Binding technique on the ground in the study of the effects of man-caused accidents

The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using la...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2013
Main Authors: Batiy, V.G., Glebkin, S.I., Kochnev, N.A., Selyukova, V.V., Prokhorets, S.I., Fedorchenko, D.V., Khazhmuradov, M.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/111841
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111841
record_format dspace
spelling Batiy, V.G.
Glebkin, S.I.
Kochnev, N.A.
Selyukova, V.V.
Prokhorets, S.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
2017-01-15T11:03:04Z
2017-01-15T11:03:04Z
2013
Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ.
1562-6016
PACS: 53.082.79, 621, 039, 586
https://nasplib.isofts.kiev.ua/handle/123456789/111841
The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems.
Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при проведеннi дослiдженьна забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв. Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуванням лазерних далекомiрiв, тахеометрiв, системи GPS.
Предложена методика определения координат точки размещения измерительной установки при проведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных объектов. Показано, что оптимальным является комплексное использование разных методов: линейной засечки с применением лазерных дальномеров, тахеометров, системы GPS.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядернo-физические методы и обработка данных
Binding technique on the ground in the study of the effects of man-caused accidents
Методика прив’язки на мiсцевостi при вивченнi наслiдкiв техногенних аварiй
Методика привязки на местности при изучении последствий техногенных аварий
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Binding technique on the ground in the study of the effects of man-caused accidents
spellingShingle Binding technique on the ground in the study of the effects of man-caused accidents
Batiy, V.G.
Glebkin, S.I.
Kochnev, N.A.
Selyukova, V.V.
Prokhorets, S.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
Ядернo-физические методы и обработка данных
title_short Binding technique on the ground in the study of the effects of man-caused accidents
title_full Binding technique on the ground in the study of the effects of man-caused accidents
title_fullStr Binding technique on the ground in the study of the effects of man-caused accidents
title_full_unstemmed Binding technique on the ground in the study of the effects of man-caused accidents
title_sort binding technique on the ground in the study of the effects of man-caused accidents
author Batiy, V.G.
Glebkin, S.I.
Kochnev, N.A.
Selyukova, V.V.
Prokhorets, S.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
author_facet Batiy, V.G.
Glebkin, S.I.
Kochnev, N.A.
Selyukova, V.V.
Prokhorets, S.I.
Fedorchenko, D.V.
Khazhmuradov, M.A.
topic Ядернo-физические методы и обработка данных
topic_facet Ядернo-физические методы и обработка данных
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Методика прив’язки на мiсцевостi при вивченнi наслiдкiв техногенних аварiй
Методика привязки на местности при изучении последствий техногенных аварий
description The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems. Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при проведеннi дослiдженьна забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв. Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуванням лазерних далекомiрiв, тахеометрiв, системи GPS. Предложена методика определения координат точки размещения измерительной установки при проведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных объектов. Показано, что оптимальным является комплексное использование разных методов: линейной засечки с применением лазерных дальномеров, тахеометров, системы GPS.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111841
citation_txt Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT batiyvg bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT glebkinsi bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT kochnevna bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT selyukovavv bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT prokhoretssi bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT fedorchenkodv bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT khazhmuradovma bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents
AT batiyvg metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT glebkinsi metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT kochnevna metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT selyukovavv metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT prokhoretssi metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT fedorchenkodv metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT khazhmuradovma metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii
AT batiyvg metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT glebkinsi metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT kochnevna metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT selyukovavv metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT prokhoretssi metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT fedorchenkodv metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
AT khazhmuradovma metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii
first_indexed 2025-11-25T20:29:32Z
last_indexed 2025-11-25T20:29:32Z
_version_ 1850523578903035904
fulltext BINDING TECHNIQUE ON THE GROUND IN THE STUDY OF THE EFFECTS OF MAN-CAUSED ACCIDENTS V.G. Batiy1, S.I. Glebkin1, N.A. Kochnev2, V.V. Selyukova2, S.I. Prokhorets2, D.V. Fedorchenko2, M.A. Khazhmuradov2∗ 1Institute for Safety Problems of Nuclear Power Plants, Chernobyl, Ukraine; 2National Science Center ”Kharkov Institute of Physics and Technology”, Kharkov, Ukraine (Received January 30, 2013) The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems. PACS: 53.082.79, 621, 039, 586 1. INTRODUCTION As a result of various man-caused accidents at chem- ically - and radiation-dangerous facilities the sur- rounding area can be contaminated. To select the op- timal measures to mitigate the consequences of such accidents, it is necessary to study the characteristics of the contaminated areas and objects, the availabil- ity of sources of radiation exposure, etc. In partic- ular, such problems arose in the study of radiation environment near the ”Shelter” object of Chornobyl nuclear power plant [1], [2]. Traditional methods can lead to increased risk for the personnel staff. The experience of the research [1] showed that it is appro- priate to create the universal system for control mea- surement control in complex radiation environment. The execution of joint projects at ISP NPP and NSC KIPT within the State program of basic and applied research on the use of nuclear materials and nuclear and radiation technologies in the development of in- dustries (YAMRT) showed that such system should include following subsystems: Remote control and data transfer [3], the orientation in space [4], visu- alization [5], determination of the location on the ground, optimization the number and frequency of measurements depending on the gradient of the con- tamination characteristics, autonomous data record- ing, determining the environment temperature etc. This article considers the subsystem of binding on the ground in the measurements at radiation-dangerous conditions using the experience of field work near the ”Shelter” object of Chornobyl nuclear power plant. 2. GENERAL METHODOLOGICAL APPROACH During studying of radiation environment it is neces- sary to solve two types of problems: 1. ”Direct problem” - quickly determine the co- ordinates of the measurement point; 2. ”Inverse problem” - quickly find the measure- ment point on the given coordinates. To solve the ”direct” problem it is necessary to bind the measurement point with required accuracy, which in most cases can be done only by instrumental methods. Depending on the work conditions, the instrumen- tal binding of measurement point can be done in dif- ferent ways: • Binding the facility location to the objects with known coordinates using the tape and/or mark- ing cord; • Binding the facility location to the objects with known coordinates using photos and video equipment; • Traditional theodolite binding with optical in- struments; • Binding the facility location to the objects with known coordinates using laser range finders; • Using the electronic tachymeter; • Using satellite navigation; • System with accelerometers as sensors of mo- tion from the point with known coordinates of the point of measurement. Binding of the facility location using tape and/or marking cord results in equipment contamination and increasing time spent in radiation exposure. The accuracy of binding the facility location to the objects with known coordinates using photos and video equipment is limited by angular resolution of ∗Corresponding author E-mail address: khazhm@kipt.kharkov.ua 242 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.242-246. the used photo-and video equipment and the neces- sity to use complex software and highly skilled per- sonnel. Therefore, in most cases, this method can be used as an additional one for planning the measure- ments. The traditional theodolite binding by means of optical devices requires highly skilled personnel, is time-consuming, and in radiation conditions can be used only to create reference points. To use the laser range finders for determining the facility location, it is necessary to pre-select multiple control points with known coordinates as accurately as possible. Use the laser range finders can reduce re- quirements for staff skill, shorten the work, to reduce the required number of personnel in contaminated ar- eas. The use of electronic tachymeters may be appro- priate for measurements on large open areas with large number of measurement points. The main dis- advantages are the high cost of equipment and the needs in highly qualified geodesy experts. Binding of the facility location with the required accuracy using satellite navigation systems (GPS) is possible only with a clear view of the signal. This method is only possible one during the measurements in the contaminated area and far from objects with known coordinates. Under these conditions GPS- system can be applied to solve the ”inverse” problem. To solve the ”inverse” problem is also advisable to use the accelerometers to calculate the change in the space orientation while moving for a few meters from the point with known coordinates. In this method point coordinates are defined more exactly by one of the above methods. During measurements far from objects with known coordinates the position of the reference point is determined using GPS. Accelerometers can be also used to solve the ”di- rect” problem, it is impossible to use more accurate and more complex methods. Here are the criteria and the specifics of the most promising methods. 3. DETERMINATION OF COORDINATES USING A LASER RANGE FINDER Using laser rangefinder coordinates can be deter- mined by linear resection. From the measuring point P with unknown coor- dinates (X, Y) (Fig. 1) we measure the distance S1 to the reference point A (in this case - the object near the ”Shelter” object) with known coordinates (XAYA) and the distance S2 to the reference point B (in this example - a corner of the stair-lift unit of ”Shelter” object) with known coordinates (XB, YB). The problem has two solutions (see Fig. 1), so it is necessary to take into account the cor- rect position of the measuring point P with respect to the reference points A and B. Fig.1. Coordinate determination by linear resection method near the ”Shelter” object Thus, to solve the task there are the following data: • known data: the coordinates of reference points A (XA, YA) and B (XB, YB); • measured data: the distances S1 and S2; • Unknown elements: the coordinates of the point of measurement P (X, Y); • X, Y coordinates and the resection angle γ are calculated using simple operations. Root mean square (RMS) error is calculated by the formula: MOP = √ m2 Ax + m2 Ay + m2 Bx + m2 By + m2 p, (1) mp = √ m2 S1 + m2 S1 Sinγ , (2) where MOP - error of measuring point P coordinates; mAx, mAy, mBx, mBy - errors of coordinates of ref- erence points A and B respectively; mp - error of the measurement point P positioning with respect to the reference points A and B; mS1, mS2 - error of the S1 and S2 distances. To illustrate the dependence of the error in de- termining the point P position with respect to the reference points A and B on the resection angle we done calculations for a error of 10 mm which is typical for laser range up to 100 meters (Fig. 2). We see that error significantly increases at small and large values of the resection angles, but except the angles very close to 0◦ and 180◦ error is accept- able. A similar dependence for the rangers at a dis- tance greater than 100 m and an accuracy of 1 me- ter (type ”Konus Range 600”) is shown in Fig.3. 243 0.09 mP 0 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 30 60 90 120 180150 g mP, m Fig.2. The dependence of the error in determining the point P position with respect to the reference points A and B on the resection angle for the range finder error 10mm 9 0.0 mP 0 8 0.0 7 0.0 6 0.0 5 0.0 4 0.0 3 0.0 2 0.0 1 0.0 0.00 30 60 90 120 180150 g mP, m Fig.3. The dependence of the error in determining the point P position with respect to the reference points A and B on the resection angle for the range finder error 1m 4. THE USE OF ELECTRONIC TACHYMETER Another way of using laser range finders is to use the servo-motor tachymeter (for example, an electronic tachymeter TRIMBLE S6, Fig. 4). Fig.4. Measurements by the tachymeter is in the local area for the ”Shelter” object This tachymeter has integrated servo/angle sensors with electromagnetic direct drive. When operating in Autolock regime the reflective prism is automatically captured and tracked when you move it within 800 yards of tachymeter with an accuracy of 2′′. The presence of radio modem allows remote control and data acquisition, which is very important when measurements are done at radiation dangerous conditions. Servo-motor tachymeter must be placed to a point with known coordinates and oriented to determine the coordinates. Tachymeter location must be cho- sen in such a way that all measuring points are in the view and at the distance less than 800 me- ters. When tachymeter captured the reflective prism placed on the measuring device, all further device movements will be recorded in the tachymeter mem- ory. Tachymeter can be used for measurements at large open areas with large number of measurement point (for example, in the preparation of radiation maps). Possible scheme of the measurements near the ”Shelter” object, in the area of mounting sliding the arch of the new safe confinement is shown at Fig. 4 (satellite view with the point of possible tachymeter location and zone of possible measurement points). 5. THE USE OF GPS SYSTEM Binding of the facility location with required accuracy using satellite navigation systems (GPS) is possible only with a clear view of the signal. There are three ways to use the system GPS for field studies depend- ing on the measurement conditions and requirements. 1. Using standard autonomous GPS-navigators. The advantages of this method - the simplicity, the disadvantages - lack of direct connection of the recorded data and the coordinates of the measure- ment point, which can lead to errors. 2. Connecting a standard GPS sensor to mass- produced measuring device in parallel with any of the detection units and the automatic addition of geographical coordinates to measurement results. Dosimeter DKS-96 is an example of such device and it is compatible with devices produced by Garmin com- pany. At the switching on DKS-96 automatically de- tects GPS sensor. Recorded measurement results can be read by a personal computer for further process- ing. 3. It is appropriate to equip all new devices for ra- dioecological measurements with GPS-modules (e.g. produced by Transystem Inc. Locosys company). Application of GPS system together with remote data control and transfer system [3] can significantly speed up the process of data collecting, and reduce the influence of dangerous factors for staff due to pos- sibility of quick analysis of results and measurement process correction. 6. THE USE OF ACCELEROMETERS The accelerometer is a device that can measure the acceleration of the subject that it receives at the 244 movement relative to its zero position. These proper- ties make it possible to use the accelerometer to de- termine the current position of the device as it moves through the measurement zone. While solving the ”direct” problem accelerome- ter is nulled outside the radiation dangerous zone at the start point (with known coordinates), the mea- suring device (with accelerometer) is moved to the point of measurement, the displacement in all direc- tions is read and coordinates of the measuring point are calculated. While solving the ”inverse” problem accelerome- ter is nulled in the known point, the displacement (in 3 axes) necessary to reach the measuring point with given coordinates is calculated, the measuring de- vice is moved to the desired point in accordance with accelerometer indication (while accelerometer indica- tion does not coincide with the calculated). If neces- sary, the coordinates are checked by other methods. To search for further point location accelerometer is nulled and reading is done from the current measure- ment point to prevent the accumulation of errors by integrating a large number of movements. 3D - microelectromechanical acceleration sensors of type LIS331DLH/M/F (produced by STMicroelec- tronics) are example of such devices. Three sensors with dimensions 3mm×3mm×1mm track movement in six directions, when the sensor moves up or down in all three axes (x, y, z), support number of intel- ligent features, including Economic mode, the auto- matic renewal of active work, the discovery of gravity and the standard SPI/I2C digital interface. Wireless position sensors ARD-100 (produced by Satel) with 3D accelerometer can be used to de- termine position during the measurements in places which is difficult of access. They work together with Satel Integra-128 WRL, and with the ACU- 100 controllers. Position sensors are tuned up in space and transfer radio signals at a frequency of 868.0. . .868.6MHz. Thus, required measurements can be done when staff is in radiation-safe conditions. These prob- lems, in particular, must be solved when planning construction works in the radiation-dangerous condi- tions, such as in the areas of mounting and sliding the arch of the New Safe Confinement, the dismantling of unstable building structures of the existing ”Shelter” object etc. 7. CONCLUSIONS To reduce the dangerous staff influence during study- ing the territories and objects contaminated by indus- trial accidents, in the storages of radioactive, chem- ical and other dangerous materials process of mea- surements must be carefully planned, including the best reference points choosing. During studying of radiation environment it is necessary to solve two types of problems: ”Direct problem” and ”Inverse problem”. The method of linear resection using a laser range finder (if there are reference points with known coor- dinated in the measurement zone), the tachymeter (at the large open spaces with a lot of measurement points), GPS (with a clear view of the signal) can be used to solve the ”direct problem”. The displacement sensors based on a 3-D ac- celerometers (if there are reference points with known coordinated in the measurement zone), and GPS can be used to solve the ”inverse” problem. The proposed approach will optimize the process of measurement in dangerous conditions and reduce the risk of harmful effects on the staff. For further staff safety improvement it is appro- priate to develop a method of optimization the num- ber of measuring points, taking into account the gra- dient of the spatial distribution of the measured quan- tity (dose rate, surface contamination density, the volume air pollution, etc.). References 1. V.G.Batiy, V.V. Yegorov, A.APravdivyi, et al. Development of the methods of the radiation en- vironment studying at the zones near the ”Shel- ter” object // Problems of the safety of nuclear stations and Chornobyl. 2008, iss. 10, p. 155-164 (in Russian). 2. V.G.Batiy, I.M.Kopanets, M.O.Kochnev, et al. Collimated gamma-spectrometer based on CdZnTe-detector // Problems of the safety of nu- clear stations and Chornobyl. 2011, iss. 15, p. 110- 117 (in Ukrainian). 3. V.G.Batiy, N.A. Kochnev, V.V. Selyukova, et.al. Remote control and data transmission system for measurements in sever radiation environment // Problems of atomic science and technology. Series ”Nuclear physics investigations”. 2011, N3(55), p. 96-98. 4. V.G.Batiy, N.A.Kochnev, V.V. Selyukova, M.A.Khazhmuradov. System of the space orien- tation during the measurements of gamma-fields angle and energy distributions // Abstracts of the IX Conference on high energy physics, nuclear physics and accelerators February 21-25, 2011. Kharkov, NSC KIPT. 2011, p. 61-62 (in Russian). 5. V.G.Batiy, I.M. Kopanets, N.A.Kochnev, V.V. Selyukova, D.V. Fedorchenko, M.A.Khazhmuradov. Imaging system for the field studying of gamma-fields // Abstracts of the IX Conference on high energy physics, nuclear physics and accelerators February 21-25, 2011. Kharkov, NSC KIPT. 2011, p. 62 (in Russian). 245 МЕТОДИКА ПРИВЯЗКИ НА МЕСТНОСТИ ПРИ ИЗУЧЕНИИ ПОСЛЕДСТВИЙ ТЕХНОГЕННЫХ АВАРИЙ В.Г.Батий, С.И.Глебкин, Н.А.Кочнев, В.В.Селюкова, С.И.Прохорец, Д.В.Федорченко, М.А.Хажмурадов Предложена методика определения координат точки размещения измерительной установки при про- ведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных объектов. Показано, что оптимальным является комплексное использование разных методов: линей- ной засечки с применением лазерных дальномеров, тахеометров, системы GPS. МЕТОДИКА ПРИВ’ЯЗКИ НА МIСЦЕВОСТI ПРИ ВИВЧЕННI НАСЛIДКIВ ТЕХНОГЕННИХ АВАРIЙ В.Г.Батiй, С.I.Глебкiн, М.О.Кочнєв, В.В.Селюкова, С.I.Прохорець, Д.В.Федорченко, М.А.Хажмурадов Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при про- веденнi дослiджень на забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв. Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуван- ням лазерних далекомiрiв, тахеометрiв, системи GPS. 246