Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation

The estimation of contribution of the second Born approximation into circular polarization of bremsstrahlung from linearly polarized electrons is obtained. Account of this contribution could be important for correct interpretation of results of measurements of fine effects due to weak interactions.

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Shul’ga, N.F., Syshchenko, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111601
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation / N.F. Shul’ga, V.V. Syshchenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 214-217. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111601
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1116012025-02-23T18:04:23Z Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation Цiркулярна поляризацiя гальмовного випромiнювання електронiв високоϊ енергiϊ з урахуванням другого борнiвського наближення Циркулярная поляризация тормозного излучения электронов высокой энергии с учетом второго борновского приближения Shul’ga, N.F. Syshchenko, V.V. QED processes in strong fields The estimation of contribution of the second Born approximation into circular polarization of bremsstrahlung from linearly polarized electrons is obtained. Account of this contribution could be important for correct interpretation of results of measurements of fine effects due to weak interactions. Отримано оцінку внеску другого борнiвського наближення до циркулярної поляризації гальмівного випромінювання лiнiйно-поляризованими електронами. Урахування цього внеску може бути важливим для коректної iнтерпретацiї результатів вимірювання тонких ефектів, що обумовлені слабкими взаємодіями. Получена оценка вклада второго борновского приближения в циркулярную поляризацию тормозного излучения линейно-поляризованными электронами. Учет этого вклада может быть важным для корректной интерпретации результатов измерения тонких эффектов, обусловленных слабыми взаимодействиями. 2007 Article Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation / N.F. Shul’ga, V.V. Syshchenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 214-217. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 12.20.Ds, 13.40.Ks, 41.60.-m https://nasplib.isofts.kiev.ua/handle/123456789/111601 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic QED processes in strong fields
QED processes in strong fields
spellingShingle QED processes in strong fields
QED processes in strong fields
Shul’ga, N.F.
Syshchenko, V.V.
Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
Вопросы атомной науки и техники
description The estimation of contribution of the second Born approximation into circular polarization of bremsstrahlung from linearly polarized electrons is obtained. Account of this contribution could be important for correct interpretation of results of measurements of fine effects due to weak interactions.
format Article
author Shul’ga, N.F.
Syshchenko, V.V.
author_facet Shul’ga, N.F.
Syshchenko, V.V.
author_sort Shul’ga, N.F.
title Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
title_short Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
title_full Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
title_fullStr Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
title_full_unstemmed Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation
title_sort circular polarization of the high energy electron bremsstrahlung with account of the second born approximation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet QED processes in strong fields
url https://nasplib.isofts.kiev.ua/handle/123456789/111601
citation_txt Circular polarization of the high energy electron bremsstrahlung with account of the second Born approximation / N.F. Shul’ga, V.V. Syshchenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 214-217. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT shulganf circularpolarizationofthehighenergyelectronbremsstrahlungwithaccountofthesecondbornapproximation
AT syshchenkovv circularpolarizationofthehighenergyelectronbremsstrahlungwithaccountofthesecondbornapproximation
AT shulganf cirkulârnapolârizaciâgalʹmovnogoviprominûvannâelektronivvisokoïenergiïzurahuvannâmdrugogobornivsʹkogonabližennâ
AT syshchenkovv cirkulârnapolârizaciâgalʹmovnogoviprominûvannâelektronivvisokoïenergiïzurahuvannâmdrugogobornivsʹkogonabližennâ
AT shulganf cirkulârnaâpolârizaciâtormoznogoizlučeniâélektronovvysokojénergiisučetomvtorogobornovskogopribliženiâ
AT syshchenkovv cirkulârnaâpolârizaciâtormoznogoizlučeniâélektronovvysokojénergiisučetomvtorogobornovskogopribliženiâ
first_indexed 2025-11-24T06:10:19Z
last_indexed 2025-11-24T06:10:19Z
_version_ 1849650964648165376
fulltext CIRCULAR POLARIZATION OF THE HIGH ENERGY ELECTRON BREMSSTRAHLUNG WITH ACCOUNT OF THE SECOND BORN APPROXIMATION N.F. Shul’ga1, and V.V. Syshchenko2 1A.I. Akhiezer Institute of Theoretical Physics National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; e-mail: shulga@kipt.kharkov.ua; 2Belgorod State University, Belgorod, Russian Federation; e-mail: syshch@bsu.edu.ru The estimation of contribution of the second Born approximation into circular polarization of bremsstrahlung from linearly polarized electrons is obtained. Account of this contribution could be important for correct interpreta- tion of results of measurements of fine effects due to weak interactions. PACS: 12.20.Ds, 13.40.Ks, 41.60.-m 1. INTRODUCTION It is well known [1-3] that the bremsstrahlung emit- ted by polarized electrons could possess nonzero circu- lar polarization. It is, particularly, an interesting fact because the particles produced in weak processes turned out to be polarized. Circular polarization of bremsstrahlung was considered in many papers (see article [2] and references therein) in the frameworks of the first Born approximation of quantum electrodynam- ics. However, it could be necessary to account for the second Born approximation contribution for correct interpretation of the results of measurements of fine effects due to weak interactions. It is of interest also that the second Born approximation leads to the dependence of radiation characteristics (the cross section and polari- zation) on the charge sign of the radiating particle. 2. BREMSSTRAHLUNG MATRIX ELEMENT AND CROSS SECTION The cross section of bremsstrahlung in an external field is determined by formula [3] kdpdMed if 332 4 2 ')'( ')2(4 ωεεδ ωεεπ σ −−= , (1) where e is the electron charge, (ε, p) and (ε', p') are the energy and momentum of the initial and final particles, (ω, k) are the frequency and wave vector of the photon emitted, δ(ε - ε' - ω) is the delta-function expressing the energy conservation under radiation, and Mf i is the ma- trix element of the radiation process. Since the main contribution to the bremsstrahlung cross section is made by small values of the momentum g = p - p' - k trans- ferred to the external field (the last is assumed to be stationary and potential), g << m, it is convenient to express the matrix element as a function of the trans- ferred momentum. This permits to make an expansion in the matrix element by the powers of small parameter g / m. According to the rules of diagram techniques [3] the squared absolute value of the matrix element in (1) could be written in the form ∫ −+ = 3 3 **21 22 1 2 )2( Re2 || π qdUUMMU UMM qgqg gif , (2) where Ug is Fourier component of the particle potential energy in the external field, M1 and M2 are the matrix elements that determine contributions of the first and the second Born approximations (see Figure). Feynman diagrams corresponding to the first and the second Born approximations in the description of bremsstrahlung in the external field Discriminating in the propagator in M1 the depend- ence on the longitudinal and transverse components of the transferred momentum g in an explicit form we could write uQuM 11 '= , (3) where gg eggebeQ τε γ εσ γ '2 ˆˆ 2 ˆˆˆ 00 1 −−= , gµ = (0, g) = pµ - p'µ - kµ is the transferred 4- momentum, pµ , p'µ , kµ are the 4-momenta of the initial and final electrons and photon, eµ is the photon’s polari- zation vector, , γµ µγpp =ˆ µ are Dirac matrices, v and v' are the velocities of the initial and final electrons. The values b, σg and τg are determined by the formulae PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 214-217 214         −= gg gb τσ 11 || , p gg 2 2 || g −=σ , '2 2 || p gg ggn ++= ⊥τ , where is the unit vector along the momen- tum p' direction, and n |'|/' ppn = ⊥ is the component of this vector orthogonal to p. Neglecting the terms of order m 2 / ε 2 and m 2 / ε' 2 the formula for M2 could be derived to the form [4,5] uQegeQuM qqg         +               +−= ⊥⊥ 2 ' 0 12 2 ' '2 ˆˆˆ ' ' σεσε γ τε ω qq ,(4) where q 'µ = gµ - qµ and qqqgqg qeqegqqgeQ στεε γγ ττεσσε ' 00 ' 222 '4 ˆˆ'ˆ '4 ˆˆ'ˆ 4 ˆˆˆ ⊥⊥⊥⊥ +−−= . The cross section itself also could be expressed through the transferred momentum (and the angle ϑ between the vectors k and p). Transformation to new variables is described in [6]. After that the differential cross section gets the form gd y dyd m Med if 3 22 2 4 4 1 ' )2( − = ω ωδ ε ε π σ , (5) where . The variable y is connected to ϑ by the relation '2/2 εεωδ m= ( ) ayfm +=2/εϑ , , (6) 11 ≤≤− y where         −−= ⊥⊥ ε δ δ 2 4 2 ||2 2 gg m ga ,         +−−= ⊥⊥ 2 22 || 2 1 m gggf δ ε δ δ , ||g and g ⊥ are the components of g that parallel and orthogonal to the momentum p of the projectile particle. Eq. (6) determines the possible values of the radiation angle under given values of and and gϑ ||g ⊥. One could conclude from the condition of positiveness of the value a under radical in (6) that εδ 2/2 || ⊥+≥ gg . The formulae that describe the bremsstrahlung cross section averaged over polarizations of initial electron and summed over polarizations of final particles were obtained in [4, 5]. 3. ACCOUNT OF POLARIZATION EFFECTS Remember how to take into account the polarization of interacting particles. Matrix element of a process with single electron in initial and final states has the form uQuM if '= . The squared absolute value of such matrix element is equal to (see, e.g., [3]) { }QuuQuuMMM ififif ''Sp*2 == , where 00 γγ += QQ . If an electron is in a mixed (partially polarized) state, the products of bispinor amplitudes are to be re- placed by the corresponding density matrices: ρ→uu , ''' ρ→uu . The density matrix for polarized electron is described by Eq. (29.13) from [3]: ( )[ smp ˆ1ˆ 2 1 5γρ += ]− , (7) where       + ⋅ + ⋅ = )( , εµ mmm s ζppζζp , , 0=µµ ps ζ is the double average value of the spin vector in the electron rest frame (in pure state 1=ζ , in mixed one 1<ζ ). It is easy to see that ε ps ⋅ =0s , and that in ul- trarelativistic case pvζs m ⋅ ≈ . For nonpolarized electron ( mp += ˆ 2 1 ρ ) . Substitu- tion of this formula is equivalent to averaging over the electron’s polarizations. Since we need to calculate the cross section of the process with arbitrary polarization of final electron, let us put ( )mp += 'ˆ 2 1'ρ and multiply the result by the factor 2 that would be equivalent to summation over final electron polarizations. The polarization of final photon is present in the value Q as 4-vector e , and in * µ Q as eµ . So, in the squared absolute value of the matrix element we get the tensor . For description of the case of arbitrary partially polarized state this tensor ought to be replaced by the density matrix [3]: νµee* ( ))1()2()2()1(1* 22 1 νµνµνµνµ ξ eeeegee ++−→ ( ))1()2()2()1(2 2 νµνµ ξ eeeei −+ (8) ( ))2()2()1()1(3 2 νµνµ ξ eeee −+ . Here ξ 1, ξ 2, ξ 3 are the Stocks parameters, and are the polarization 4-vectors. )1( µe )2( µe Note that here ξ is the polarization discriminated by the detector. Polarization of the final photon as well could be easily found if we know the squared absolute value of the matrix element as a function of parameters ξ : ξβ ⋅+=α 2 ifM . (9) Then the polarization of the final photon will be de- scribed by Stocks parameters [3] α βξ =)( f . (10) Since the circular polarization degree is of our interest, we need to calculate only the values α and β 2 , that have their origin from the substitution of the first and the third terms of the photon density matrix, respec- tively. 215 Substituting the expression for the matrix element in the form (2) with account of Eqs. (3), (4) for M1 and M2 and (7), (8) for density matrices into Eq. (5) for the ra- diation cross section, we obtain (after simple but rather awkward calculations) for the values α and β 2 , deter- mined in (9), integrated over the variables y and ||g 1: = − ∫∫ − ∞ α δ 1 1 2|| 1 y dydg δ π 2 2 ⊥g           + 2 2 '23 2 gU εε ω )( )2( 11 3 ⊥+ gIU g πε                     +++ '23 2 '2'23 2 22 εε ω ε ω εε ω ; 2 1 1 2 || 1 β δ ∫∫ − ∞ − y dydg δ π 2 2 ⊥= g ( ) ( ) 2 3 1 '2 ' gU        − + ⋅ ε ω εε εεωvζ )(2 )2( 1 2 1 3 ⊥+ gIU g πε ( )                +−− + × '2 1 3 2 '2 1 3 1 '2 ' ε ω ε ω ε ω ε ω εε εεω , where for the screened Coulomb potential Rre r eeZrU /||)( −= , 22 ||4 −+ = R eeZ g g πU as the potential of atom in which the electron radiates, ⊥ ⊥ = g eZgI 2 422)4()( π π         + − −− + −× − ⊥ − ⊥ − ⊥ ⊥ 22 22 22 4 4arcsin 24 /4 Rg Rg Rg Rg π . (11) This result is justified with the accuracy up to the terms of order of m 2 / ε 2, m 2 / ε' 2 and m 2 / ωε . Under integration of the expressions obtained over d 2g⊥ there arises logarithmic divergence under large g⊥ in the first Born approximation, and linear divergence in the second one. That divergence is connected to the ap- proximation g⊥ << m used above. Hence for estimation of the contribution of the second Born approximation into the radiation polarization one needs to integrate over g⊥ from 0 to m introducing the cut-off on the upper limit. Substituting the result of such integration into (10) we get the following formula for the circular polariza- tion degree: ( ) ' 3 2' '6 5' 3 1 22 )( 2 εεεε ε ε ωεεω ξ −+           +−+ ⋅= F f vζ , (12) where we have denoted 1 Since in a field of an individual atom the characteristic value of appreciably exceeds , -dependence of U can be neglected [5,6]. ~⊥g || δ>>−1R δ~||g g g ∫ ∫ ⊥⊥⊥ ⊥⊥⊥⊥ ⋅ ⋅ = m g m g dgggU dgggUgI F 0 22 0 2 3 )( )2( 1 ε π . (13) It is easy to see that in the first Born approximation the formula (12) manifests agreement with well known result [2]. Substituting I (g ⊥) in the form (11) into (13), we ob- tain the following estimate for the value of F: )ln( / 2|| ~ mR mZ e eF ε α π − , (14) where α ≈ 1/137 is the fine structure constant. For ex- ample, the silicon atom has Z = 14, ln(mR) ≈ 4, and for electrons of energy 100 MeV ||/102~ 4 eeF −⋅− . Account of the second Born approximation leads to the dependence of the polarization on the radiating parti- cle charge sign. It is easy to see from (12), (14) that the degree of circular polarization of radiation from positrons exceeds the same from electrons by the relative value ' 3 1 '6 5 )ln( / εε ε ε εω απ + + mR mZ . For soft photons (ω << ε ) that relative difference is of order of Zα mω / ε 2. 4. CONCLUSION We see that the contribution of the second Born ap- proximation into circular polarization of the photons emitted by polarized electrons of high energy on an amorphous target is rather small. However, such small correction could be important for correct interpretation of the results of measurement of fine effects due to weak interactions. It should be mentioned also that the relative contri- bution of the second Born approximation could substan- tially grow in the case of radiation of the electrons in oriented crystal due to coherent effects [6], like it takes the place for the bremsstrahlung cross section summed over polarizations of particles participating in the proc- ess [4,5]. This work is accomplished in the content of the Pro- gram “Advancement of the scientific potential of high education” by Russian Ministry of Education and Sci- ence (project RNP.2.1.1.1.3263), Russian Foundation for Basic Research (project 05-02-16512) and the inter- nal grant of Belgorod State University REFERENCES 1. Ia.B. Zel’dovich. //Doklady Akad. Nauk SSSR. 1952, v. 83, p. 63 (in Russian). 2. H. Olsen, L.C. Maximon. Photon and electron po- larization in high-energy bremsstrahlung and pair production with screening //Phys. Rev. 1959, v. 114, p. 887-904. 216 3. A.I. Akhiezer, V.B. Berestetskii. Quantum Electro- dynamics. New York: “Interscience”, 1965. 4. N.F. Shul’ga, V.V. Syshchenko. On the coherent radiation of relativistic electrons and positrons in crystal in the range of high energies of gamma- quanta //Nucl. Instr. and Methods B. 2002, v. 193, p. 192-197. 5. N.F. Shul’ga, V.V. Syshchenko. The second Born ap- proximation in theory of bremsstrahlung of relativistic electrons and positrons in crystal //Problems of Atomic Science and Technology. 2001, N6(1), p. 131-134. 6. A.I. Akhiezer, N.F. Shul’ga. High-Energy Electro- dynamics in Matter. Amsterdam: “Gordon and Breach”, 1996, 388 p. ЦИРКУЛЯРНАЯ ПОЛЯРИЗАЦИЯ ТОРМОЗНОГО ИЗЛУЧЕНИЯ ЭЛЕКТРОНОВ ВЫСОКОЙ ЭНЕРГИИ С УЧЕТОМ ВТОРОГО БОРНОВСКОГО ПРИБЛИЖЕНИЯ Н.Ф. Шульга, В.В. Сыщенко Получена оценка вклада второго борновского приближения в циркулярную поляризацию тормозного из- лучения линейно-поляризованными электронами. Учет этого вклада может быть важным для корректной интерпретации результатов измерения тонких эффектов, обусловленных слабыми взаимодействиями. ЦIРКУЛЯРНА ПОЛЯРИЗАЦIЯ ГАЛЬМОВНОГО ВИПРОМIНЮВАННЯ ЕЛЕКТРОНIВ ВИСОКОΪ ЕНЕРГIΪ З УРАХУВАННЯМ ДРУГОГО БОРНIВСЬКОГО НАБЛИЖЕННЯ М.Ф. Шульга, В.В. Сищенко Отримано оцінку внеску другого борнiвського наближення до циркулярної поляризації гальмівного ви- промінювання лiнiйно-поляризованими електронами. Урахування цього внеску може бути важливим для коректної iнтерпретацiї результатів вимірювання тонких ефектів, що обумовлені слабкими взаємодіями. 217