Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure

Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Auslender, V.L., Chernov, K.N., Gornakov, I.V., Kazarezov, I.V., Makarov, I.G., Matyash, N.V., Ostreiko, G.N., Panfilov, A.D., Serdobintsev, G.V., Tarnetsky, V.V., Tiunov, M.A., Shachkov, V.E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/111488
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111488
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1114882025-02-09T18:19:31Z Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure Коаксіальний високочастотний ввід імпульсної потужності 3 МВт у прискорюючу структуру 176 МГц Коаксиальный высокочастотный ввод импульсной мощности 3 МВт в ускоряющую структуру 176 МГц Auslender, V.L. Chernov, K.N. Gornakov, I.V. Kazarezov, I.V. Makarov, I.G. Matyash, N.V. Ostreiko, G.N. Panfilov, A.D. Serdobintsev, G.V. Tarnetsky, V.V. Tiunov, M.A. Shachkov, V.E. Физика и техника ускорителей Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the atmosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF power feeder connection. Power input testing technique is described in the paper together with the results obtained when operating at the high power level. Наведено конструкцію вводу потужності, що являє собою низькоомну коаксіальну лінію з хвильовим опором порядку 30 Ом. Один кінець лінії закорочено, а інший переходить у петлю зв'язку, індуктивність якої компенсована конструктивною ємністю. Вакуумна частина вводу потужності відділена від атмосфери циліндричним ізолятором з кераміки 22ХС. Високочастотна потужність підводиться фідером до місця, що розділяє коаксіальну частину вводу на чвертьхвильовий ізолятор і чвертьхвильовий трансформатор на частоті 176 МГц. Хвильовий опір фідера, що підводить потужність, 50 Ом. Описано методику випробування вводу потужності на стенді, наведені результати його роботи на великому рівні потужності. Приведена конструкция ввода мощности. Он представляет собой низкоомную коаксиальную линию с волновым сопротивлением порядка 30 Ом. Один конец линии закорочен, а другой переходит в петлю связи, индуктивность которой компенсирована конструктивной емкостью. Вакуумная часть ввода мощности отделена от атмосферы цилиндрическим изолятором из керамики 22ХС. Высокочастотная мощность подводится фидером в месте, разделяющем коаксиальную часть ввода на четвертьволновый изолятор и четвертьволновый трансформатор на частоте 176 МГц. Волновое сопротивление подводящего мощность фидера 50 Ом. Описана методика испытания ввода мощности на стенде, приведены результаты его работы на большом уровне мощности. 2008 Article Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.-w; 84.40.-x https://nasplib.isofts.kiev.ua/handle/123456789/111488 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика и техника ускорителей
Физика и техника ускорителей
spellingShingle Физика и техника ускорителей
Физика и техника ускорителей
Auslender, V.L.
Chernov, K.N.
Gornakov, I.V.
Kazarezov, I.V.
Makarov, I.G.
Matyash, N.V.
Ostreiko, G.N.
Panfilov, A.D.
Serdobintsev, G.V.
Tarnetsky, V.V.
Tiunov, M.A.
Shachkov, V.E.
Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
Вопросы атомной науки и техники
description Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which inductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the atmosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF power feeder connection. Power input testing technique is described in the paper together with the results obtained when operating at the high power level.
format Article
author Auslender, V.L.
Chernov, K.N.
Gornakov, I.V.
Kazarezov, I.V.
Makarov, I.G.
Matyash, N.V.
Ostreiko, G.N.
Panfilov, A.D.
Serdobintsev, G.V.
Tarnetsky, V.V.
Tiunov, M.A.
Shachkov, V.E.
author_facet Auslender, V.L.
Chernov, K.N.
Gornakov, I.V.
Kazarezov, I.V.
Makarov, I.G.
Matyash, N.V.
Ostreiko, G.N.
Panfilov, A.D.
Serdobintsev, G.V.
Tarnetsky, V.V.
Tiunov, M.A.
Shachkov, V.E.
author_sort Auslender, V.L.
title Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
title_short Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
title_full Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
title_fullStr Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
title_full_unstemmed Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure
title_sort coaxial pulsed 3 mw rf power input for 176 mhz accelerating structure
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Физика и техника ускорителей
url https://nasplib.isofts.kiev.ua/handle/123456789/111488
citation_txt Coaxial pulsed 3 MW RF power input for 176 MHz accelerating structure / V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 43-45. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT auslendervl coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT chernovkn coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT gornakoviv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT kazarezoviv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT makarovig coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT matyashnv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT ostreikogn coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT panfilovad coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT serdobintsevgv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT tarnetskyvv coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT tiunovma coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT shachkovve coaxialpulsed3mwrfpowerinputfor176mhzacceleratingstructure
AT auslendervl koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT chernovkn koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT gornakoviv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT kazarezoviv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT makarovig koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT matyashnv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT ostreikogn koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT panfilovad koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT serdobintsevgv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT tarnetskyvv koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT tiunovma koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT shachkovve koaksíalʹnijvisokočastotnijvvídímpulʹsnoípotužností3mvtupriskorûûčustrukturu176mgc
AT auslendervl koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT chernovkn koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT gornakoviv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT kazarezoviv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT makarovig koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT matyashnv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT ostreikogn koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT panfilovad koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT serdobintsevgv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT tarnetskyvv koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT tiunovma koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
AT shachkovve koaksialʹnyjvysokočastotnyjvvodimpulʹsnojmoŝnosti3mvtvuskorâûŝuûstrukturu176mgc
first_indexed 2025-11-29T13:09:33Z
last_indexed 2025-11-29T13:09:33Z
_version_ 1850130333822877696
fulltext COAXIAL PULSED 3 MW RF POWER INPUT FOR 176 MHz ACCELERATING STRUCTURE V.L. Auslender, K.N. Chernov, I.V. Gornakov, I.V. Kazarezov, I.G. Makarov, N.V. Matyash, G.N. Ostreiko, A.D. Panfilov, G.V. Serdobintsev, V.V. Tarnetsky, M.A. Tiunov, V.E. Shachkov Budker INP, Novosibirsk, Russia Design of the power input is described in the paper. The power input is a low-impedance coaxial line with the wave resistance of about 30 Ohm. One of the line ends is shorted, the other turns into the coupling loop, which in- ductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the at- mosphere by the cylindrical insulator made of 22XC ceramics. The coaxial part of the power input is divided into the 176 MHz quarter-wave-length insulator and quarter-wave-length transformer by the point of the 50 Ohm RF power feeder connection. Power input testing technique is described in the paper together with the results obtained when operating at the high power level. PACS: 29.17.-w; 84.40.-x. INTRODUCTION 176 MHz pulsed electron accelerator for 5 MeV electron energy and average beam power of 300 kW [1] is under construction at Budker INP. The commission- ing work at the accelerator prototype is being carried out [2]. 3 MW pulsed power source is required to pro- vide efficient power transfer to the electron beam. At operating frequency of 176 MHz, the power input de- sign must be coaxial. In the accelerator prototype, the RF source power is by order lower, so the power input does not require blast cooling. It simplifies the power input design. The ceramic insulator which separates the accelerating structure vacuum volume from the atmo- sphere should meet the requirements of breakdown strength and heat load. Before installation into the accel- erating structure, the power input was tested at the stand. The paper presents the power input design and re- sults of its testing at the stand and being installed into the accelerator. POWER INPUT DESIGN The power input (see Fig.1) is made as low-resis- tance coaxial line 5 with the following dimensions: D=160 mm, d=100 mm. Wave impedance of that line is close to the optimal value W=30 Ohm with minimal surface electric field on the central conductor. One end of the line is short-circuited, and the other turns into the coupling loop 1. The loop inductance is compensated by the stray capacitance. The vacuum section of the power input is separated from the atmosphere by the cylindri- cal insulator 2 with the following dimensions: D=80 mm, d=70 mm, and h=60 mm. The insulator is made of 22ХС ceramics (ε=9.3, tanδ=7∙10-4, λ=13.4 W/m∙K). Mechanical decoupling of the ceramics from the rigid coaxial is provided by the bellow 3. Also the watercooling 6 is provided. The power input is in- stalled at the central cavity of the accelerating structure. Vacuum sealing is provided by 1 mm diameter indium wire. RF power is transferred through the 50 Ohm feed- er 4 to the place which divides coaxial input section into the quarter-wavelength insulator and quarter-wave- length transformer. General view of the power input is shown in Fig.2. Fig.1. Power input sketch Fig.2. Power input general view COMPUTER SIMULATION OF THE CE- RAMIC-METAL UNIT OF THE POWER IN- PUT At the operating traveling wave mode, pulsed volt- age in the feeder is 17.3 kV at power level P=3 MW. Voltage on the insulator after quarter-wavelength 28 Ohm transformer is 9.8 kV in the matched regime. Simulations of electric fields in the power input and unit power were carried out with computer code Super- LANS [3]. Simulation results show that electric field strength does not exceed 10 kV/cm, power losses in the insulator (at off-duty factor 7) is 10 W, temperature gra- dient along the insulator is 5 K. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5. Series: Nuclear Physics Investigations (50), p.43-45. 43 POWER INPUT TESTS Tests of the RF power input were carried out at the stand consisted of the vacuum chamber and 180 MHz RF generator (see Fig.3). The generator power is P=2 kW at pulse duration of 100 µs, repetition rate of 1 kHz, off-duty factor of 10. Fig.3. Power input workbench Having the limited generator power at the stand, tests were carried out in two stages with the use of coaxial cir- cuit resonant behavior. At the first stage, the insulator electric strength was tested. For that purpose, power input coupling loop was removed and quarter-wavelength cir- cuit with conductive coupling was organized. Fig.4 presents the first stage experimental setup scheme. Fig.4. Quarter-wave circuit scheme The circuit parameters are: quality factor of 1500, characteristic impedance of 30 Ohm, shunt impedance of 45 kOhm. At generator power of 2 kW, the insulator voltage is 13.4 kV, what is 30% higher the rated value in traveling wave mode. Before the tests, vacuum in the chamber was at 8∙10-9 Torr level, and then it dropped down to 10-6 Torr at RF power supply turned on. After that, vacuum rapid- ly reached the stable level of 1.6∙10-8 Torr. So, the multi- pactor zone at 13.4 kV voltage was passed at the ex- pense of high rate of pulse rise. Multipactor appears at pulse fronts, it may be seen from the fact that short-term switching the generator into CW regime leads to vacu- um improving up to 10-8 Torr in spite of increase of RF voltage existing time by order. At lowered RF power level, multipactor burns at the major part of the pulse front and then passes to the pulse itself. Vacuum sharply drops. Two-day-long conditioning resulted in decreas- ing by order the voltage level of multipactor appearing. At total power of 2 kW, the vacuum level was stabilized at 10-8 Torr level. At the second stage of tests, the power input with the coupling loop was transformed into three-quarter-wave circuit (see Fig.5). In that case, the insulator is placed into the voltage minimum of the standing wave. Capaci- tive coupling with the circuit takes place at the feeder connection area. Fig.5. Three-quarter-wave circuit scheme Three-quarter-wave circuit parameters are: quality factor of 2000, characteristic impedance of 14 Ohm, shunt impedance of 28 kOhm. At generator power of 2 kW, the maximal voltage in the power input is 10.6 kV, what is lower then the rated value in traveling wave mode (17.3 kV) by a factor of 1.5. Before the tests, vacuum in the chamber was at 1.6∙10-9 Torr level, and then at 2 kW RF power supply turned on the multipactor was observed during the pulse and vacuum dropped down to 10-6 Torr. Vacuum degra- dation may be activated by decreasing the RF power level. In that case, multipactor zone cannot be passed because of decreasing of the rate of pulse rise of RF voltage. After two hours of conditioning, by multipactor at the worst vacuum level at lowered RF power, the full RF power was supplied, and vacuum was improved up to 2∙10-8 Torr with no multipactor during the pulse. Two-day-long conditioning with step-by-step de- creasing of the RF power level allowed us to obtain 1.6∙10-8 Torr vacuum. Oscillograms on Fig.6 represent pulses of incident (1) and reflected (2) waves in the feeder together with the cavity voltage (3) during power input conditioning. 1) 2) 3) Fig.6. Power input conditioning oscillograms. 1) incident wave; 2) reflected wave (lower beam corresponds to a normal duty, upper beam – to the multipactor); 3) cavity voltage (upper beam – normal duty, lower beam – multipactor) 44 At present, the power input is installed into the ac- celerating structure (see Fig.7) after successful condi- tioning. VSWR of 3.3 has been adjusted by turning the coupling loop. 2.5 MW of power is transmitted through the power input into the accelerating structure at accel- eration of 350 mA beam current up to 5 MeV. VSWR is measured with the directional coupler installed in the feeder section between the generator and accelerating structure. Fig.7. Power input installed into the accelerating structure CONCLUSIONS The tests carried out at the stand proved serviceabili- ty of the power input for the accelerating structure. Con- ditioning carried out allowed us to pass the multipactor zone at operating power level. Vacuum in the power in- put was improved as a result of multipactor appearance level drop. Discharges along the insulator were not ob- served at voltage by 30% higher then design level in traveling wave regime in the feeder. At short-term switching on of the stand generator in CW mode, the in- sulator was not damaged by thermal load. Power input operation was tested at the accelerator in 2.5 MW of power transfer operating regime. REFERENCES 1. V.L. Auslender, et al. 5 MeV 300 kW electron accelerator project // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations” (43). 2004, №2, p.6-8. 2. V.L. Auslender, et al. Work status of 5 MeV 300 kW electron accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations” (47). 2006, №3, p.3-5. 3. D.G. Myakishev and V.P. Yakovlev. An interactive code superlans for evaluation of rf-cavities and accelerating structures // IEEE particle accelerrator conf. Rec. 1991, v.5, p.3002-3004. Статья поступила в редакцию 06.09.2007 г. КОАКСИАЛЬНЫЙ ВЫСОКОЧАСТОТНЫЙ ВВОД ИМПУЛЬСНОЙ МОЩНОСТИ 3 МВт В УСКОРЯЮЩУЮ СТРУКТУРУ 176 МГц В.Л. Ауслендер, К.Н. Чернов, И.В. Горнаков, И.В. Казарезов, И.Г. Макаров, Н.В. Матяш, Г.Н. Острейко, А.Д. Панфилов, Г.В. Сердобинцев, В.В. Тарнецкий, М.А. Тиунов, В.Е. Шачков Приведена конструкция ввода мощности. Он представляет собой низкоомную коаксиальную линию с волновым сопротивлением порядка 30 Ом. Один конец линии закорочен, а другой – переходит в петлю свя- зи, индуктивность которой компенсирована конструктивной емкостью. Вакуумная часть ввода мощности отделена от атмосферы цилиндрическим изолятором из керамики 22ХС. Высокочастотная мощность подво- дится фидером в месте, разделяющем коаксиальную часть ввода на четвертьволновый изолятор и чет- вертьволновый трансформатор на частоте 176 МГц. Волновое сопротивление подводящего мощность фиде- ра 50 Ом. Описана методика испытания ввода мощности на стенде, приведены результаты его работы на большом уровне мощности. КОАКСІАЛЬНИЙ ВИСОКОЧАСТОТНИЙ ВВІД ІМПУЛЬСНОЇ ПОТУЖНОСТІ 3 МВт У ПРИСКОРЮЮЧУ СТРУКТУРУ 176 МГц В.Л. Ауслендер, К.Н. Чернов, І.В. Горнаков, І.В. Казарезов, І.Г. Макаров, Н.В. Матяш, Г.Н. Острейко, А.Д. Панфілов, Г.В. Сердобінцев, В.В. Тарнецький, М.А. Тіунов, В.Є. Шачков Наведено конструкцію вводу потужності, що являє собою низькоомну коаксіальну лінію з хвильовим опором порядку 30 Ом. Один кінець лінії закорочено, а інший – переходить у петлю зв'язку, індуктивність якої компенсована конструктивною ємністю. Вакуумна частина вводу потужності відділена від атмосфери циліндричним ізолятором з кераміки 22ХС. Високочастотна потужність підводиться фідером до місця, що розділяє коаксіальну частину вводу на чвертьхвильовий ізолятор і чвертьхвильовий трансформатор на частоті 176 МГц. Хвильовий опір фідера, що підводить потужність, 50 Ом. Описано методику випробування вводу потужності на стенді, наведені результати його роботи на великому рівні потужності. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5. Series: Nuclear Physics Investigations (50), p.43-45. 45