Binding technique on the ground in the study of the effects of man-caused accidents
The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using la...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2013 |
| Main Authors: | , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/111841 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-111841 |
|---|---|
| record_format |
dspace |
| spelling |
Batiy, V.G. Glebkin, S.I. Kochnev, N.A. Selyukova, V.V. Prokhorets, S.I. Fedorchenko, D.V. Khazhmuradov, M.A. 2017-01-15T11:03:04Z 2017-01-15T11:03:04Z 2013 Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 53.082.79, 621, 039, 586 https://nasplib.isofts.kiev.ua/handle/123456789/111841 The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems. Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при проведеннi дослiдженьна забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв. Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуванням лазерних далекомiрiв, тахеометрiв, системи GPS. Предложена методика определения координат точки размещения измерительной установки при проведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных объектов. Показано, что оптимальным является комплексное использование разных методов: линейной засечки с применением лазерных дальномеров, тахеометров, системы GPS. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Ядернo-физические методы и обработка данных Binding technique on the ground in the study of the effects of man-caused accidents Методика прив’язки на мiсцевостi при вивченнi наслiдкiв техногенних аварiй Методика привязки на местности при изучении последствий техногенных аварий Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Binding technique on the ground in the study of the effects of man-caused accidents |
| spellingShingle |
Binding technique on the ground in the study of the effects of man-caused accidents Batiy, V.G. Glebkin, S.I. Kochnev, N.A. Selyukova, V.V. Prokhorets, S.I. Fedorchenko, D.V. Khazhmuradov, M.A. Ядернo-физические методы и обработка данных |
| title_short |
Binding technique on the ground in the study of the effects of man-caused accidents |
| title_full |
Binding technique on the ground in the study of the effects of man-caused accidents |
| title_fullStr |
Binding technique on the ground in the study of the effects of man-caused accidents |
| title_full_unstemmed |
Binding technique on the ground in the study of the effects of man-caused accidents |
| title_sort |
binding technique on the ground in the study of the effects of man-caused accidents |
| author |
Batiy, V.G. Glebkin, S.I. Kochnev, N.A. Selyukova, V.V. Prokhorets, S.I. Fedorchenko, D.V. Khazhmuradov, M.A. |
| author_facet |
Batiy, V.G. Glebkin, S.I. Kochnev, N.A. Selyukova, V.V. Prokhorets, S.I. Fedorchenko, D.V. Khazhmuradov, M.A. |
| topic |
Ядернo-физические методы и обработка данных |
| topic_facet |
Ядернo-физические методы и обработка данных |
| publishDate |
2013 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Методика прив’язки на мiсцевостi при вивченнi наслiдкiв техногенних аварiй Методика привязки на местности при изучении последствий техногенных аварий |
| description |
The technique of determining the coordinates of the point of measuring device location during the researches in contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems.
Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при проведеннi дослiдженьна забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв. Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуванням лазерних далекомiрiв, тахеометрiв, системи GPS.
Предложена методика определения координат точки размещения измерительной установки при проведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных объектов. Показано, что оптимальным является комплексное использование разных методов: линейной засечки с применением лазерных дальномеров, тахеометров, системы GPS.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/111841 |
| citation_txt |
Binding technique on the ground in the study of the effects of man-caused accidents / V.G. Batiy, S.I. Glebkin, N.A. Kochnev, V.V. Selyukova,S.I. Prokhorets, D.V. Fedorchenko, M.A. Khazhmuradov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 242-246. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT batiyvg bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT glebkinsi bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT kochnevna bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT selyukovavv bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT prokhoretssi bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT fedorchenkodv bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT khazhmuradovma bindingtechniqueonthegroundinthestudyoftheeffectsofmancausedaccidents AT batiyvg metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT glebkinsi metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT kochnevna metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT selyukovavv metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT prokhoretssi metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT fedorchenkodv metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT khazhmuradovma metodikaprivâzkinamiscevostiprivivčenninaslidkivtehnogennihavarii AT batiyvg metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT glebkinsi metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT kochnevna metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT selyukovavv metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT prokhoretssi metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT fedorchenkodv metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii AT khazhmuradovma metodikaprivâzkinamestnostipriizučeniiposledstviitehnogennyhavarii |
| first_indexed |
2025-11-25T20:29:32Z |
| last_indexed |
2025-11-25T20:29:32Z |
| _version_ |
1850523578903035904 |
| fulltext |
BINDING TECHNIQUE ON THE GROUND IN THE STUDY
OF THE EFFECTS OF MAN-CAUSED ACCIDENTS
V.G. Batiy1, S.I. Glebkin1, N.A. Kochnev2, V.V. Selyukova2,
S.I. Prokhorets2, D.V. Fedorchenko2, M.A. Khazhmuradov2∗
1Institute for Safety Problems of Nuclear Power Plants, Chernobyl, Ukraine;
2National Science Center ”Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
(Received January 30, 2013)
The technique of determining the coordinates of the point of measuring device location during the researches in
contaminated areas and near the radiation- and chemically-dangerous objects is proposed. It is shown the optimal
way is the integrated usage of different methods: linear resection using laser range finders; tachymeters; GPS systems.
PACS: 53.082.79, 621, 039, 586
1. INTRODUCTION
As a result of various man-caused accidents at chem-
ically - and radiation-dangerous facilities the sur-
rounding area can be contaminated. To select the op-
timal measures to mitigate the consequences of such
accidents, it is necessary to study the characteristics
of the contaminated areas and objects, the availabil-
ity of sources of radiation exposure, etc. In partic-
ular, such problems arose in the study of radiation
environment near the ”Shelter” object of Chornobyl
nuclear power plant [1], [2]. Traditional methods can
lead to increased risk for the personnel staff. The
experience of the research [1] showed that it is appro-
priate to create the universal system for control mea-
surement control in complex radiation environment.
The execution of joint projects at ISP NPP and NSC
KIPT within the State program of basic and applied
research on the use of nuclear materials and nuclear
and radiation technologies in the development of in-
dustries (YAMRT) showed that such system should
include following subsystems: Remote control and
data transfer [3], the orientation in space [4], visu-
alization [5], determination of the location on the
ground, optimization the number and frequency of
measurements depending on the gradient of the con-
tamination characteristics, autonomous data record-
ing, determining the environment temperature etc.
This article considers the subsystem of binding on the
ground in the measurements at radiation-dangerous
conditions using the experience of field work near the
”Shelter” object of Chornobyl nuclear power plant.
2. GENERAL METHODOLOGICAL
APPROACH
During studying of radiation environment it is neces-
sary to solve two types of problems:
1. ”Direct problem” - quickly determine the co-
ordinates of the measurement point;
2. ”Inverse problem” - quickly find the measure-
ment point on the given coordinates.
To solve the ”direct” problem it is necessary to
bind the measurement point with required accuracy,
which in most cases can be done only by instrumental
methods.
Depending on the work conditions, the instrumen-
tal binding of measurement point can be done in dif-
ferent ways:
• Binding the facility location to the objects with
known coordinates using the tape and/or mark-
ing cord;
• Binding the facility location to the objects
with known coordinates using photos and video
equipment;
• Traditional theodolite binding with optical in-
struments;
• Binding the facility location to the objects with
known coordinates using laser range finders;
• Using the electronic tachymeter;
• Using satellite navigation;
• System with accelerometers as sensors of mo-
tion from the point with known coordinates of
the point of measurement.
Binding of the facility location using tape and/or
marking cord results in equipment contamination and
increasing time spent in radiation exposure.
The accuracy of binding the facility location to
the objects with known coordinates using photos and
video equipment is limited by angular resolution of
∗Corresponding author E-mail address: khazhm@kipt.kharkov.ua
242 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).
Series: Nuclear Physics Investigations (60), p.242-246.
the used photo-and video equipment and the neces-
sity to use complex software and highly skilled per-
sonnel. Therefore, in most cases, this method can be
used as an additional one for planning the measure-
ments.
The traditional theodolite binding by means of
optical devices requires highly skilled personnel, is
time-consuming, and in radiation conditions can be
used only to create reference points.
To use the laser range finders for determining the
facility location, it is necessary to pre-select multiple
control points with known coordinates as accurately
as possible. Use the laser range finders can reduce re-
quirements for staff skill, shorten the work, to reduce
the required number of personnel in contaminated ar-
eas.
The use of electronic tachymeters may be appro-
priate for measurements on large open areas with
large number of measurement points. The main dis-
advantages are the high cost of equipment and the
needs in highly qualified geodesy experts.
Binding of the facility location with the required
accuracy using satellite navigation systems (GPS) is
possible only with a clear view of the signal. This
method is only possible one during the measurements
in the contaminated area and far from objects with
known coordinates. Under these conditions GPS-
system can be applied to solve the ”inverse” problem.
To solve the ”inverse” problem is also advisable to
use the accelerometers to calculate the change in the
space orientation while moving for a few meters from
the point with known coordinates. In this method
point coordinates are defined more exactly by one of
the above methods. During measurements far from
objects with known coordinates the position of the
reference point is determined using GPS.
Accelerometers can be also used to solve the ”di-
rect” problem, it is impossible to use more accurate
and more complex methods.
Here are the criteria and the specifics of the most
promising methods.
3. DETERMINATION OF COORDINATES
USING A LASER RANGE FINDER
Using laser rangefinder coordinates can be deter-
mined by linear resection.
From the measuring point P with unknown coor-
dinates (X, Y) (Fig. 1) we measure the distance S1
to the reference point A (in this case - the object
near the ”Shelter” object) with known coordinates
(XAYA) and the distance S2 to the reference point
B (in this example - a corner of the stair-lift unit of
”Shelter” object) with known coordinates (XB, YB).
The problem has two solutions (see Fig. 1),
so it is necessary to take into account the cor-
rect position of the measuring point P with
respect to the reference points A and B.
Fig.1. Coordinate determination by linear
resection method near the ”Shelter” object
Thus, to solve the task there are the following data:
• known data: the coordinates of reference points
A (XA, YA) and B (XB, YB);
• measured data: the distances S1 and S2;
• Unknown elements: the coordinates of the
point of measurement P (X, Y);
• X, Y coordinates and the resection angle γ are
calculated using simple operations.
Root mean square (RMS) error is calculated by
the formula:
MOP =
√
m2
Ax + m2
Ay + m2
Bx + m2
By + m2
p, (1)
mp =
√
m2
S1 + m2
S1
Sinγ
, (2)
where MOP - error of measuring point P coordinates;
mAx, mAy, mBx, mBy - errors of coordinates of ref-
erence points A and B respectively;
mp - error of the measurement point P positioning
with respect to the reference points A and B;
mS1, mS2 - error of the S1 and S2 distances.
To illustrate the dependence of the error in de-
termining the point P position with respect to the
reference points A and B on the resection angle we
done calculations for a error of 10 mm which is typical
for laser range up to 100 meters (Fig. 2).
We see that error significantly increases at small
and large values of the resection angles, but except
the angles very close to 0◦ and 180◦ error is accept-
able.
A similar dependence for the rangers at a dis-
tance greater than 100 m and an accuracy of 1 me-
ter (type ”Konus Range 600”) is shown in Fig.3.
243
0.09
mP
0
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
30 60 90 120 180150 g
mP, m
Fig.2. The dependence of the error in determining
the point P position with respect to the reference
points A and B on the resection angle for the range
finder error 10mm
9 0.0
mP
0
8 0.0
7 0.0
6 0.0
5 0.0
4 0.0
3 0.0
2 0.0
1 0.0
0.00
30 60 90 120 180150 g
mP, m
Fig.3. The dependence of the error in determining
the point P position with respect to the reference
points A and B on the resection angle for the range
finder error 1m
4. THE USE OF ELECTRONIC
TACHYMETER
Another way of using laser range finders is to
use the servo-motor tachymeter (for example,
an electronic tachymeter TRIMBLE S6, Fig. 4).
Fig.4. Measurements by the tachymeter is in the
local area for the ”Shelter” object
This tachymeter has integrated servo/angle sensors
with electromagnetic direct drive.
When operating in Autolock regime the reflective
prism is automatically captured and tracked when
you move it within 800 yards of tachymeter with an
accuracy of 2′′. The presence of radio modem allows
remote control and data acquisition, which is very
important when measurements are done at radiation
dangerous conditions.
Servo-motor tachymeter must be placed to a point
with known coordinates and oriented to determine
the coordinates. Tachymeter location must be cho-
sen in such a way that all measuring points are
in the view and at the distance less than 800 me-
ters. When tachymeter captured the reflective prism
placed on the measuring device, all further device
movements will be recorded in the tachymeter mem-
ory. Tachymeter can be used for measurements at
large open areas with large number of measurement
point (for example, in the preparation of radiation
maps).
Possible scheme of the measurements near the
”Shelter” object, in the area of mounting sliding the
arch of the new safe confinement is shown at Fig. 4
(satellite view with the point of possible tachymeter
location and zone of possible measurement points).
5. THE USE OF GPS SYSTEM
Binding of the facility location with required accuracy
using satellite navigation systems (GPS) is possible
only with a clear view of the signal. There are three
ways to use the system GPS for field studies depend-
ing on the measurement conditions and requirements.
1. Using standard autonomous GPS-navigators.
The advantages of this method - the simplicity,
the disadvantages - lack of direct connection of the
recorded data and the coordinates of the measure-
ment point, which can lead to errors.
2. Connecting a standard GPS sensor to mass-
produced measuring device in parallel with any of
the detection units and the automatic addition of
geographical coordinates to measurement results.
Dosimeter DKS-96 is an example of such device and it
is compatible with devices produced by Garmin com-
pany. At the switching on DKS-96 automatically de-
tects GPS sensor. Recorded measurement results can
be read by a personal computer for further process-
ing.
3. It is appropriate to equip all new devices for ra-
dioecological measurements with GPS-modules (e.g.
produced by Transystem Inc. Locosys company).
Application of GPS system together with remote
data control and transfer system [3] can significantly
speed up the process of data collecting, and reduce
the influence of dangerous factors for staff due to pos-
sibility of quick analysis of results and measurement
process correction.
6. THE USE OF ACCELEROMETERS
The accelerometer is a device that can measure the
acceleration of the subject that it receives at the
244
movement relative to its zero position. These proper-
ties make it possible to use the accelerometer to de-
termine the current position of the device as it moves
through the measurement zone.
While solving the ”direct” problem accelerome-
ter is nulled outside the radiation dangerous zone at
the start point (with known coordinates), the mea-
suring device (with accelerometer) is moved to the
point of measurement, the displacement in all direc-
tions is read and coordinates of the measuring point
are calculated.
While solving the ”inverse” problem accelerome-
ter is nulled in the known point, the displacement (in
3 axes) necessary to reach the measuring point with
given coordinates is calculated, the measuring de-
vice is moved to the desired point in accordance with
accelerometer indication (while accelerometer indica-
tion does not coincide with the calculated). If neces-
sary, the coordinates are checked by other methods.
To search for further point location accelerometer is
nulled and reading is done from the current measure-
ment point to prevent the accumulation of errors by
integrating a large number of movements.
3D - microelectromechanical acceleration sensors
of type LIS331DLH/M/F (produced by STMicroelec-
tronics) are example of such devices. Three sensors
with dimensions 3mm×3mm×1mm track movement
in six directions, when the sensor moves up or down
in all three axes (x, y, z), support number of intel-
ligent features, including Economic mode, the auto-
matic renewal of active work, the discovery of gravity
and the standard SPI/I2C digital interface.
Wireless position sensors ARD-100 (produced by
Satel) with 3D accelerometer can be used to de-
termine position during the measurements in places
which is difficult of access. They work together
with Satel Integra-128 WRL, and with the ACU-
100 controllers. Position sensors are tuned up in
space and transfer radio signals at a frequency of
868.0. . .868.6MHz.
Thus, required measurements can be done when
staff is in radiation-safe conditions. These prob-
lems, in particular, must be solved when planning
construction works in the radiation-dangerous condi-
tions, such as in the areas of mounting and sliding the
arch of the New Safe Confinement, the dismantling of
unstable building structures of the existing ”Shelter”
object etc.
7. CONCLUSIONS
To reduce the dangerous staff influence during study-
ing the territories and objects contaminated by indus-
trial accidents, in the storages of radioactive, chem-
ical and other dangerous materials process of mea-
surements must be carefully planned, including the
best reference points choosing.
During studying of radiation environment it is
necessary to solve two types of problems: ”Direct
problem” and ”Inverse problem”.
The method of linear resection using a laser range
finder (if there are reference points with known coor-
dinated in the measurement zone), the tachymeter
(at the large open spaces with a lot of measurement
points), GPS (with a clear view of the signal) can be
used to solve the ”direct problem”.
The displacement sensors based on a 3-D ac-
celerometers (if there are reference points with known
coordinated in the measurement zone), and GPS can
be used to solve the ”inverse” problem.
The proposed approach will optimize the process
of measurement in dangerous conditions and reduce
the risk of harmful effects on the staff.
For further staff safety improvement it is appro-
priate to develop a method of optimization the num-
ber of measuring points, taking into account the gra-
dient of the spatial distribution of the measured quan-
tity (dose rate, surface contamination density, the
volume air pollution, etc.).
References
1. V.G.Batiy, V.V. Yegorov, A.APravdivyi, et al.
Development of the methods of the radiation en-
vironment studying at the zones near the ”Shel-
ter” object // Problems of the safety of nuclear
stations and Chornobyl. 2008, iss. 10, p. 155-164
(in Russian).
2. V.G.Batiy, I.M.Kopanets, M.O.Kochnev, et
al. Collimated gamma-spectrometer based on
CdZnTe-detector // Problems of the safety of nu-
clear stations and Chornobyl. 2011, iss. 15, p. 110-
117 (in Ukrainian).
3. V.G.Batiy, N.A. Kochnev, V.V. Selyukova, et.al.
Remote control and data transmission system
for measurements in sever radiation environment
// Problems of atomic science and technology.
Series ”Nuclear physics investigations”. 2011,
N3(55), p. 96-98.
4. V.G.Batiy, N.A.Kochnev, V.V. Selyukova,
M.A.Khazhmuradov. System of the space orien-
tation during the measurements of gamma-fields
angle and energy distributions // Abstracts
of the IX Conference on high energy physics,
nuclear physics and accelerators February 21-25,
2011. Kharkov, NSC KIPT. 2011, p. 61-62 (in
Russian).
5. V.G.Batiy, I.M. Kopanets, N.A.Kochnev,
V.V. Selyukova, D.V. Fedorchenko,
M.A.Khazhmuradov. Imaging system for
the field studying of gamma-fields // Abstracts
of the IX Conference on high energy physics,
nuclear physics and accelerators February 21-25,
2011. Kharkov, NSC KIPT. 2011, p. 62 (in
Russian).
245
МЕТОДИКА ПРИВЯЗКИ НА МЕСТНОСТИ ПРИ ИЗУЧЕНИИ ПОСЛЕДСТВИЙ
ТЕХНОГЕННЫХ АВАРИЙ
В.Г.Батий, С.И.Глебкин, Н.А.Кочнев, В.В.Селюкова,
С.И.Прохорец, Д.В.Федорченко, М.А.Хажмурадов
Предложена методика определения координат точки размещения измерительной установки при про-
ведении исследований на загрязненных территориях и вблизи радиационно- и химически опасных
объектов. Показано, что оптимальным является комплексное использование разных методов: линей-
ной засечки с применением лазерных дальномеров, тахеометров, системы GPS.
МЕТОДИКА ПРИВ’ЯЗКИ НА МIСЦЕВОСТI ПРИ ВИВЧЕННI НАСЛIДКIВ
ТЕХНОГЕННИХ АВАРIЙ
В.Г.Батiй, С.I.Глебкiн, М.О.Кочнєв, В.В.Селюкова,
С.I.Прохорець, Д.В.Федорченко, М.А.Хажмурадов
Запропоновано методику визначення координат точки розмiщення вимiрювальної установки при про-
веденнi дослiджень на забруднених територiях та поблизу радiацiйно- та хiмiчно небезпечних об’єктiв.
Показано, що оптимальним є комплексне використання рiзних методiв: лiнiйної засiчки iз застосуван-
ням лазерних далекомiрiв, тахеометрiв, системи GPS.
246
|