Møller polarimeter reconstruction in Hall A Jefferson Lab

The Møller polarimeter reconstruction for measuring of the electron beam polarization with energies up to 11 GeV has been performed in Hall A Thomas Jefferson Laboratory (United States). This paper describes the elements of the Møller polarimeter and accelerator beamline that have been changed. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Pomatsalyuk, R.I., Vereshchaka, V.V., Glamazdin, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111801
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Møller polarimeter reconstruction in Hall A Jefferson Lab / R.I. Pomatsalyuk, V.V. Vereshchaka, A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 48-52. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111801
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1118012025-02-09T21:54:50Z Møller polarimeter reconstruction in Hall A Jefferson Lab Модернізація мьоллерівського поляриметра залу А лабораторії ім. Т. Джефферсона Модернизация мёллеровского поляриметра зала А лаборатории им. Т. Джефферсона Pomatsalyuk, R.I. Vereshchaka, V.V. Glamazdin, A.V. Элементы ускорителей The Møller polarimeter reconstruction for measuring of the electron beam polarization with energies up to 11 GeV has been performed in Hall A Thomas Jefferson Laboratory (United States). This paper describes the elements of the Møller polarimeter and accelerator beamline that have been changed. The structure and characteristics of the modified data acquisition system of the polarimeter are shown. An analysis of components of systematic error of beam polarization measurement for two types of used targets is presented. В лаборатории им. Т. Джефферсона (США) проведена реконструкция мёллеровского поляриметра зала А для обеспечения измерений поляризации пучка электронов с энергией до 11 ГэВ. В работе описаны элементы мёллеровского поляриметра и электронопровода ускорителя, которые были изменены. Приведены структура и характеристики модифицированной системы сбора данных поляриметра. Проведён анализ величины систематической ошибки измерения поляризации пучка для двух типов используемых мишеней. У лабораторії ім. Т. Джефферсона (США) проведено реконструкцію мьоллерівського поляриметра залу А для забезпечення вимірювань поляризації пучка електронів з енергією до 11 ГеВ. У роботі описані елементи мьоллерівського поляриметра та електронопровода прискорювача, які були змінені. Наведено структуру та характеристики модифікованої системи збору даних поляриметра. Проведено аналіз величини систематичної помилки вимірювання поляризації пучка для двох типів мішеней, що використовувались. 2013 Article Møller polarimeter reconstruction in Hall A Jefferson Lab / R.I. Pomatsalyuk, V.V. Vereshchaka, A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 48-52. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 29.25.Pj; 29.27.Hj; 29.85.Ca https://nasplib.isofts.kiev.ua/handle/123456789/111801 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Элементы ускорителей
Элементы ускорителей
spellingShingle Элементы ускорителей
Элементы ускорителей
Pomatsalyuk, R.I.
Vereshchaka, V.V.
Glamazdin, A.V.
Møller polarimeter reconstruction in Hall A Jefferson Lab
Вопросы атомной науки и техники
description The Møller polarimeter reconstruction for measuring of the electron beam polarization with energies up to 11 GeV has been performed in Hall A Thomas Jefferson Laboratory (United States). This paper describes the elements of the Møller polarimeter and accelerator beamline that have been changed. The structure and characteristics of the modified data acquisition system of the polarimeter are shown. An analysis of components of systematic error of beam polarization measurement for two types of used targets is presented.
format Article
author Pomatsalyuk, R.I.
Vereshchaka, V.V.
Glamazdin, A.V.
author_facet Pomatsalyuk, R.I.
Vereshchaka, V.V.
Glamazdin, A.V.
author_sort Pomatsalyuk, R.I.
title Møller polarimeter reconstruction in Hall A Jefferson Lab
title_short Møller polarimeter reconstruction in Hall A Jefferson Lab
title_full Møller polarimeter reconstruction in Hall A Jefferson Lab
title_fullStr Møller polarimeter reconstruction in Hall A Jefferson Lab
title_full_unstemmed Møller polarimeter reconstruction in Hall A Jefferson Lab
title_sort møller polarimeter reconstruction in hall a jefferson lab
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Элементы ускорителей
url https://nasplib.isofts.kiev.ua/handle/123456789/111801
citation_txt Møller polarimeter reconstruction in Hall A Jefferson Lab / R.I. Pomatsalyuk, V.V. Vereshchaka, A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 48-52. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pomatsalyukri møllerpolarimeterreconstructioninhallajeffersonlab
AT vereshchakavv møllerpolarimeterreconstructioninhallajeffersonlab
AT glamazdinav møllerpolarimeterreconstructioninhallajeffersonlab
AT pomatsalyukri modernízacíâmʹollerívsʹkogopolârimetrazalualaboratorííímtdžeffersona
AT vereshchakavv modernízacíâmʹollerívsʹkogopolârimetrazalualaboratorííímtdžeffersona
AT glamazdinav modernízacíâmʹollerívsʹkogopolârimetrazalualaboratorííímtdžeffersona
AT pomatsalyukri modernizaciâmellerovskogopolârimetrazalaalaboratoriiimtdžeffersona
AT vereshchakavv modernizaciâmellerovskogopolârimetrazalaalaboratoriiimtdžeffersona
AT glamazdinav modernizaciâmellerovskogopolârimetrazalaalaboratoriiimtdžeffersona
first_indexed 2025-12-01T04:36:27Z
last_indexed 2025-12-01T04:36:27Z
_version_ 1850279241355100160
fulltext ISSN 1562-6016. ВАНТ. 2013. №6(88) 48 ACCELERATORS COMPONENTS MØLLER POLARIMETER RECONSTRUCTION IN HALL A JEFFERSON LAB R.I. Pomatsalyuk, V.V. Vereshchaka, A.V. Glamazdin National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: rompom@kipt.kharkov.ua The Møller polarimeter reconstruction for measuring of the electron beam polarization with energies up to 11 GeV has been performed in Hall A Thomas Jefferson Laboratory (United States). This paper describes the ele- ments of the Møller polarimeter and accelerator beamline that have been changed. The structure and characteristics of the modified data acquisition system of the polarimeter are shown. An analysis of components of systematic error of beam polarization measurement for two types of used targets is presented. PACS: 29.25.Pj; 29.27.Hj; 29.85.Ca 1. MØLLER POLARIMETER Møller polarimeter was developed in KIPT and cre- ated jointly with the National Accelerator Center. Thomas Jefferson (CEBAF, Virginia, USA) and the University of Kentucky (Lexington, USA) [1, 2]. The accelerator of Jefferson Lab [3] is a recirculation super- conducting electron accelerator (Fig. 1), which consists of an injector, two of linear accelerators ("northern" and "southern") bending and extracting magnets, and is ca- pable deliver a linearly polarized electron beam in three experimental halls (A, B, C) at the same time. The max- imum average beam current of accelerator is up to 200 mA, the longitudinal polarization of the beam is up to 90%, pulse repetition frequency is 499 MHz. The range of beam energies is from 0.6 to 6 GeV. Polarimeter designed to measure the polarization of the beam electrons in the energy range from 0.8 to 6 GeV at a beam current up to 3.0 μA and works in Hall A starting from 1998 year. The need to modernize the polarimeter is caused by the reconstruction of the Jeffer- son Lab accelerator and increasing the electron beam energy from 6 to 12 GeV. Experimental Halls Injector refrigerator Hilium North Linac 600 MeV, 20 cryomodules 600 MeV, 20 cryomodules South Linac Bending and extraction magnets Fig. 1. Jefferson Lab accelerator before reconstruction Møller polarimeter includes polarized electrons tar- get (T), magnetic spectrometer and detector (Fig. 2). Møller electrons resulting from the interaction of the electron beam to the target are analyzed with a magnetic spectrometer. The spectrometer comprises three quad- rupole (Q1, Q2, Q3) and one of the dipole magnets (Di- pole). Scattered electrons are focused by quadrupole magnets in the horizontal plane at the entrance of the dipole magnet. The dipole magnet deflects the electrons down to the detector. Shielding insertion located in the center of the dipole magnet, through which the primary electron beam is passing without interaction with the magnetic dipole field. Q1 Q2 Q3 Dipole Detector а) б) Z см X с м Y с м T Main Beam Z см Scattered electrons Fig. 2. Scheme of Møller polarimeter before reconstruction: а) side view, b) top view Electron detector consists of two full absorption cal- orimeters, allowing register the Møller events in coinci- dences. Each calorimeter made from two identical blocks type of the "spaghetti", arranged vertically one above another and divided into two sections. Four pho- tomultiplier tubes (PMTs) are located at the end of the calorimeter block. The aperture detector made of plastic scintillator and divided into four sections installed be- fore each calorimeter. Møller events are registered by the coincidence of signals from the left and right detectors, which can sig- nificantly reduce the contribution of background events. 2. POLARIMETER PARTS RECONSTRUCTION There are several key factors, which are limited en- ergy range of polarimeter: - the spectrometer acceptance wich determines by the position of the magnetic elements, their magnetic field and the position of the collimator; - bending of the main beam by a magnetic field of a dipole inside the shield insertion. The first factor limits the energy range from below to 0.8 GeV, and the second one does from the top to 6.0 GeV. To measure the polarization of the electron beam with energies up to 11 GeV, it was necessary to a b Z cm Z cm X c m Y c m ISSN 1562-6016. ВАНТ. 2013. №6(88) 49 reconstructing of the main elements of Møller polarime- ter. Following elements of the polarimeter have been modified: - Magnetic Spectrometer; - Shielding box of the detector and the detector; - The elements of beamline; - Data acquisition system. The most significant changes required for a magnet- ic spectrometer of polarimeter. For operation of the po- larimeter in the energy range 0.8…11 GeV, it was nec- essary to move the first quadrupole magnet Q1 (Fig. 3) along the beam by 40 cm and install an additional quad- rupole magnet Q4 (see Fig. 3) in 70 cm from the target. The quadrupole magnet Q4 has been installed on beam- line after testing and measurement of the magnetic field map. Fig. 3. New quadrupole magnet Q4 installed behind target This configuration of the magnetic elements ensures that acceptance of the polarimeter by solid angle of θcm more than 20° (Fig. 4) in energy range from 0.8 to 11 GeV. Reconstruction of the dipole magnet was to improve the protection of the main beam of electrons from the magnetic field of the dipole magnet. For his a additional shielding insertion type of tube made from steel AISI- 1006 with an internal diameter of 2.5 cm and thickness of 0.9 cm and length of 212.4 cm (Fig. 5) has been manufactured and installed in the dipole. Fig. 4. Acceptance of polarimeter by solid angle θcm for configuration with four quadrupole magnets The power supply provides a maximum dipole cur- rent 550 A, which is only enough for the beam energy up to 8 GeV at Møller electron deflection angle of 10°. This limitation has led to the need to reduce the maxi- mum angle of deflection of Møller electron from 10 to 7.3°. Fig. 6 shows the results of the simulation by pro- gram TOSCA the displacement of the electronic beam on the physical target in the Hall A ("a" – 13 m from the center of the dipole) and the beam dump ("b" – 63 m from the center of the dipole) due to the influence of the magnetic dipole field with shielding insertion. We can see that with the maximum energy of the electron beam in Hall A 11 GeV beam displacement on the main target of not more than 2.5 mm and not more than 10 mm in the beam dump. Calculations according to the dipole magnetic field in the gap and inside the shielding inser- tion for different energies of the electron beam are shown in Fig. 7. Fig. 5. Photo: additional shielding insertion of dipole Fig. 6. Beam displacement on the physical target (left) and beam dump (right) due to magnetic field of dipole with shielding insertion Fig. 7. Calculation of dipole magnetic field in gap (upper) and inside shielding insertion for different electron beam energies ISSN 1562-6016. ВАНТ. 2013. №6(88) 50 As the deflection angle Møller electrons has been reduced from 10° to 7.3°, the detector with a shielding housing box was raised to 7 cm. A new shielding hous- ing box of detector is designed and manufactured with improved design of input windows, doors, and the pos- sibility of placing additional protection at the top of box near beamline. Support that provides tilt of detector, has also been replaced for an angle of 7.3°. Aperture coun- ters modification is performed: added test LEDs, im- proved light protection and the connection to the PMT. Elements of beamline after a dipole magnet have al- so been modified (Fig. 8). Vertical corrector to compen- sate the bending of the electron beam after the dipole has been added. An additional beam position sensor has been added for more precise positioning of the beam on the target of polarimeter. Beam position monitor Vertical Corrector beam Fig. 8. Additional elements of beam line after dipole 3. POLARIZED ELECTRON TARGET Two types of polarized targets are used in Møller polarimeter for measurements of the polarization of the beam: 1) the target with a low magnetic field (0.03 T) and polarization along the plane of the target ("Low Field") [5]; 2) target with a large magnetic field (4 T) and polarization-zation across the plane of the target ("High Field") [6]. "Low Field" target of polarized electrons comprises ferromagnetic foil set (Table 1) that inclined at an angle of 20.5° to the direction of the electron beam and the magnetic field. The foils have a different thickness and made of pure iron (99.95%) or supermendur (49% Fe, 49% Co, 2% V). Table 1 Set of ferromagnetic foils as target of polarized elec- trons. (SM – supermendur; Fe – iron; Al – aluminum) Position 6 5 4 3 2 1 0 Material park SM Fe Fe SM SM Al Thick- ness, μm – 6.8 9.3 14.3 29.4 13.0 16.5 The design of the target chamber is shown in Fig. 9. The design of the camera allows one to move the foil target in two directions across the beam (from the foil to the foil), and along the long sides of the foil. The target chamber is provided with flanges and bel- lows for mounting on beamline. Magnetic coils are mounted on the camera symmetrically on either side of the target. The target chamber is mounted on slides (see Fig. 9), inclined at an angle of 20.5° to the direction of the elec- tron beam. These rails allow a longitudinal movement of the target relative to the electron beam in the range from -25 to +30 mm. The longitudinal position of the target is controlled by the position sensors and the ree switches. Both mechanisms moving target are used stepper motors. Since only a thin target foils can get on the beam, the change of the target position does not require interrup- tion of the electron beam. Fig. 9. The target chamber of Møller polarimeter. Structure of target holder is shown at above. Direction of target movement is shown by arrow The design of "High Field" target of polarized elec- trons of Møller polarimeter in the Hall A is shown in Fig. 10. The target consists of: - Superconducting magnet with a maximum field up to ± 4 T; - Target device with a set of four targets. All targets are made of pure iron with a purity of 99.85% and 99.99% and thicknesses of 1, 2, 4, and 10 μm to the study of possible systematic errors; - Adjustment mechanism for the orientation of the plane of the target relative to the direction of the magnetic field; - Unit for movement and control targets position; - The target chamber with orientation mechanism to the direction of the magnetic field along the electron beam. beam Fig. 10. The design of "High Field" target of polarized electrons of Møller polarimeter in the Hall A. The diagram shows: a superconducting magnet, the target device and the target camera. The photo shows the target holder with a set of iron foils ISSN 1562-6016. ВАНТ. 2013. №6(88) 51 Adjustment mechanisms allow set of the target de- vice and the magnetic field with linear precision ± 0.2 mm and angular accuracy of ± 0.2 mrad. 4. DATA ACQUISITION SYSTEM The data acquisition system of the Møller polarime- ter used over 15 years [4]. Some of the electronic mod- ules are already discontinued. Acquisition system was modified to increase readout rate and reduce dead time. Basic electronic modules have been replaced with mod- ern one, with more high integration and a high frequen- cy bandwidth. The module type of CAEN V1495 is used as pro- grammable logic unit: bandwidth input/output of up to 200 MHz, 2 32-bit input ports, 1 output port, 32-bit, type of signal - LVDS; programmable logic (Fig. 11). Fig. 11. Diagram of programmable logic unit based on module type of CAEN V1495 The module contains a programmable logic for event selection (16 inputs, 16 outputs), 16 counters (32-bit), trigger logic, control registers, and timer-generator. Discriminator P / S 708: 8 channels, 300 MHz signal type - NIM, modified for remote setup of thresholds using the digital to analog converter (DAC). Analog-to-digital converter (ADC) type of CAEN V792: 12 bit, 32 channel, memory 32 events, the con- version time is 5.7 μs. The time to digital converter module (TDC) type of CAEN V1190B: 64 channels, the resolution is 0.1 ns, the signal type - LVDS. Test of new modules has been performend and soft- ware developing for data processing is underway. 5. MØLLER POLARIMETER SYSTEMATIC ERRORS The main components of the systematic errors of po- larimeter for the two types of targets that affecting the accuracy of measurements of the beam polarization are shown in Table 2. It can be seen that the main contribu- tion to the target with a low field gives a measurement error of the target polarization. For target with a large field, this error is greatly reduced, due to a stronger magnetisation of foil that close to saturation. At the same time, the Levchuk effect is increased for this type of target due to the stronger magnetic field. Table 2 Systematic errors of Møller polarimeter for two types of target Variable “Low Field” target, % “High Field” target, % Target Polarization 1.5 0.35 Analyzing power 0.3 0.3 Levchuk effect 0.2 0.3 Dead Time 0.3 0.3 Background 0.3 0.3 High Beam Current 0.2 0.2 Others 0.5 0.5 Total 1.7 0.9 CONCLUSIONS Møller polarimeter in Hall A of Jefferson Laboratory (USA) was reconstructed in the period 2012-2013 for measurements of electron beam polarization with ener- gies up to 11 GeV. This paper describes the elements of the Møller polarimeter and accelerator beamline, which have been modified. The polarimeter is a unique facility with two different types of polarized targets and the two types of data acquisition systems working in parallel. This allows us to investigate the systematic uncertainty and improve the accuracy of measurements of electron beam polarization. This work was supported by contract DE-AC05-06OR23177 the U.S. Department of Energy on the basis of which Jefferson Science Associates oper- ates the Thomas Jefferson National Accelerator Facility. REFERENCES 1. A.V. Glamazdin, V.G. Gorbenko, L.G. Levchuk, et al. Electron Beam Møller Polarimeter at Jlab Hall A // Fizika. 1999, B8, p. 91-95 (in Russian). 2. E.A. Chudakov, A.V. Glamazdin, V.G. Gorbenko, L.G. Levchuk, R.I. Pomatsalyuk, P.V. Sorokin. Møller polarimeter for electron beam in Hall A Jef- ferson Lab // Problems of Atomic Science and Tech- nology. Series «Nuclear Physics Investigations». 2002, №2(40), p. 43-48. 3. W. Leemann, David R. Douglas, Geoffrey A. Krafft. The Continuous Electron Beam Accelerator Facility: CEBAF at the Jefferson Laboratory // Annu. Rev. Nucl. Part. Sci. 2001, v. 51, p. 413-450. 4. R.I. Pomatsalyuk. Data Acquisition System of Møller Polarimeter Hall A Jefferson Lab // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations». 2012, №3(79), p. 101-104. 5. O.V. Glamazdin, E.A. Chudakov, R.I. Pomatsalyuk. Hall A Møller polarimeter (Jefferson Lab) with elec- tron target polarized in foil plane // Journal of Khar- kov University. Physical series «Nuclei, Particles, Fields». 2011, №2(50), v. 955, p. 42-50. ISSN 1562-6016. ВАНТ. 2013. №6(88) 52 6. A.V. Glamazdin. Hall A Muller Polarimeter (Jeffer- son Laboratory) after reconstruction // Problems of Atomic Science and Technology. Series «Nuclear Physics Investigations». 2012, №4(80), p. 7-10. Article received 07.10.2013 МОДЕРНИЗАЦИЯ МЁЛЛЕРОВСКОГО ПОЛЯРИМЕТРА ЗАЛА А ЛАБОРАТОРИИ им. Т. ДЖЕФФЕРСОНА Р.И. Помацалюк, В.В. Верещака, А.В. Гламаздин В лаборатории им. Т. Джефферсона (США) проведена реконструкция мѐллеровского поляриметра зала А для обеспечения измерений поляризации пучка электронов с энергией до 11 ГэВ. В работе описаны элемен- ты мѐллеровского поляриметра и электронопровода ускорителя, которые были изменены. Приведены струк- тура и характеристики модифицированной системы сбора данных поляриметра. Проведѐн анализ величины систематической ошибки измерения поляризации пучка для двух типов используемых мишеней. МОДЕРНІЗАЦІЯ МЬОЛЛЕРІВСЬКОГО ПОЛЯРИМЕТРА ЗАЛУ А ЛАБОРАТОРІЇ ім. Т. ДЖЕФФЕРСОНА Р.I. Помацалюк, В.В. Верещака, О.В. Гламаздін У лабораторії ім. Т. Джефферсона (США) проведено реконструкцію мьоллерівського поляриметра залу А для забезпечення вимірювань поляризації пучка електронів з енергією до 11 ГеВ. У роботі описані елеме- нти мьоллерівського поляриметра та електронопровода прискорювача, які були змінені. Наведено структуру та характеристики модифікованої системи збору даних поляриметра. Проведено аналіз величини системати- чної помилки вимірювання поляризації пучка для двох типів мішеней, що використовувались.