Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristic...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2016 |
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/111771 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111771 |
|---|---|
| record_format |
dspace |
| spelling |
Sobol, O.V. Andreev, A.A. Gorban, V.F. Stolbovoy, V.A. Meylekhov, A.A. Postelnyk, A.A. Dolomanov, A.V. 2017-01-14T11:06:57Z 2017-01-14T11:06:57Z 2016 Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/111771 621.793:548.73 For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is found that for РN = (2.2...12)·10⁻⁴ Torr in the layers of chromium nitride formed on a lower nitrogen phase with the β-Cr₂N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range PN = 1.2·10⁻³ Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and СrN) hardness of the composition is not more than 33 GPa. The mechanisms of the effects observed are based on the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed. Для багатошарових покриттів системи ZrN/CrN визначено вплив тиску робочої азотної атмосфери (PN), постійного (-Us) і імпульсного (-Ui) негативних потенціалів зсуву при осадженні, а також товщини шарів у періоді на фазовий склад, текстуру, субструктурні характеристики і фізико-механічні властивості. Встановлено, що при PN = (2,2...12)·10⁻⁴ Торр у шарах нітриду хрому формується нижча по азоту фаза β-Cr₂N з простою гексагональною кристалічною решіткою, а в шарах нітриду цирконію відбувається формування стехіометричної фази ZrN з кубічною решіткою. Таке багатошарове покриття (товщина шарів близько 50 нм) при найбільшому з цього інтервалу PN = 1,2·10⁻³ Торр є найбільш твердим (39 ГПа) з модулем пружності 268 ГПа і співвідношенням H/E = 0,145. У випадку більш високих PN, коли в шарах відбувається утворення фаз стехіометричного складу з однотипними кристалічними решітками (ZrN і СrN), твердість композиції не перевищує 33 ГПа. Обговорено механізми спостережуваного ефекту, що засновані на більш високих бар'єрних властивостях міжфазної межі шарів з різними типами кристалічних решіток. Для многослойных покрытий системы ZrN/CrN определены влияния давления рабочей азотной атмосферы (PN), постоянного (-Us) и импульсного (-Ui) отрицательных потенциалов смещения при осаждении, а также толщины слоев в периоде на фазовый состав, текстуру, субструктурные характеристики и физико-механические свойства. Установлено, что при PN = (2,2…12)·10⁻⁴ Торр в слоях нитрида хрома формируется низшая по азоту фаза β-Cr₂N с простой гексагональной кристаллической решеткой, а в слоях нитрида циркония происходит формирование стехиометрической фазы ZrN с кубической решеткой. Такое многослойное покрытие (толщина слоев около 50 нм) при наибольшем из этого интервала PN = 1,2·10⁻³ Торр является наиболее твердым (39 ГПа) с модулем упругости 268 ГПа и отношением H/E = 0,145. В случае более высоких PN, когда в слоях происходит образование фаз стехиометрического состава с однотипными кристаллическими решетками (ZrN и СrN), твердость композиции не превышает 33 ГПа. Обсуждены механизмы наблюдаемого эффекта, основанные на более высоких барьерных свойствах межфазной границы слоев с различными типами кристаллических решеток. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика и технология конструкционных материалов Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN Вплив тиску робочої атмосфери на формування фазово-структурного стану і фізико-механічні властивості вакуумно-дугових багатошарових покриттів ZrN/CrN Влияние давления рабочей атмосферы на формирование фазово-структурного состояния и физико-механические свойства вакуумно-дуговых многослойных покрытий ZrN/CrN Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN |
| spellingShingle |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN Sobol, O.V. Andreev, A.A. Gorban, V.F. Stolbovoy, V.A. Meylekhov, A.A. Postelnyk, A.A. Dolomanov, A.V. Физика и технология конструкционных материалов |
| title_short |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN |
| title_full |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN |
| title_fullStr |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN |
| title_full_unstemmed |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN |
| title_sort |
influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings zrn/crn |
| author |
Sobol, O.V. Andreev, A.A. Gorban, V.F. Stolbovoy, V.A. Meylekhov, A.A. Postelnyk, A.A. Dolomanov, A.V. |
| author_facet |
Sobol, O.V. Andreev, A.A. Gorban, V.F. Stolbovoy, V.A. Meylekhov, A.A. Postelnyk, A.A. Dolomanov, A.V. |
| topic |
Физика и технология конструкционных материалов |
| topic_facet |
Физика и технология конструкционных материалов |
| publishDate |
2016 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив тиску робочої атмосфери на формування фазово-структурного стану і фізико-механічні властивості вакуумно-дугових багатошарових покриттів ZrN/CrN Влияние давления рабочей атмосферы на формирование фазово-структурного состояния и физико-механические свойства вакуумно-дуговых многослойных покрытий ZrN/CrN |
| description |
For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is found that for РN = (2.2...12)·10⁻⁴ Torr in the layers of chromium nitride formed on a lower nitrogen phase with the β-Cr₂N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range PN = 1.2·10⁻³ Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and СrN) hardness of the composition is not more than 33 GPa. The mechanisms of the effects observed are based on the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed.
Для багатошарових покриттів системи ZrN/CrN визначено вплив тиску робочої азотної атмосфери (PN), постійного (-Us) і імпульсного (-Ui) негативних потенціалів зсуву при осадженні, а також товщини шарів у періоді на фазовий склад, текстуру, субструктурні характеристики і фізико-механічні властивості. Встановлено, що при PN = (2,2...12)·10⁻⁴ Торр у шарах нітриду хрому формується нижча по азоту фаза β-Cr₂N з простою гексагональною кристалічною решіткою, а в шарах нітриду цирконію відбувається формування стехіометричної фази ZrN з кубічною решіткою. Таке багатошарове покриття (товщина шарів близько 50 нм) при найбільшому з цього інтервалу PN = 1,2·10⁻³ Торр є найбільш твердим (39 ГПа) з модулем пружності 268 ГПа і співвідношенням H/E = 0,145. У випадку більш високих PN, коли в шарах відбувається утворення фаз стехіометричного складу з однотипними кристалічними решітками (ZrN і СrN), твердість композиції не перевищує 33 ГПа. Обговорено механізми спостережуваного ефекту, що засновані на більш високих бар'єрних властивостях міжфазної межі шарів з різними типами кристалічних решіток.
Для многослойных покрытий системы ZrN/CrN определены влияния давления рабочей азотной атмосферы (PN), постоянного (-Us) и импульсного (-Ui) отрицательных потенциалов смещения при осаждении, а также толщины слоев в периоде на фазовый состав, текстуру, субструктурные характеристики и физико-механические свойства. Установлено, что при PN = (2,2…12)·10⁻⁴ Торр в слоях нитрида хрома формируется низшая по азоту фаза β-Cr₂N с простой гексагональной кристаллической решеткой, а в слоях нитрида циркония происходит формирование стехиометрической фазы ZrN с кубической решеткой. Такое многослойное покрытие (толщина слоев около 50 нм) при наибольшем из этого интервала PN = 1,2·10⁻³ Торр является наиболее твердым (39 ГПа) с модулем упругости 268 ГПа и отношением H/E = 0,145. В случае более высоких PN, когда в слоях происходит образование фаз стехиометрического состава с однотипными кристаллическими решетками (ZrN и СrN), твердость композиции не превышает 33 ГПа. Обсуждены механизмы наблюдаемого эффекта, основанные на более высоких барьерных свойствах межфазной границы слоев с различными типами кристаллических решеток.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111771 |
| citation_txt |
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ. |
| work_keys_str_mv |
AT sobolov influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT andreevaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT gorbanvf influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT stolbovoyva influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT meylekhovaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT postelnykaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT dolomanovav influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn AT sobolov vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT andreevaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT gorbanvf vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT stolbovoyva vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT meylekhovaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT postelnykaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT dolomanovav vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn AT sobolov vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT andreevaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT gorbanvf vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT stolbovoyva vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT meylekhovaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT postelnykaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn AT dolomanovav vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn |
| first_indexed |
2025-11-25T10:00:17Z |
| last_indexed |
2025-11-25T10:00:17Z |
| _version_ |
1850509565772169216 |
| fulltext |
ISSN 1562- 134-139.
UDC 621.793:548.73
INFLUENCE OF PRESSURE OF WORKING ATMOSPHERE ON THE
FORMATION OF PHASE-STRUCTURAL STATE AND PHYSICAL
AND MECHANICAL PROPERTIES OF VACUUM-ARC MULTILAYER
COATINGS ZrN/CrN
1, A.A. Andreev2 3, V.A. Stolbovoy2,
A.A. Meylekhov1, A.A. Postelnyk1, A.V. Dolomanov2
1National Technical University Kharkov Polytechnic Institute , Kharkov, Ukraine;
2National Science Center Kharkov Institute of Physics and Technology , Kharkov, Ukraine;
3Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine
For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of ni-
trogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in
the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is
found that for N = (2.2...12) 10-4 Torr in the layers of chromium nitride formed on a lower nitrogen phase with the
-Cr2N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN
phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range
PN = 1.2 10-3 Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At
higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and
GPa. The mechanisms of the effects observed are based on
the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed.
INTRODUCTION
Creating resistant to external influences wear re-
sistant nitride coatings is the subject of many works of
leading research groups in the field of surface engineer-
ing [1 14]. By the breakthrough achievements in this
area in recent years can be attributed creation of the
theory and practical obtaining materials multi-
elemention composition and nitrides on their basis of a
stable structure, and properties at high temperatures
[15 17], as well as the development of the method of
the structurtural engineering in the field of multi-layer
coatings consisting of layers of different composition
with certain (necessary technology) functionalities. In
the latter case the highest functional characteristics, and
particularly the physical and mechanical, have been
achieved when the thickness of the layers lying in the
nanometer range [18 33].
The establishment of such multi-layered synthetic
materials makes it possible to carry out a wide range of
structural engineering (and thus change the properties)
using as a multilayer composition of different composi-
tion and properties of layers, and multiperiod of the
periodic (mostly bi- and three-layers in the period) sys-
tems. At the present time among the little-known but
promising in its potential capabilities of the system ap-
plies ZrN/CrN. In this system, the components are com-
bined such as the ZrN, having high hardness, resistance
to radiation and resistant to thermal stresses and also
having sufficiently high hardness and wear resistance
CrN.
In this pair CrN has most relevant concentration
range of 30 50 at.% N two major structural modifica-
tion (Fig. 1) [34], and it makes efficient structural engi-
neering by different nitrogen saturation of layers, is
achieved by changing the operating pressure nitrogen
atmosphere during the deposition. Therefore, the aim of
this work was to establish the patterns to the effect of
the pressure of the working atmosphere on the phase-
structural state, substructure and hardness of multiperi-
od ZrN/CrN coatings with different thickness and num-
ber of layers.
METHOD OF PRODUCTION
AND RESEARCH SAMPLES
Multilayered two-phase nanostructures coatings
ZrN/CrN deposited in vacuum-arc installing Bulat-6
[35]. As the cathode materials used: low-alloyed chro-
mium and zirconium; active gas nitrogen (99.95%).
The coatings were applied to the surface of samples
20x20x2 mm steel 12X18H10T prepared by standard
methods of grinding and polishing. The procedure for
the deposition of multilayer coatings includes the fol-
lowing operations. The vacuum chamber pumped out to
a pressure of 10-5 Torr. Then, the rotator is supplied
with negative potential of the substrate holder 1 kV
switch on evaporator and the surface is cleaned first of
the two substrates chromium ion bombardment for
3...5 min. After that, the substrate holder is rotat
and performed the same treatment of the second sub-
strate. Further switch on concurrently both evaporators,
nitrogen was supplied to the chamber, and the deposi-
tion first layer ZrN one hand, and with anti-oppositely -
CrN. Coatings were obtained as in the continuous rota-
tion of the holder at 8 rev/min and the number of layers
540 570, and by a fixed stop on time 10, 20, 40 or
150 s at each of the 2 cathodes for thicker layers. The
deposition was carried out under the following process
conditions: arc current during the deposition was 100 A,
nitrogen pressure (PN) in the chamber was varied in the
range of 5 10-5...10-3 Torr, the distance from the evapo-
rator to the substrate 250 mm, the substrate tempera-
ture (Ts) was in the range of 250...350
Fig. 1. The equilibrium diagram of the Cr-N and a
schematic view of the cell of the crystal lattices 2 most
-Cr2 -CrN
Obtained coating thickness of about 10 m. Multi-
layer nanostructured coatings ZrN/CrN with growth
stimulation was obtained by applying to substrate holder
in the form of a high-voltage pulse potential with a
pulse width of 10 c, repetition rate of 7 kHz and an
amplitude -800 V [36]. Phase composition, structure
and substructural characteristics were studied by X-ray
diffractometry (DRON-4) with using Cu-K -radiation.
For monochromatization of detected radiation used
graphite monochromator, which is installed in the sec-
ondary beam (front of the detector). The study of the
phase composition, structure (texture, substructure) pro-
duced by means of traditional methods of ray diffrac-
tometry analysis position, intensity and shape profiles of
diffraction reflections. To decrypt diffractograms was
used patterns table International Centre for Diffraction
Data Powder Diffraction File. Substructural characteris-
tics were determined by approximation [37]. Microin-
dentation performed on the Micron-gamma installa-
tion with a load up to F = 0,5N by Berkovich diamond
py
loading and unloading for 30 s.
RESULTS AND DISCUSSIONS
Analysis of the morphology obtained coatings on the
results of scanning electron microscopy studies show
high planarity and good homogeneity the coatings
formed as a supplying constant negative bias potential
(-Us), both with and without filing -Us, but using in this
case for stimulating mobility of deposited atoms supply-
ing high voltage potential (-Ui = -800 V) in the form of
a pulse (Fig. 2).
Fig. 2. The morphology of the multilayer coating side
chipped ZrN/CrN with 24 layers
Corresponding coatings, that X-ray diffraction spec-
tra show that when the pressure is reduced during the
deposition of 4 10-3 to 1.5 10-3 Torr as in the ZrN layer,
and the CrN layer is formed crystallites with preferred
orientation axis [100] perpendicular to the plane of
growth (Fig. 3) significantly increased the relative in-
tensity of the reflections (200). The formation of such
orientation in the deposition vacuum arc nitride coatings
with the structural type NaCl of crystal lattice is usually
associated with the depletion of the condensate of light
nitrogen atoms [14, 37, 38]. As have shown results test-
ing the hardness, the formation of such texture resulting
in increased of material hardness of 30 to 36 GPa.
30 40 50 60 70 80
500
1000
1500
2000
2500
2
1
2 , degr.
Fig. 3. Plots of diffraction spectra coatings ZrN/CrN,
obtained by pulsed high-voltage-potential (-Ui =-800V)
and working pressure nitrogen atmosphere PN, Torr:
1 4 10-3; 2 1.5 10 -3
Filing a constant negative bias potential -Us = -70 V
at a pressure of PN = 4 10-3 Torr is accompanied by the
appearance of the texture with the axis [111]. In this
case, when pressure is decreased from 4 10-3 to
6.2 10-4 Torr occur structural phase changes in layers: in
Zr-N appears texture [100], and Cr-N shaped lower
nitride Cr2N (Fig. 4,a). Wherein the hardness decreases
from 28 to 20 GPa. Feed simultaneously with constant
and high voltage potential magnitude -Ui = -800 V in
pulse form does not lead to qualitative differences in the
type of generated at different pressures phases, nor
characteristic of preferred orientation: with [100] axis at
a low pressure, and [111] when a large PN (see
Fig. 4,b). However, the hardness such coatings is
somewhat higher than without feed -Ui and changes
from 30 to 33 GPa. Using during the deposition more
constant bias potential -Us = -150 V accompanied by the
appearance of the lower nitrogen phase (Fig. 5), not
only at relatively low (2...6) 10-4 Torr, but at a higher
pressure (i. e., high pressures manifest non-
stoichiometry). At low pressure PN = 2.2 10-4 Torr lay-
ers based on chromium during the deposition nitride
phase is not formed (spectrum 4 in Fig. 5,a). The hard-
ness of such composite coatings thus decreases from
39 GPa at the maximum pressure up to 21 GPa at a
pressure of PN = 2.2 10-4 Torr. Use in this case, the se-
cond type of impact potential high voltage magnitude
-Ui = -800 V in pulse form is also fundamentally does
not changes the phase composition of the coatings but
changes the orientation of crystallites. In the greatest
measure this affects at a pressure of 6.2 10-4 Torr,
stimu -Cr2N.
wherein the hardness is increasing of 30 GPa (without
-Ui) and 32 GPa (feeding -Ui).
30 40 50 60 70 80
0
2000
4000
6000
8000
10000
Fig. 4. Plots of diffraction spectra of ZrN/CrN coatings
with thickness of layers about 50 nm obtained
by -Us = - 70 V and PN, Torr: 1 4 10-3; 2 1.2 10-3;
3 6,2 10-4; at -Ui = 0; b at -Ui = -800 V
Researches on the substructure level which conduct-
ed by approximation method showed that an increase in
pressure in the coatings deposited at -Us = -70 V is in-
creased crystallite size with decreasing of microstrain
(Fig. 6,a). Submission of additional high voltage poten-
tial -Ui = -800 V in the form of a pulse does not lead to
a fundamental change in the course of dependency, but
significantly reduces the average crystallite size and
microstrain value.
The increase in supply during the deposition of a
constant potential -Us to a value of -150 V accompanied
by a relative increase in the L in the direction of inci-
dence of film-
an explicit effect is the relative decline in microstrain at
low pressure. Feeding at -Us = -150 V action additional
potential in the form of pulse (-Ui = -800 V) also signif-
icantly reduces L by 20...25% and a de
almost 2 times (to 0.3%) with low pressure deposition.
Fig. 5. Plots of diffraction spectra of ZrN/CrN coatings
with thickness of layers about 50 nm obtained
by -Us = -150 V and PN, Torr:
1 4 10-3, 2 1.2 10-3, 3 6.2 10-4, 4 2.2 10-4;
at -Ui = 0, b at -Ui = -800 V
It should be noted that the substructural characteris-
tics are largely changed by varying the layer thickness.
Thus, when -Us = -150 V and a pressure
PN = 4 10-3 Torr with increasing average layer thickness
of 25 to 220 nm is not only to the expected increase L
proportional thickness of the layers, but in the ZrN layer
CrN occurs its decrease
(see Fig. 6,c).
Submission of additional potential -Ui = -800 V
practically does not change the absolute values and
whereas the supply is only -Ui = -800 V (with -Us =
= 0
decrease (see Fig. 6,d).
a
b
b
a
Fig. 6. Dependence substructural characteristics
(microstrain nd the crystallite size L) in ZrN lay-
ers of pressure (a, b) to ZrN layer thickness (d)
and the thickness of the layers in ZrN and CrN (c)
coating obtained by:
a -Us = -70 V and -Ui = 0 V;
b -Us = -70 V and -Ui = -800 V;
c -Us = -150 V and -Ui = 0 V;
d -Us = 0 V and -Ui = -800 V
Comparison of -Us influence on substructural
characteristics ZrN and CrN layers shows that the
decrease in the magnitude of supply negative con-
stant bias potential of -150 to -70 V leads to increase
val
layer thickness microstrain decreases in CrN layers,
and in ZrN layers increases.
y-
er thickness of 25...50 nm due to the fact that the
magnitude of the crystallites L on the nanoscale their
formation is proportional to the thickness of the lay-
ers, and at achievement its smallest size 20...30 nm
makes it impossible to work in the crystallites dislo-
cation source Frank-Reed and formation wherein the
random dislocation of reset strain [39].
To study the influence of the deposition parame-
ters on the physical and mechanical properties of
composite coatings have been used in such universal
and express criteria such as hardness and elastic
modulus, defined according to the data of dynamic
microindentation [40]. Previously, when analyzing
the effect of pressure on the phase composition it has
been shown that the formation of a layer of chromi-
um-based lower -Cr2N nitride at a pressure
PN = (2.2...6.2) 10-4 Torr leads to a substantial drop
in hardness. Constructed for the entire operating in-
vestigated range of the PN = (2.2...40) 10-4 Torr gen-
eralized dependence H (PN) shown in Fig. 7,a shows
that the coatings deposited at -Us = -150 V a observed
nonmonotonic dependence of the microhardness on
the working pressure nitrogen atmosphere with a
maximum of H = 39 GPa in the PN = 1.2 10-3 Torr. In
case of submission -Ui = -800 V depending H (PN)
becomes smoother (see curve 2 in Fig. 7,a), which
may be associated with greater planar mobility of
additional acceleration in pulsed potential film-
forming charged particles, which leads to greater pla-
narity growing layers and the sharp border of the in-
terlayer.
Similar behavior depending on H (PN) can be
traced to -Us = -70 V, but the absolute value obtained
in this case, the microhardness does not exceed
33 GPa.
CONCLUSIONS
In work established pressure range
PN = (2.2...12) 10-4 Torr in which in the layers Zr-N
and Cr-N phase formed with different types of lattic-
es: in a layer of zirconium nitride ZrN phase with a
cubic an FCC lattice and a layer of chromium nitride
-Cr2N phase hexagonal crystal lattice. In this
range, with increasing pressure PN is formed predom-
inantly oriented crystallites, which leads to increasing
the hardness to 39 GPa.
At higher PN = 4 10-3 Torr formation in both lay-
ers of stoichiometric and thus the same by type of
crystal lattices ZrN and CrN phase (cubic crystal lat-
tice structural type NaCl) is accompanied by a de-
crease in hardness of multiperiod coating of 30 33
to 39 GPa. Such effect is defined smaller permeabil-
ity of dislocations and higher diffusion stability
boundaries phases with different crystal lattices of
the type that defines a higher barrier properties and
indentation accordingly leads to higher hardness of
the composition.
1E-3
210
220
230
240
250
260
270
b
2
1
N
Fig. 7. Effect of pressure in the deposition of coatings
on their hardness (a) and modulus of elasticity (b):
1 Us = - 150 V; 2 -Us = - 70 V
REFERENCES
1. Nanostructured coatings / Edited by: Cavaleiro,
Albano; De Hosson, Jeff Th. M. Springer Verlag, 2006,
648 p.
2. P.H. Mayrhofer, C. Mitterer, L. Hultman,
H. Clemens // Progress in Materials Science. 2006,
v. 51, p.1032-1114.
3. , , ,
// . 1 -64.
4. F. Lomello, M. Arab Pour Yazdi, F. Sanchette,
F. Schuster, M. Tabarant, A. Billard // Surface & Coat-
ings Technology. 2014, v. 238, p. 216-222.
5. M.K. Kazmanli, M. Urgen, A.F. Cakir // Surf.
Coat. Tech. 2003, v. 167, p.77-82.
6. C. Rebholz, M.A. Monclus, M.A. Baker,
P.H. Mayrhofer, P.N. Gibson, A. Leyland, A. Matthews
// Surf. Coat. Tech. 2007, v. 201, p. 6078-6083.
7. Ph.V. Kiryukhantsev-Korneev, D.V. Stansky,
M.I. Petrznik, E.A. Levashov, B.N. Mavrin // Surf.
Coat. Tech. 2007, v. 201, p. 6143-6147.
8. S. Veprek, H.-D. Meannling, M. Jilek, P. Holu-
bar // Mater. Sci. Eng., A Struct. Mater.: Prop.
Microstruct. Process. 2004, v. 366, p. 202.
9. R.A. Andrievski // Fizika metallov i
metallovedenie. 2010, N 110, . 243-254 (in Russian).
10. R.A. Andrievski. Review on Advanced Materi-
als Science. 2011, v. 29, p. 54-67.
11. R.A. Andrievski // Himija i zhizn' XXI vek.
2013, N 6, p. 2-5 (in Russian).
12. R.A. Andrievski. Journal of Materials Sci-
ence. 2014, v. 49, p. 1449-1460.
13. V.M. Beresnev, O.V. Sobol', A.D. Pogrebnjak,
et al. // Technical Physics. 2010, v. 55, issue 6,
p. 871-873.
14. O.V. Sobol', A.A. Andreev, S.N. Grigoriev, et
al. //Problems of Atomic Science and Technology.
2011, N 4, p. 174-177.
15. S. Ranganathan // Current science. 2003, v. 85,
N 10, p. 1404-1406.
16. V. Dolique, A.-L. Thomann, P. Brault,
Y. Tessier, P. Gillon // Surface and Coatings Technolo-
gy. 2010, v. 204, p. 1989-1992.
17. R. Krause-Rehberg, A.D. Pogrebnyak,
V.N. Kaverin et al // Physics of Metals and Metallog-
raphy. 2013, v. 114, issue 8, p. 672-680.
18. Gilewicz, B. Warcholinski // Tribology Inter-
national. 2014, v. 80, p. 34-40.
19. H.C. Barshilia, K.S. Rajam // Bull. Mater. Sci.
2003, v. 26, N 2, p. 233-237.
20. M.S. Konchady, S.Yarmolenko, D.M. Pai,
J. Sankar // ASME 2009 International Mechanical Engi-
neering Congress and Exposition Volume 14: Pro-
cessing and Engineering Applications of Novel Materi-
als. 2009, p. 55-59.
21. I.N. Martev, D.A. Dechev, N.P. Ivanov,
Ts.D. Uzunov, and E.P. Kashchieva // Journal of Phys-
ics: Conference Series. 2010, v. 223, p. 012019.
22. S.Yo. Lee, S.Yu. Lee // Solid State Phenome-
na. 2006, v. 116-117, p. 124-127.
23. K.J. Kadhim, N. Abd Rahman, M.R. Salleh,
K.I. Mohd Zukee // Applied Mechanics and Materials.
2015, v. 761, p. 417-420.
24. , A. Zary-
chta, L. Cunha // Journal of Achievements in Materials
and Manufacturing Engineering. 2006, v. 15, issue 1-2,
p. 47-52.
25. Harish C. Barshilia, Anjana Jain, K.S. Rajam //
Vacuum. 2004, v. 72, p. 241-248.
26. Z. Zhang, O. Rapaud, N. Allain, D. Mercs,
M. Baraket, C. Dong, C. Coddet // Advanced Engineer-
ing Materials. 2009, v. 11, issue 8, p. 667-673.
27. W. Aperador, A. Delgado, J. Duque // Int. J.
Electrochem. Sci. 2013, v. 8, p. 10711-10719.
28. S.M. Aouadi, D.M. Schultze, S.L. Rohde,
K.C. Wong, K.A.R. Mitchell // Surface and Coatings
Technology. 2001, v. 140, p. 269-277.
29. // Journal of
Achievements in Materials and Manufacturing Engi-
neering. 2007, v. 24/2, p. 107-110.
30. S.H. Yao, Y.L. Su // Wear. 1997, v. 212,
p. 85-94.
31. Juergen M. Lackner, Wolfgang Waldhauser,
Lukasz Majo, Marcin Kot // Coatings. 2014, v. 4,
p. 121-138.
32. R.A. Koshy, M.E. Graham, L.D. Marks // Surf.
Coat. Tech. 2007, v. 202, p. 1123-1128.
33. O.V. Sobol , O.N. Grigoryev, Yu.A. Kunitsky,
et al. // Science of Sintering. 2006, v. 38, issue 1, p. 63-
72.
34. B. Warcholinski, A. Gilewicz // Journal of
Achievements in Materials and Manufacturing Engi-
neering. 2009, v. 37, N 2, p. 498-504.
35. A.A. Andreev, L.P. Sablev, S.N. Grigor ev.
Vacuum-arc coating. Kharkov: NNC KIPT, 2010,
317 p.
36. O.V. Sobol , A.A. Andreev, S.N. Grigoriev, et
al. // Metal Science and Heat Treatment. 2012, v. 54,
issue 3-4, p. 195-203.
37. O.V. Sobol` // Physics of the Solid State.
2011, v. 53, N 7, p. 1464-1473.
38. Li-Ying Kuo and Pouyan Shen // Materials
Science and Engineering. 2000, v. 276, issue 1-2,
p. 99-107.
39. -
-
. : -
, 2011,
40. E. Aznakayev // Proceedings of the Interna-
San Diego,
California, USA, 2003, TP.001, p. 8.
Article received 03.11.2015
-
-
-
,
N -Us -Ui
-
N -4
-Cr2
N = -3
(39
N,
,
-
- -
,
N),
-Us -Ui
-
N -4 -Cr2
N = -3
268 N
,
|