serial devices response and in necessity of individual setup parameters selection. Also the material non-uniformities are a serious obstacle to comparison of detector characteristics measured in different studies. Computer simulation is an optimal method to overcome the material non- uniformity problem. Simulation may be useful both to research of wide band-gap detector behavior and designing of device based on them [2]. Previously we have developed the model of the planar wide band-gap semiconducting gamma- radiation detectors where EGSnrc Monte-Carlo (MC) simulation package was used for determina- tion of the energy deposition of gamma-quanta and charged particles [3]. This model was tested on the several groups of CdTe and CdZnTe detectors [4]. The observed difference between model and experi- mentally measured amplitude distributions of radia- tion sources 137Cs and 152Eu was explained in process of this model verification [2]. However, by this now all factors defining such important gamma-radiation detector characteristics as sensitivity δ and charge collection efficiency CCE are not determined even for the most researched semi-insulating materials as CdTe and CdZnTe. By-turn it does not permit to define exhaustive set of the control parameters of the wide band-gap detector model. The determination of these parameters would allow calculating the most realistic response of the gamma-radiation detector. The model [4] enabled to obtain a good agree- ment between calculated and experimental response functions of CdTe (CdZnTe) gamma-radiation de- tectors in the most cases analyzed. However EGSnrc package possibilities are restricted only by a simula- tion of photon, electron and positron transport. It does not allow using the above mentioned model [4] for analysis of the charge collection efficiency experi- ments with the wide band-gap detectors when proton and α-particle beams are used [5]. Also the model [4] is unsuitable for researching of actual problems of radiation resistance of semi-insulators in mixed radi- ation fields (charged particles and/or neutrons and gamma-quanta) [6]. Geant4 [7] is an actively developing toolkit for the simulation of the passage of charged particles, neutrons and gamma-quanta through matter. This MC package offers a set of physical process mod- els to describe the interaction of charged and neu- tral particles with matter in the wide energy range. Geant4 provides various models of the same electro- magnetic processes (EM packages) [8]. To implement the model [4] on Geant4 platform properly it is nec- essary to define EM package which provides better agreement with EGSnrc simulation results. In the present work statistical characteristics of ∗Corresponding author E-mail address: belkas@kipt.kharkov.ua PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N5. Series: Nuclear Physics Investigations (56), p.93-100. 93 the EGSnrc-calculated response functions of planar wide band-gap detectors based on HgI2 and TlBr to gamma-quanta with energies between 0.026 and 3 MeV is compared with the results of Geant4 simulation. The same radiation source and detector geometry parameters are used to calculate the photon and charged particle transport in EGSnrc and Geant4 simulations. A good agree- ment between results of EGSnrc and Geant4 simu- lations is obtained with using Penelope − 2008 EM package Geant4 v.4.9.4 [9]. 2. THE GEANT4 AND EGSnrc ELECTROMAGNETIC MODELS Geant4 includes three EM packages, which use differ- ent models for cross-sections of photons and charged particles interactions with the matter and different models for final state sampling algorithms. These are Standard EM model and two models for low energy region identified as Livermore and Penelope EM model. All models describe the photoelectric effect, the Compton scattering and the gamma conversion. The model processes of the induced emission and scattering e−–e− and e−–e+ are available for elec- trons and positrons. In the recent years many articles were published where Geant4 simulation results are compared with yield of ¿referenceÀ MC codes EGSnrc and MCNP [7–10]. EGSnrc and MCNP packages have longer application history in radiation physics and nuclear medicine in comparison with Geant4. As a result of often modifications of Geant4 code and fixation of al- gorithm bugs the comparison of different Geant4 ver- sion simulations with other Monte-Carlo codes and experimental data can show the differing results. In the present work Geant4 v.4.9.3 and v.4.9.4 simula- tions are compared with results of EGSnrc version 4r2.3.1. The Standard model uses an analytical approach to describe the electromagnetic interactions in the range from 1 keV up to about 100 TeV. An analytical approach combines numerical databases with analyt- ical cross-section models assuming quasi-free atomic electrons while the atomic nucleus is fixed. Trans- port of X- and gamma rays takes into account Comp- ton scattering using the free-electron approximation, gamma conversion into electron-positron pair, and photoelectric effect. Bremsstrahlung and ionization are the available processes for electrons and positrons. The binding energy of atomic electrons is taken into account only at the photoelectric effect simulation. The simplified computational algorithm of the nu- clear radiation transport through the matter pro- vides the most calculating efficiency for the Standard model in comparison with other models. However, coherent (Rayleigh) scattering and atomic relaxation processes are not included for this package. Atomic and shell ionization effects are included in the Livermore model. The lower energy threshold of the simulation interactions is decreased down to 250 eV. The available physical processes are Rayleigh and Compton scattering, photo-electric effect, pair production, bremsstrahlung, and ionization. The flu- orescence and Auger emission in excited atoms are also considered. This package describes the electro- magnetic interactions of electrons and photons tak- ing into account subshell integrated cross sections for photoelectric effect, ionization, and electron binding energies for all subshells. Cross-sections of particle interactions with matter are calculated from evalu- ated data libraries from Lawrence Livermore National Laboratory – EPDL97 for photons [11], EEDL for electrons [12] and EADL for fluorescence and Auger effects [13]. The physical model which originally was devel- oped for Penelope MC code [9] combines analytical approach for computation of cross-section of the dif- ferent interactions with data from cross-section data- bases calculated in Seltzer and Berger work [14]. Al- gorithm Penelope 2008 is used in Geant4 beginning with version v.4.9.3. This model is applicable to in- teractions in range from about 200 eV up to 1 GeV. Now PenelopeEM Package is still tested. NIST data [14, 15] with empirical correction fac- tors for set of elements [16] are employed for compu- tation of bremsstrahlung loss in the EGSnrc model of the electromagnetic interactions. Cross-sections of the photoelectric effect, pair and triplet generation and coherent scattering cross-sections are determined from EDPL [11] and XCOM [17] estimations. The Klein-Nishina method allowing for Doppler broaden- ing correction and correction for chemical bond ef- fects is used to calculate the incoherent (Compton) scattering cross-sections. Parameters of atom relax- ation are determined for every atomic subshell. Contribution of the atom relaxation processes can be appreciable during registration of gamma-quanta with energies up to about 1 MeV. They are not described in the Geant4 Standard Electromagnetic Model. Thus it is possible to expect the largest dif- ference between simulation data received with using Standard EM Package and EGSnrc simulation re- sults. 3. RESULTS OF SIMULATIONS Functions of gamma-quantum energy loss distrib- ution (response functions) were computed for pla- nar detectors based on two wide band-gap semi- conducting compounds: mercuric (II) iodide (HgI2) and thallium bromide (TlBr). HgI2 detectors are investigated over a long period of time [18] while TlBr is a comparatively new material for nuclear radiation detection [19]. Initial energy of gamma- quantum beam was chosen in the range from 0.026 up to 3 MeV. Simulations were run for all three Geant4 packages of electromagnetic interactions. Geometric sizes of detectors and gamma-quantum beam parame- ters were identical for all Geant4 and EGSnrc mod- els. Since the thickness of investigated detectors was about 1 mm the minimal run length of Geant4- 94 simulated particles (cutForElectron) and gamma- quanta (cutForGamma) in detector material was set equal to 0.01 mm. It corresponds to the minimal en- ergy 3.21 keV for gamma-quanta and 43.23 keV for electrons in HgI2. The minimal energy of Geant4- simulated gamma-quanta in TlBr is 3.85 keV and 48.14 keV for electrons. The similar energy thresh- olds PCUT = 2 keV (gamma-quanta) and ECUT = 20 keV (electrons) were set for both materials during EGSnrc simulations. In the present work we do not consider the energy loss of fast electrons due to the excitation of lattice vibrations. Statistical moments: average energy loss, variance and asymmetry coefficient were computed for every function of distribution of energy loss. Re- ceived dependences of the statistical moments against initial energy of gamma-quantum beam allow reveal- ing and describing in detail systematical differences between results of Geant4 and EGSnrc simulation. 3.1. Mercuric (II) Iodide Mercuric (II) iodine (HgI2) belongs to the group of AIIBV I semiconductor compounds. The functions of distribution of gamma-quantum energy loss were computed for the planar HgI2 detector with size of 5×5×1 mm3. The parallel monoenergetic gamma- quantum beam was uniformly scanned on the detec- tor area. The beam incidence angle was equal to 90◦. At the first stage of the pesent work we used Geant4 v.4.9.3-p01 for comparison with EGSnrc simulations. 106 gamma-quantum histories were sim- ulated for every energy. The statistical moments of the response functions were calculated on their base. Fig. 1 shows the dependence of average en- ergy losses <E> of gamma-quanta (the first mo- ment) against initial beam energy in the investi- gated HgI2 detector. Calculated energy losses are practically equal for all investigated models in the energy range less than Eγ < 0.4 MeV. The en- ergy losses calculated from Standard and Livermore simulation data are stably lower than results of EGSnrc simulations in region Eγ > 0.4 MeV. Fig.1. The dependence of average energy losses of gamma-quanta in HgI2 vs initial beam energy The predicted mean energy losses of gamma- quanta received from Standard and Livermore mod- els practically coincides in the range between 0.4 and 2 MeV. But the Geant4 v.4.9.3-p01 simulation demonstrates abrupt increase of the mean losses for Livermore model relative to Standard model data for gamma-quantum energies above Eγ > 2 MeV (Fig. 1). The quick increase of the electron-positron pair production cross-section is a single essential fea- ture of the gamma-quantum interaction with HgI2 in energy range above Eγ > 2 MeV. Consequently observed difference (Fig. 1) may be concerned with Geant4 v.4.9.3-p01 errors of the positron trajectory simulation. The repeated simulation of the HgI2-detector re- sponse functions using Geant4 v.4.9.4-p02 (release from 24-06-2011) showed that these bugs have been fixed by authors. Moreover, as Fig. 1 shows the difference between Penelope model data in version 4.9.4-p02 and result of EGSnrc simulation consid- erably decreased. That is why, except where noted, for further study we use results received from Geant4 v.4.9.4-p02 simulations. To reveal the most essential differences between simulation results received with different Geant4 EM packages it is necessary the detailed analysis of the investigated HgI2-detector response functions in the energy range of gamma-quanta where different phys- ical processes are dominated. Fig. 2 shows the computed distributions of gamma-quantum energy losses for initial beam en- ergy Eγ = 0.08 MeV. At this energy the photoelec- tric effect is a dominating process of the gamma- radiation interaction with HgI2. The amount of absorbed photons (on the Fig. 2 and further these events correspond to energy Eγ) for all models insignificantly differs (Table 1). It confirms that similar values of photoelectric effect cross-sections for Hg and I are used in all models. Atomic re- laxation processes are not taken into account in the Standard model. Therefore the photoelectric effect event quantity is maximal for this model. Fig.2. Energy losses of gamma-quanta with energy Eγ = 0.08 MeV in HgI2-detector 95 Table 1 and follow-up data show that the total ef- ficiency of registration of gamma-quanta of investi- gated detectors is almost the same for all models. The fine structure of escape peaks is reconstructed from the results of EGSnrc simulations in the most detail. As Fig. 2 demonstrates the used energy bin (1 keV) allows separating KX - and LX -series of char- acteristic photons for both elements (Hg and I). Table 1. The amount of photoelectric effect events and total efficiency for gamma-quanta with Eγ = 0.08 MeV EM model Photoeffect Efficiency, HgI2 Standard 804176 0.818 Livermore 784069 0.822 Penelope 788043 0.822 EGSnrc 765231 0.819 In low-loss energy region of HgI2-detector response functions computed with using Livermore and PenelopeEM models show good agreement with EGSnrc simulation data. According to Fig. 2 these three models have an almost equal distribution of the energy losses in the region up to 0.04. . . 0.045 MeV. In the energy loss region above 0.045 MeV the bet- ter agreement with EGSnrc data is observed for LivermoreEM model. All EM models lead to the similar distribution of the Compton tail in the gamma-quantum en- ergy region where Compton scattering is prevailed (Fig. 3). Computations with Penelope EM model allow obtaining the better agreement with EGSnrc simulation in the Compton valley whereas Standard and Livermore results exceed EGSnrc data. At the same time the amount of absorbed gamma- quanta for the Livermore model is equal about two thirds of the same as other models (Table 2). Fig.3. Energy losses of gamma-quanta with energy Eγ = 0.6 MeV in HgI2-detector As follows Fig. 4 and Table 3 data the Livermore and Standard EM models employ cross-sections of pho- toelectric interaction with HgI2 for gamma-quanta with energy Eγ = 1.28 MeV which values are much less compared with the same in the Penelope EM model and EGSnrc. It is confirmed by the lack of photopeaks for the response functions simulated with using these models. Moreover the disappear- ing of the Compton edges on the Fig. 4 indicates that the Livermore and Standard models employ smaller probabilities of the gamma-quantum Comp- ton scattering angels above 135◦ in comparison with the Penelope model and EGSnrc. Table 2. The amount of photoelectric effect events and total efficiency for gamma-quanta with Eγ=0.6 MeV EM model Photoeffect Efficiency, HgI2 Standard 12602 0.058 Livermore 7418 0.057 Penelope 13488 0.058 EGSnrc 11312 0.058 If gamma-quantum energy is enough for electron- positron pair production (gamma-conversion) (for ex- ample Eγ = 1.28 MeV , Fig. 4) a double-escape peak of annihilation gamma-quanta becomes appre- ciable in the Geant4 simulations (Table 3). On the Fig. 4 these events correspond to the energy equal to 0.259 MeV. According to EGSnrc sim- ulation of response function of investigated HgI2- detector at energy Eγ = 1.28 MeV the dou- ble escape peak is not yet observed (Table 3). Fig.4. Energy losses of gamma-quanta with energy Eγ = 1.28 MeV in HgI2-detector Table 3. The amount of the photoelectric effect and double escape events for gamma-quanta with Eγ = 1.28 MeV (HgI2) EM model Photoeffect Double-escape Standard 39 234 Livermore 18 209 Penelope 1700 201 EGSnrc 1083 37 Above results show that there is good agreement be- tween the response functions of the investigated HgI2- detector received with the Penelope and EGSnrc model apart from double-escape peak of the anni- hilation gamma-quanta. 96 Finally, the computation of the HgI2-detector re- sponse function based on the 107 simulation trajec- tories of gamma-quanta with energy Eγ = 3 MeV shows a good agreement between results of the PenelopeEM model and EGSnrc (Fig. 5). Plots corresponding to results of the Livermore and Standard models are located appreciably lower. The escape peaks in that models are absent (Ta- ble 4 and Fig. 5). This indicates that values of cross-section of the electron-positron pair pro- duction employed by the Livermore and Stan- dard models are smaller as compared with the same of the PenelopeEM model and EGSnrc. Fig.5. Energy losses of gamma-quanta with energy Eγ = 3 MeV in HgI2-detector Table 4. The amount of event of the escape and double escape of annihilation gamma-quanta (HgI2), Eγ = 3 MeV EM model Escape Double-escape Standard 1 74 Livermore 0 59 Penelope 65 3366 EGSnrc 121 7152 Fig. 5 shows that the response functions of the HgI2-detector received with the Geant4 v4.9.4-p02 Livermore and Standard models practically coin- cide. So average energy losses of gamma-quanta with energy 3 MeV also coincide (Fig. 1). It confirms our supposition about the incorrect computation of the HgI2-detector response functions when Geant4 v.4.9.3-p01 Livermore and Standard models have been used (Fig. 1). Other statistical characteristics of response func- tions of the investigated HgI2-detector – variance (Fig. 6) and skewness coefficient (Fig. 7) – also demonstrate a good agreement between results of Geant4 v4.9.4-p02 Penelope EM package simula- tions and EGSnrc data. From Fig. 1, Fig. 6 and Fig. 7 it follows that main differences of all statistical characteristics of the HgI2-detector response functions between Geant4 v4.9.3-p01 and v4.9.4-p02 simulation data correspond to the electron-positron pair production region (Eγ > 1.022 MeV). In the gamma-quantum energy re- gion where positrons are not generated the response functions received with different Geant4 versions coincide. Therefore the cause of anomalous simu- lation results is incorrect values of specific ioniza- tion energy losses of positrons in HgI2 those used by Geant4 v4.9.3-p01. The differences between re- sponse functions of the investigated TlBr-detector re- ceived using of both Geant4 versions are insignificant. Fig.6. The dependence of variance of the HgI2- detector response functions vs gamma-quantum energy Fig.7. The dependence of skewness coefficient of the HgI2-detector response functions vs gamma-quantum energy 3.2. Thallium Bromide Thallium bromide (TlBr) belongs to the group of AIIIBV I semiconductor compounds. Quality differ- ences between the linear gamma-ray attenuation co- efficients of TlBr and HgI2 are negligible. These dif- ferences are characteristic for the energy region where photoelectric effect is dominated (Fig. 8). At the same time the TlBr linear gamma-ray attenuation coefficient exceeds the same of HgI2 about 10% be- ginning from gamma-ray energy Eγ = 0.1 MeV. As follows we can expect that average losses of gamma- 97 quanta energy in TlBr will be higher than in HgI2 at the same detector thickness. Distributions of the gamma-quantum energy losses were calculated for the planar TlBr-detector with size of 3.142 mm2 × 0.8 mm. The parallel mono- energetic beam of gamma-quanta was uniformly dis- tributed on the detector area. The beam incidence angle was equal to 90◦. 106 histories were simulated for each gamma-ray energy. Statistical moments of response functions were calculated using these histo- ries (Fig. 9 and Fig. 10). The data plotted on the Fig. 9 – 12 are received from the Geant4 v4.9.4-p02 simulations. Response functions of the investigated TlBr-detector obtained using version v.4.9.3 coincide with version v.4.9.4 calculations within the scope of statistical uncertain- ties. It gives grounds for affirmation that the reason of above-mentioned anomalous simulation results for HgI2-detector is not the errors of the positron trajec- tory simulation algorithm. As we think these anom- alous results are consequence of incorrect values of the specific ionization energy losses of positrons in HgI2. Similarly the case of HgI2-detector the better coincidence between EGSnrc and Geant4 simulation data is observed when the Penelope model of elec- tromagnetic interactions has been used (Fig. 9 and 10). Fig.8. The linear gamma-ray attenuation coefficient for HgI2 and TlBr [17] The analysis of simulated TlBr-detector response functions for gamma-ray photons with energy Eγ = 0.6 MeV (Fig.11) shows the presence of escape peaks of characteristic photons of Tl and Br KX-series in all models apart from the Standard EM model. The Compton tail is identically reconstructed in all sim- ulations. As for the Compton valley region that the better agreement with EGSnrc data is obtained for the Geant4 PenelopeEM package simulation. The amount of the absorbed gamma-quanta with the energy 0.6 MeV for the LivermoreEM model sim- ulation is about 30% less in comparison with other models (Table 5). The response function of the investigated TlBr- detector for rather high energy gamma-quanta (Eγ = 3 MeV, Fig. 12) received with using EGSnrc MC package shows a good agreement only with the results of the Geant4 Penelope model simulation. For the Livermore and Standard models the escape peak of the annihilation gamma-quanta is almost absent and amplitude of the double escape peak is more than an order of magnitude less as compared with other simulations (Table 6). Fig.9. The dependence of average energy losses of gamma-quanta in TlBr vs the initial energy beam Fig.10. The dependence of variance of TlBr- detector response functions vs the gamma-quantum energy Fig.11. The energy losses of gamma-quanta with the energy Eγ = 0.6 MeV in TlBr-detector 98 Table 5. The amount of photoelectric effect events and total efficiency for gamma-quanta with Eγ = 0.6 MeV EM model Photoeffect Efficiency, TlBr Standard 14288 0.061 Livermore 9231 0.060 Penelope 15652 0.060 EGSnrc 16804 0.064 Fig.12. The energy losses of gamma-quanta with the energy Eγ = 3 MeV in TlBr-detector Table 6. The amount of event of the escape and double escape of annihilation gamma-quanta (TlBr), Eγ = 3 MeV EM model Escape Double-escape Standard 13 435 Livermore 5 395 Penelope 235 5881 EGSnrc 577 13433 4. CONCLUSIONS The comparison of the response functions of the HgI2 and TlBr gamma-radiation detectors computed for all models of the electromagnetic interactions of the Geant4 package and EGSnrc has been made in this work. In the energy region of gamma-quanta up to 0.4 MeV there is a good agreement between re- sponse functions of the investigated detectors cal- culated with using EGSnrc and both Livermore and Penelope models of the Geant4 package. For wider gamma-quantum energy region between 0.026 and 3 MeV statistical parameters of the response functions simulated with EGSnrc and Geant4 pack- ages have a good agreement only when the Penelope model of electromagnetic interactions has been used. By the HgI2-detector example it is shown that the comparison of the response functions received with using different simulation packages allow removing incorrect results and explaining the reason of their appearance. References 1. G. Sato, A. Parsons, D. Hullinger, et al. Develop- ment of a spectral model based on charge trans- port for the Swift/BAT 32K CdZnTe detector array // Nucl. Instr. and Meth. A. 2005, v.541, p.372-384. 2. A.A. Zakharchenko, M.A. Khazhmuradov. Inves- tigation of the properties of semiconductor de- tectors of nuclear radiation by the Monte Carlo method. Part 1: Semiconductor detectors of gamma radiation: Preprint. NASU, NSC KIPT: Review, 2011, p.1-48 (in Russian). 3. I. Kawrakow, E. Mainegra-Hing, D. Rogers. EGSnrcMP, the new multi-platform version of EGSnrc // Med. Phys. 2004, v.31, p.1731. 4. A.A. Zakharchenko, A.A. Veryovkin, V.E. Kutny, A.V.Rybka, M.A. Khazhmuradov. Simulation of response function of CdZnTe detectors for gamma-radiation dosimetry // The Journal of Kharkov National University. Physical series: ”Nuclei, Particles, Fields”. 2008, N832, issue 4(40), p.71-76 (in Russian). 5. M.Breese, E. Vittone, G. Vizkelethy, P. Sellin. A review of ion beam induced charge microscopy // Nucl. Instr. and Meth. B. 2007, v.264, p.345- 360. 6. A.Cavallini, B. Fraboni, W.Dusi, et al. Radia- tion effects on II–VI compound-based detectors // Nucl. Instr. and Meth. A. 2002, v.476, p.770– 778. 7. K.Amako, S.Guatelli, V. Ivanchencko, et al. Geant4 and its validation // Nuclear Physics. B. (Proc. Suppl.) 2006, v.150, p.44-49. 8. G.Cirrone, G. Cuttone, F. Di Rosa, et al. Valida- tion of the Geant4 electromagnetic photon cross- sections for elements and compounds // Nucl. In- str. and Meth. A. 2010, v.618, p.315-322. 9. J. Sempau, J. Fernandez-Varea, E. Acosta, F. Salvat. Experimental benchmarks of the Monte-Carlo code PENELOPE // Nucl. Instr. and Meth. B. 2003, v.207, p. 107-123. 10. H.Yoriyaz, M.Moralles, P. Siqueira, et al. Physi- cal models, cross sections, and numerical approx- imations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation // Med. Phys. 2009, v.36 (11), p.5198-5213. 11. D.Cullen, J. Hubbell, L.Kissel. EPDL97: The Evaluated Photon Data Library ‘97 Version LLNL: UCRL-50400, v.6, rev.5, 1997; http:// www-nds.iaea.org/epdl97/document/epdl97.pdf 99 12. S. Perkins, D.Cullen, S. Seltzer. Tables and graphs of electron-interaction cross-sections from 10 eV to 100 GeV derived from the LLNL eval- uated electron data library (EEDL), Z=1-100 LLNL: Report UCRL-50400, v.31, 1991. 13. S. Perkins, M.Chen, D. Cullen, et al. Tables and graphs of atomic subshell and relaxation data de- rived from the LLNL evaluated atomic data li- brary (EADL), Z=1–100. LLNL: Report UCRL- 50400, v.30, 1992. 14. S. Seltzer, and M.Berger. Bremsstrahlung Spec- tra from Electron Interactions with Screened Atomic Nuclei and Orbital Electrons // Nucl. In- str. and Meth. B. 1985, v.12, p.95-134. 15. S. Seltzer, and M. Berger. Bremmstrahlung En- ergy Spectra from Electrons with Kinetic Energy from 1 keV to 10 GeV Incident on Screened Nu- clei and Orbital Electrons of Neutral Atoms with Z = 1-100 // Atomic Data and Nuclear Data Ta- bles. 1986, v.35, p.345-418. 16. C.Myers, B. Kirk, L. Leal. Comparative analysis of nuclear cross sections in Monte Carlo meth- ods for medical physics applications // Computa- tional Medical Physics Working Group Workshop II, Sep 30-Oct 3, 2007 // http: cmpwg.ans.org/oct2007/Presentations/T203.pdf 17. XCOM: Photon Cross Sections Database, Natio- nal Institute of Standards and Technology 1998; http://www.nist.gov/pml/data/xcom/index.cfm 18. H.Malm. A Mercuric Iodide Gamma-Ray Spec- trometer // IEEE Trans. Nucl. Sci. 1972, v.19, p.263-265. 19. K.Hitomi, O. Muroi, T. Shoji, et al. Room tem- perature X- and gamma-ray detectors using thal- lium bromide crystals // Nucl. Instr. and Meth. A. 1999, v.436, p.160-164. СРАВНЕНИЕ ВОЗМОЖНОСТЕЙ GEANT4 И EGSnrc ДЛЯ МОДЕЛИРОВАНИЯ ДЕТЕКТОРОВ ГАММА-ИЗЛУЧЕНИЯ НА ОСНОВЕ ПОЛУИЗОЛЯТОРОВ А.И. Скрыпник, А.А. Захарченко, М.А. Хажмурадов Исследованы особенности различных моделей электромагнитных взаимодействий гамма-квантов в GEANT4 v.4.9.4 для расчета функций отклика детекторов на основе полуизолирующих материалов. GEANT4 использован для определения потерь энергии гамма-квантов в детекторах из HgI2 и TlBr в диапазоне энергий от 0,026 до 3 МэВ. Погрешности расчетов GEANT4 оценивались при сравне- нии с данными моделирования EGSnrc. Хорошее согласие обнаружено между расчетами EGSnrc и GEANT4 при использовании модели электромагнитных взаимодействий Penelope 2008. ПОРIВНЯННЯ МОЖЛИВОСТЕЙ GEANT4 ТА EGSnrc ДЛЯ МОДЕЛЮВАННЯ ДЕТЕКТОРIВ ГАММА-ВИПРОМIНЮВАННЯ НА ОСНОВI НАПIВIЗОЛЯТОРIВ А.I. Скрипник, О.О. Захарченко, М.А. Хажмурадов Дослiджено можливостi рiзних моделей електромагнiтної взаємодiї гамма-квантiв у GEANT4 v.4.9.4 для розрахунку функцiй вiдгуку детекторiв на основi напiвiзолюючих матерiалiв. GEANT4 викори- стано для визначення втрат енергiї гамма-квантами в детекторах з HgI2 i TlBr в дiапазонi енергiй вiд 0,026 до 3 МеВ. Похибки розрахункiв GEANT4 було оцiнено шляхом порiвняння з даними моделюван- ня EGSnrc. Виявлено добру вiдповiднiсть мiж розрахунками EGSnrc та GEANT4 при використаннi моделi електромагнiтної взаємодiї Penelope 2008. 100