Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN

For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2016
Hauptverfasser: Sobol, O.V., Andreev, A.A., Gorban, V.F., Stolbovoy, V.A., Meylekhov, A.A., Postelnyk, A.A., Dolomanov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111771
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111771
record_format dspace
spelling Sobol, O.V.
Andreev, A.A.
Gorban, V.F.
Stolbovoy, V.A.
Meylekhov, A.A.
Postelnyk, A.A.
Dolomanov, A.V.
2017-01-14T11:06:57Z
2017-01-14T11:06:57Z
2016
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/111771
621.793:548.73
For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is found that for РN = (2.2...12)·10⁻⁴ Torr in the layers of chromium nitride formed on a lower nitrogen phase with the β-Cr₂N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range PN = 1.2·10⁻³ Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and СrN) hardness of the composition is not more than 33 GPa. The mechanisms of the effects observed are based on the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed.
Для багатошарових покриттів системи ZrN/CrN визначено вплив тиску робочої азотної атмосфери (PN), постійного (-Us) і імпульсного (-Ui) негативних потенціалів зсуву при осадженні, а також товщини шарів у періоді на фазовий склад, текстуру, субструктурні характеристики і фізико-механічні властивості. Встановлено, що при PN = (2,2...12)·10⁻⁴ Торр у шарах нітриду хрому формується нижча по азоту фаза β-Cr₂N з простою гексагональною кристалічною решіткою, а в шарах нітриду цирконію відбувається формування стехіометричної фази ZrN з кубічною решіткою. Таке багатошарове покриття (товщина шарів близько 50 нм) при найбільшому з цього інтервалу PN = 1,2·10⁻³ Торр є найбільш твердим (39 ГПа) з модулем пружності 268 ГПа і співвідношенням H/E = 0,145. У випадку більш високих PN, коли в шарах відбувається утворення фаз стехіометричного складу з однотипними кристалічними решітками (ZrN і СrN), твердість композиції не перевищує 33 ГПа. Обговорено механізми спостережуваного ефекту, що засновані на більш високих бар'єрних властивостях міжфазної межі шарів з різними типами кристалічних решіток.
Для многослойных покрытий системы ZrN/CrN определены влияния давления рабочей азотной атмосферы (PN), постоянного (-Us) и импульсного (-Ui) отрицательных потенциалов смещения при осаждении, а также толщины слоев в периоде на фазовый состав, текстуру, субструктурные характеристики и физико-механические свойства. Установлено, что при PN = (2,2…12)·10⁻⁴ Торр в слоях нитрида хрома формируется низшая по азоту фаза β-Cr₂N с простой гексагональной кристаллической решеткой, а в слоях нитрида циркония происходит формирование стехиометрической фазы ZrN с кубической решеткой. Такое многослойное покрытие (толщина слоев около 50 нм) при наибольшем из этого интервала PN = 1,2·10⁻³ Торр является наиболее твердым (39 ГПа) с модулем упругости 268 ГПа и отношением H/E = 0,145. В случае более высоких PN, когда в слоях происходит образование фаз стехиометрического состава с однотипными кристаллическими решетками (ZrN и СrN), твердость композиции не превышает 33 ГПа. Обсуждены механизмы наблюдаемого эффекта, основанные на более высоких барьерных свойствах межфазной границы слоев с различными типами кристаллических решеток.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Физика и технология конструкционных материалов
Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
Вплив тиску робочої атмосфери на формування фазово-структурного стану і фізико-механічні властивості вакуумно-дугових багатошарових покриттів ZrN/CrN
Влияние давления рабочей атмосферы на формирование фазово-структурного состояния и физико-механические свойства вакуумно-дуговых многослойных покрытий ZrN/CrN
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
spellingShingle Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
Sobol, O.V.
Andreev, A.A.
Gorban, V.F.
Stolbovoy, V.A.
Meylekhov, A.A.
Postelnyk, A.A.
Dolomanov, A.V.
Физика и технология конструкционных материалов
title_short Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
title_full Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
title_fullStr Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
title_full_unstemmed Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN
title_sort influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings zrn/crn
author Sobol, O.V.
Andreev, A.A.
Gorban, V.F.
Stolbovoy, V.A.
Meylekhov, A.A.
Postelnyk, A.A.
Dolomanov, A.V.
author_facet Sobol, O.V.
Andreev, A.A.
Gorban, V.F.
Stolbovoy, V.A.
Meylekhov, A.A.
Postelnyk, A.A.
Dolomanov, A.V.
topic Физика и технология конструкционных материалов
topic_facet Физика и технология конструкционных материалов
publishDate 2016
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Вплив тиску робочої атмосфери на формування фазово-структурного стану і фізико-механічні властивості вакуумно-дугових багатошарових покриттів ZrN/CrN
Влияние давления рабочей атмосферы на формирование фазово-структурного состояния и физико-механические свойства вакуумно-дуговых многослойных покрытий ZrN/CrN
description For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of nitrogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is found that for РN = (2.2...12)·10⁻⁴ Torr in the layers of chromium nitride formed on a lower nitrogen phase with the β-Cr₂N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range PN = 1.2·10⁻³ Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and СrN) hardness of the composition is not more than 33 GPa. The mechanisms of the effects observed are based on the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed. Для багатошарових покриттів системи ZrN/CrN визначено вплив тиску робочої азотної атмосфери (PN), постійного (-Us) і імпульсного (-Ui) негативних потенціалів зсуву при осадженні, а також товщини шарів у періоді на фазовий склад, текстуру, субструктурні характеристики і фізико-механічні властивості. Встановлено, що при PN = (2,2...12)·10⁻⁴ Торр у шарах нітриду хрому формується нижча по азоту фаза β-Cr₂N з простою гексагональною кристалічною решіткою, а в шарах нітриду цирконію відбувається формування стехіометричної фази ZrN з кубічною решіткою. Таке багатошарове покриття (товщина шарів близько 50 нм) при найбільшому з цього інтервалу PN = 1,2·10⁻³ Торр є найбільш твердим (39 ГПа) з модулем пружності 268 ГПа і співвідношенням H/E = 0,145. У випадку більш високих PN, коли в шарах відбувається утворення фаз стехіометричного складу з однотипними кристалічними решітками (ZrN і СrN), твердість композиції не перевищує 33 ГПа. Обговорено механізми спостережуваного ефекту, що засновані на більш високих бар'єрних властивостях міжфазної межі шарів з різними типами кристалічних решіток. Для многослойных покрытий системы ZrN/CrN определены влияния давления рабочей азотной атмосферы (PN), постоянного (-Us) и импульсного (-Ui) отрицательных потенциалов смещения при осаждении, а также толщины слоев в периоде на фазовый состав, текстуру, субструктурные характеристики и физико-механические свойства. Установлено, что при PN = (2,2…12)·10⁻⁴ Торр в слоях нитрида хрома формируется низшая по азоту фаза β-Cr₂N с простой гексагональной кристаллической решеткой, а в слоях нитрида циркония происходит формирование стехиометрической фазы ZrN с кубической решеткой. Такое многослойное покрытие (толщина слоев около 50 нм) при наибольшем из этого интервала PN = 1,2·10⁻³ Торр является наиболее твердым (39 ГПа) с модулем упругости 268 ГПа и отношением H/E = 0,145. В случае более высоких PN, когда в слоях происходит образование фаз стехиометрического состава с однотипными кристаллическими решетками (ZrN и СrN), твердость композиции не превышает 33 ГПа. Обсуждены механизмы наблюдаемого эффекта, основанные на более высоких барьерных свойствах межфазной границы слоев с различными типами кристаллических решеток.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111771
citation_txt Influence of pressure of working atmosphere on the formation of phase-structural state and physical and mechanical properties of vacuum-arc multilayer coatings ZrN/CrN / O.V. Sobol, A.A. Andreev, V.F. Gorban, V.A. Stolbovoy, A.A. Meylekhov, A.A. Postelnyk, A.V. Dolomanov // Вопросы атомной науки и техники. — 2016. — № 1. — С. 134-139. — Бібліогр.: 40 назв. — англ.
work_keys_str_mv AT sobolov influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT andreevaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT gorbanvf influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT stolbovoyva influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT meylekhovaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT postelnykaa influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT dolomanovav influenceofpressureofworkingatmosphereontheformationofphasestructuralstateandphysicalandmechanicalpropertiesofvacuumarcmultilayercoatingszrncrn
AT sobolov vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT andreevaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT gorbanvf vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT stolbovoyva vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT meylekhovaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT postelnykaa vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT dolomanovav vplivtiskurobočoíatmosferinaformuvannâfazovostrukturnogostanuífízikomehaníčnívlastivostívakuumnodugovihbagatošarovihpokrittívzrncrn
AT sobolov vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT andreevaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT gorbanvf vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT stolbovoyva vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT meylekhovaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT postelnykaa vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
AT dolomanovav vliâniedavleniârabočeiatmosferynaformirovaniefazovostrukturnogosostoâniâifizikomehaničeskiesvoistvavakuumnodugovyhmnogosloinyhpokrytiizrncrn
first_indexed 2025-11-25T10:00:17Z
last_indexed 2025-11-25T10:00:17Z
_version_ 1850509565772169216
fulltext ISSN 1562- 134-139. UDC 621.793:548.73 INFLUENCE OF PRESSURE OF WORKING ATMOSPHERE ON THE FORMATION OF PHASE-STRUCTURAL STATE AND PHYSICAL AND MECHANICAL PROPERTIES OF VACUUM-ARC MULTILAYER COATINGS ZrN/CrN 1, A.A. Andreev2 3, V.A. Stolbovoy2, A.A. Meylekhov1, A.A. Postelnyk1, A.V. Dolomanov2 1National Technical University Kharkov Polytechnic Institute , Kharkov, Ukraine; 2National Science Center Kharkov Institute of Physics and Technology , Kharkov, Ukraine; 3Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine For multilayer coating system ZrN/CrN determined the effect of the pressure of the working atmosphere of ni- trogen (PN), DC (-Us) and pulse (-Ui) negative bias potential during the deposition and the thickness of the layers in the period on the phase composition, texture, substructural characteristics and physical-mechanical properties. It is found that for N = (2.2...12) 10-4 Torr in the layers of chromium nitride formed on a lower nitrogen phase with the -Cr2N simple hexagonal crystal lattice, and in the zirconium nitride layers are formed of a stoichiometric ZrN phase with a cubic lattice. Such a multilayer coating (layer thickness about 50 nm) at the maximum in this range PN = 1.2 10-3 Torr is most solid (39 GPa) with a modulus of elasticity of 268 GPa and the ratio H/E = 0.145. At higher PN, when the layers are formed phase stoichiometric composition with homogeneous crystal lattices (ZrN and GPa. The mechanisms of the effects observed are based on the higher barrier properties of the interphase boundary layers with different types of crystal lattices was discussed. INTRODUCTION Creating resistant to external influences wear re- sistant nitride coatings is the subject of many works of leading research groups in the field of surface engineer- ing [1 14]. By the breakthrough achievements in this area in recent years can be attributed creation of the theory and practical obtaining materials multi- elemention composition and nitrides on their basis of a stable structure, and properties at high temperatures [15 17], as well as the development of the method of the structurtural engineering in the field of multi-layer coatings consisting of layers of different composition with certain (necessary technology) functionalities. In the latter case the highest functional characteristics, and particularly the physical and mechanical, have been achieved when the thickness of the layers lying in the nanometer range [18 33]. The establishment of such multi-layered synthetic materials makes it possible to carry out a wide range of structural engineering (and thus change the properties) using as a multilayer composition of different composi- tion and properties of layers, and multiperiod of the periodic (mostly bi- and three-layers in the period) sys- tems. At the present time among the little-known but promising in its potential capabilities of the system ap- plies ZrN/CrN. In this system, the components are com- bined such as the ZrN, having high hardness, resistance to radiation and resistant to thermal stresses and also having sufficiently high hardness and wear resistance CrN. In this pair CrN has most relevant concentration range of 30 50 at.% N two major structural modifica- tion (Fig. 1) [34], and it makes efficient structural engi- neering by different nitrogen saturation of layers, is achieved by changing the operating pressure nitrogen atmosphere during the deposition. Therefore, the aim of this work was to establish the patterns to the effect of the pressure of the working atmosphere on the phase- structural state, substructure and hardness of multiperi- od ZrN/CrN coatings with different thickness and num- ber of layers. METHOD OF PRODUCTION AND RESEARCH SAMPLES Multilayered two-phase nanostructures coatings ZrN/CrN deposited in vacuum-arc installing Bulat-6 [35]. As the cathode materials used: low-alloyed chro- mium and zirconium; active gas nitrogen (99.95%). The coatings were applied to the surface of samples 20x20x2 mm steel 12X18H10T prepared by standard methods of grinding and polishing. The procedure for the deposition of multilayer coatings includes the fol- lowing operations. The vacuum chamber pumped out to a pressure of 10-5 Torr. Then, the rotator is supplied with negative potential of the substrate holder 1 kV switch on evaporator and the surface is cleaned first of the two substrates chromium ion bombardment for 3...5 min. After that, the substrate holder is rotat and performed the same treatment of the second sub- strate. Further switch on concurrently both evaporators, nitrogen was supplied to the chamber, and the deposi- tion first layer ZrN one hand, and with anti-oppositely - CrN. Coatings were obtained as in the continuous rota- tion of the holder at 8 rev/min and the number of layers 540 570, and by a fixed stop on time 10, 20, 40 or 150 s at each of the 2 cathodes for thicker layers. The deposition was carried out under the following process conditions: arc current during the deposition was 100 A, nitrogen pressure (PN) in the chamber was varied in the range of 5 10-5...10-3 Torr, the distance from the evapo- rator to the substrate 250 mm, the substrate tempera- ture (Ts) was in the range of 250...350 Fig. 1. The equilibrium diagram of the Cr-N and a schematic view of the cell of the crystal lattices 2 most -Cr2 -CrN Obtained coating thickness of about 10 m. Multi- layer nanostructured coatings ZrN/CrN with growth stimulation was obtained by applying to substrate holder in the form of a high-voltage pulse potential with a pulse width of 10 c, repetition rate of 7 kHz and an amplitude -800 V [36]. Phase composition, structure and substructural characteristics were studied by X-ray diffractometry (DRON-4) with using Cu-K -radiation. For monochromatization of detected radiation used graphite monochromator, which is installed in the sec- ondary beam (front of the detector). The study of the phase composition, structure (texture, substructure) pro- duced by means of traditional methods of ray diffrac- tometry analysis position, intensity and shape profiles of diffraction reflections. To decrypt diffractograms was used patterns table International Centre for Diffraction Data Powder Diffraction File. Substructural characteris- tics were determined by approximation [37]. Microin- dentation performed on the Micron-gamma installa- tion with a load up to F = 0,5N by Berkovich diamond py loading and unloading for 30 s. RESULTS AND DISCUSSIONS Analysis of the morphology obtained coatings on the results of scanning electron microscopy studies show high planarity and good homogeneity the coatings formed as a supplying constant negative bias potential (-Us), both with and without filing -Us, but using in this case for stimulating mobility of deposited atoms supply- ing high voltage potential (-Ui = -800 V) in the form of a pulse (Fig. 2). Fig. 2. The morphology of the multilayer coating side chipped ZrN/CrN with 24 layers Corresponding coatings, that X-ray diffraction spec- tra show that when the pressure is reduced during the deposition of 4 10-3 to 1.5 10-3 Torr as in the ZrN layer, and the CrN layer is formed crystallites with preferred orientation axis [100] perpendicular to the plane of growth (Fig. 3) significantly increased the relative in- tensity of the reflections (200). The formation of such orientation in the deposition vacuum arc nitride coatings with the structural type NaCl of crystal lattice is usually associated with the depletion of the condensate of light nitrogen atoms [14, 37, 38]. As have shown results test- ing the hardness, the formation of such texture resulting in increased of material hardness of 30 to 36 GPa. 30 40 50 60 70 80 500 1000 1500 2000 2500 2 1 2 , degr. Fig. 3. Plots of diffraction spectra coatings ZrN/CrN, obtained by pulsed high-voltage-potential (-Ui =-800V) and working pressure nitrogen atmosphere PN, Torr: 1 4 10-3; 2 1.5 10 -3 Filing a constant negative bias potential -Us = -70 V at a pressure of PN = 4 10-3 Torr is accompanied by the appearance of the texture with the axis [111]. In this case, when pressure is decreased from 4 10-3 to 6.2 10-4 Torr occur structural phase changes in layers: in Zr-N appears texture [100], and Cr-N shaped lower nitride Cr2N (Fig. 4,a). Wherein the hardness decreases from 28 to 20 GPa. Feed simultaneously with constant and high voltage potential magnitude -Ui = -800 V in pulse form does not lead to qualitative differences in the type of generated at different pressures phases, nor characteristic of preferred orientation: with [100] axis at a low pressure, and [111] when a large PN (see Fig. 4,b). However, the hardness such coatings is somewhat higher than without feed -Ui and changes from 30 to 33 GPa. Using during the deposition more constant bias potential -Us = -150 V accompanied by the appearance of the lower nitrogen phase (Fig. 5), not only at relatively low (2...6) 10-4 Torr, but at a higher pressure (i. e., high pressures manifest non- stoichiometry). At low pressure PN = 2.2 10-4 Torr lay- ers based on chromium during the deposition nitride phase is not formed (spectrum 4 in Fig. 5,a). The hard- ness of such composite coatings thus decreases from 39 GPa at the maximum pressure up to 21 GPa at a pressure of PN = 2.2 10-4 Torr. Use in this case, the se- cond type of impact potential high voltage magnitude -Ui = -800 V in pulse form is also fundamentally does not changes the phase composition of the coatings but changes the orientation of crystallites. In the greatest measure this affects at a pressure of 6.2 10-4 Torr, stimu -Cr2N. wherein the hardness is increasing of 30 GPa (without -Ui) and 32 GPa (feeding -Ui). 30 40 50 60 70 80 0 2000 4000 6000 8000 10000 Fig. 4. Plots of diffraction spectra of ZrN/CrN coatings with thickness of layers about 50 nm obtained by -Us = - 70 V and PN, Torr: 1 4 10-3; 2 1.2 10-3; 3 6,2 10-4; at -Ui = 0; b at -Ui = -800 V Researches on the substructure level which conduct- ed by approximation method showed that an increase in pressure in the coatings deposited at -Us = -70 V is in- creased crystallite size with decreasing of microstrain (Fig. 6,a). Submission of additional high voltage poten- tial -Ui = -800 V in the form of a pulse does not lead to a fundamental change in the course of dependency, but significantly reduces the average crystallite size and microstrain value. The increase in supply during the deposition of a constant potential -Us to a value of -150 V accompanied by a relative increase in the L in the direction of inci- dence of film- an explicit effect is the relative decline in microstrain at low pressure. Feeding at -Us = -150 V action additional potential in the form of pulse (-Ui = -800 V) also signif- icantly reduces L by 20...25% and a de almost 2 times (to 0.3%) with low pressure deposition. Fig. 5. Plots of diffraction spectra of ZrN/CrN coatings with thickness of layers about 50 nm obtained by -Us = -150 V and PN, Torr: 1 4 10-3, 2 1.2 10-3, 3 6.2 10-4, 4 2.2 10-4; at -Ui = 0, b at -Ui = -800 V It should be noted that the substructural characteris- tics are largely changed by varying the layer thickness. Thus, when -Us = -150 V and a pressure PN = 4 10-3 Torr with increasing average layer thickness of 25 to 220 nm is not only to the expected increase L proportional thickness of the layers, but in the ZrN layer CrN occurs its decrease (see Fig. 6,c). Submission of additional potential -Ui = -800 V practically does not change the absolute values and whereas the supply is only -Ui = -800 V (with -Us = = 0 decrease (see Fig. 6,d). a b b a Fig. 6. Dependence substructural characteristics (microstrain nd the crystallite size L) in ZrN lay- ers of pressure (a, b) to ZrN layer thickness (d) and the thickness of the layers in ZrN and CrN (c) coating obtained by: a -Us = -70 V and -Ui = 0 V; b -Us = -70 V and -Ui = -800 V; c -Us = -150 V and -Ui = 0 V; d -Us = 0 V and -Ui = -800 V Comparison of -Us influence on substructural characteristics ZrN and CrN layers shows that the decrease in the magnitude of supply negative con- stant bias potential of -150 to -70 V leads to increase val layer thickness microstrain decreases in CrN layers, and in ZrN layers increases. y- er thickness of 25...50 nm due to the fact that the magnitude of the crystallites L on the nanoscale their formation is proportional to the thickness of the lay- ers, and at achievement its smallest size 20...30 nm makes it impossible to work in the crystallites dislo- cation source Frank-Reed and formation wherein the random dislocation of reset strain [39]. To study the influence of the deposition parame- ters on the physical and mechanical properties of composite coatings have been used in such universal and express criteria such as hardness and elastic modulus, defined according to the data of dynamic microindentation [40]. Previously, when analyzing the effect of pressure on the phase composition it has been shown that the formation of a layer of chromi- um-based lower -Cr2N nitride at a pressure PN = (2.2...6.2) 10-4 Torr leads to a substantial drop in hardness. Constructed for the entire operating in- vestigated range of the PN = (2.2...40) 10-4 Torr gen- eralized dependence H (PN) shown in Fig. 7,a shows that the coatings deposited at -Us = -150 V a observed nonmonotonic dependence of the microhardness on the working pressure nitrogen atmosphere with a maximum of H = 39 GPa in the PN = 1.2 10-3 Torr. In case of submission -Ui = -800 V depending H (PN) becomes smoother (see curve 2 in Fig. 7,a), which may be associated with greater planar mobility of additional acceleration in pulsed potential film- forming charged particles, which leads to greater pla- narity growing layers and the sharp border of the in- terlayer. Similar behavior depending on H (PN) can be traced to -Us = -70 V, but the absolute value obtained in this case, the microhardness does not exceed 33 GPa. CONCLUSIONS In work established pressure range PN = (2.2...12) 10-4 Torr in which in the layers Zr-N and Cr-N phase formed with different types of lattic- es: in a layer of zirconium nitride ZrN phase with a cubic an FCC lattice and a layer of chromium nitride -Cr2N phase hexagonal crystal lattice. In this range, with increasing pressure PN is formed predom- inantly oriented crystallites, which leads to increasing the hardness to 39 GPa. At higher PN = 4 10-3 Torr formation in both lay- ers of stoichiometric and thus the same by type of crystal lattices ZrN and CrN phase (cubic crystal lat- tice structural type NaCl) is accompanied by a de- crease in hardness of multiperiod coating of 30 33 to 39 GPa. Such effect is defined smaller permeabil- ity of dislocations and higher diffusion stability boundaries phases with different crystal lattices of the type that defines a higher barrier properties and indentation accordingly leads to higher hardness of the composition. 1E-3 210 220 230 240 250 260 270 b 2 1 N Fig. 7. Effect of pressure in the deposition of coatings on their hardness (a) and modulus of elasticity (b): 1 Us = - 150 V; 2 -Us = - 70 V REFERENCES 1. Nanostructured coatings / Edited by: Cavaleiro, Albano; De Hosson, Jeff Th. M. Springer Verlag, 2006, 648 p. 2. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens // Progress in Materials Science. 2006, v. 51, p.1032-1114. 3. , , , // . 1 -64. 4. F. Lomello, M. Arab Pour Yazdi, F. Sanchette, F. Schuster, M. Tabarant, A. Billard // Surface & Coat- ings Technology. 2014, v. 238, p. 216-222. 5. M.K. Kazmanli, M. Urgen, A.F. Cakir // Surf. Coat. Tech. 2003, v. 167, p.77-82. 6. C. Rebholz, M.A. Monclus, M.A. Baker, P.H. Mayrhofer, P.N. Gibson, A. Leyland, A. Matthews // Surf. Coat. Tech. 2007, v. 201, p. 6078-6083. 7. Ph.V. Kiryukhantsev-Korneev, D.V. Stansky, M.I. Petrznik, E.A. Levashov, B.N. Mavrin // Surf. Coat. Tech. 2007, v. 201, p. 6143-6147. 8. S. Veprek, H.-D. Meannling, M. Jilek, P. Holu- bar // Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 2004, v. 366, p. 202. 9. R.A. Andrievski // Fizika metallov i metallovedenie. 2010, N 110, . 243-254 (in Russian). 10. R.A. Andrievski. Review on Advanced Materi- als Science. 2011, v. 29, p. 54-67. 11. R.A. Andrievski // Himija i zhizn' XXI vek. 2013, N 6, p. 2-5 (in Russian). 12. R.A. Andrievski. Journal of Materials Sci- ence. 2014, v. 49, p. 1449-1460. 13. V.M. Beresnev, O.V. Sobol', A.D. Pogrebnjak, et al. // Technical Physics. 2010, v. 55, issue 6, p. 871-873. 14. O.V. Sobol', A.A. Andreev, S.N. Grigoriev, et al. //Problems of Atomic Science and Technology. 2011, N 4, p. 174-177. 15. S. Ranganathan // Current science. 2003, v. 85, N 10, p. 1404-1406. 16. V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon // Surface and Coatings Technolo- gy. 2010, v. 204, p. 1989-1992. 17. R. Krause-Rehberg, A.D. Pogrebnyak, V.N. Kaverin et al // Physics of Metals and Metallog- raphy. 2013, v. 114, issue 8, p. 672-680. 18. Gilewicz, B. Warcholinski // Tribology Inter- national. 2014, v. 80, p. 34-40. 19. H.C. Barshilia, K.S. Rajam // Bull. Mater. Sci. 2003, v. 26, N 2, p. 233-237. 20. M.S. Konchady, S.Yarmolenko, D.M. Pai, J. Sankar // ASME 2009 International Mechanical Engi- neering Congress and Exposition Volume 14: Pro- cessing and Engineering Applications of Novel Materi- als. 2009, p. 55-59. 21. I.N. Martev, D.A. Dechev, N.P. Ivanov, Ts.D. Uzunov, and E.P. Kashchieva // Journal of Phys- ics: Conference Series. 2010, v. 223, p. 012019. 22. S.Yo. Lee, S.Yu. Lee // Solid State Phenome- na. 2006, v. 116-117, p. 124-127. 23. K.J. Kadhim, N. Abd Rahman, M.R. Salleh, K.I. Mohd Zukee // Applied Mechanics and Materials. 2015, v. 761, p. 417-420. 24. , A. Zary- chta, L. Cunha // Journal of Achievements in Materials and Manufacturing Engineering. 2006, v. 15, issue 1-2, p. 47-52. 25. Harish C. Barshilia, Anjana Jain, K.S. Rajam // Vacuum. 2004, v. 72, p. 241-248. 26. Z. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong, C. Coddet // Advanced Engineer- ing Materials. 2009, v. 11, issue 8, p. 667-673. 27. W. Aperador, A. Delgado, J. Duque // Int. J. Electrochem. Sci. 2013, v. 8, p. 10711-10719. 28. S.M. Aouadi, D.M. Schultze, S.L. Rohde, K.C. Wong, K.A.R. Mitchell // Surface and Coatings Technology. 2001, v. 140, p. 269-277. 29. // Journal of Achievements in Materials and Manufacturing Engi- neering. 2007, v. 24/2, p. 107-110. 30. S.H. Yao, Y.L. Su // Wear. 1997, v. 212, p. 85-94. 31. Juergen M. Lackner, Wolfgang Waldhauser, Lukasz Majo, Marcin Kot // Coatings. 2014, v. 4, p. 121-138. 32. R.A. Koshy, M.E. Graham, L.D. Marks // Surf. Coat. Tech. 2007, v. 202, p. 1123-1128. 33. O.V. Sobol , O.N. Grigoryev, Yu.A. Kunitsky, et al. // Science of Sintering. 2006, v. 38, issue 1, p. 63- 72. 34. B. Warcholinski, A. Gilewicz // Journal of Achievements in Materials and Manufacturing Engi- neering. 2009, v. 37, N 2, p. 498-504. 35. A.A. Andreev, L.P. Sablev, S.N. Grigor ev. Vacuum-arc coating. Kharkov: NNC KIPT, 2010, 317 p. 36. O.V. Sobol , A.A. Andreev, S.N. Grigoriev, et al. // Metal Science and Heat Treatment. 2012, v. 54, issue 3-4, p. 195-203. 37. O.V. Sobol` // Physics of the Solid State. 2011, v. 53, N 7, p. 1464-1473. 38. Li-Ying Kuo and Pouyan Shen // Materials Science and Engineering. 2000, v. 276, issue 1-2, p. 99-107. 39. - - . : - , 2011, 40. E. Aznakayev // Proceedings of the Interna- San Diego, California, USA, 2003, TP.001, p. 8. Article received 03.11.2015 - - - , N -Us -Ui - N -4 -Cr2 N = -3 (39 N, , - - - , N), -Us -Ui - N -4 -Cr2 N = -3 268 N ,