О решении экстремальных задач при квадратичных условиях
Рассматривается разрешимость специальной задачи вогнутого программирования на пересечении конечного числа шаров и строится эффективный способ вычисления значения выпуклой функции. Доказывается единственность решения задачи шаров. В общем случае приводится верхняя оценка для этой задачи. Розглядаєтьс...
Saved in:
| Published in: | Теорія оптимальних рішень |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/111516 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | О решении экстремальных задач при квадратичных условиях / Э.И. Ненахов // Теорія оптимальних рішень: Зб. наук. пр. — 2014. — № 2014. — С. 98-105. — Бібліогр.: 4 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Рассматривается разрешимость специальной задачи вогнутого программирования на пересечении конечного числа шаров и строится эффективный способ вычисления значения выпуклой функции. Доказывается единственность решения задачи шаров. В общем случае приводится верхняя оценка для этой задачи.
Розглядається розв’язність спеціальної задачі увігнутого програмування на перетині скінченого числа куль та будується ефективний спосіб обчислення значення опуклої функції. Доводиться єдність розв’язку задачі куль. В загальному випадку приводиться верхня оцінка для цієї задачі.
A solvability of special case of the concave programming problem in a set determined by the intersection of a finite collection of balls is considered and construct an effective way for calculating mean of convex function. We proved a unique solution of the ball problem. For the general case upper bound of this problem is obtained.
|
|---|---|
| ISSN: | XXXX-0013 |