The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods

Conjugate boundary value problems of heat transfer in cases, when viscous incompressible fluid flows via channels of non-canonical sections, bypassing the bundle of rods, is considered. The influence of the packaging pattern on the velocity and temperature distribution is researched. The theory of R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вопросы атомной науки и техники
Datum:2013
Hauptverfasser: Maksimenko-Sheyko, K.V., Uvarov, R.A., Sheyko, T.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/111846
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods / K.V. Maksimenko-Sheyko, R.A. Uvarov, T.I. Sheyko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 205-209. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-111846
record_format dspace
spelling Maksimenko-Sheyko, K.V.
Uvarov, R.A.
Sheyko, T.I.
2017-01-15T11:26:03Z
2017-01-15T11:26:03Z
2013
The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods / K.V. Maksimenko-Sheyko, R.A. Uvarov, T.I. Sheyko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 205-209. — Бібліогр.: 6 назв. — англ.
1562-6016
PACS: 02.70.-c, 44.05.+e, 67.40.Hf
https://nasplib.isofts.kiev.ua/handle/123456789/111846
Conjugate boundary value problems of heat transfer in cases, when viscous incompressible fluid flows via channels of non-canonical sections, bypassing the bundle of rods, is considered. The influence of the packaging pattern on the velocity and temperature distribution is researched. The theory of R-functions in combination with the Ritz variational method were used for the solution. Different packaging of fuel rods are examined. Each package contains 91 rods, and the corresponding equations are constructed with the new design tools of the theory of R-functions.
Розглянуто пов’язанi крайовi задачi теплообмiну для випадкiв, коли в’язка нестисла рiдина рухається по каналах неканонiчного перерiзу, обтiкаючи пучок стрижнiв. Дослiджено вплив виду пакування на розподiл швидкостi i температури. Для розв’язування використовувалася теорiя R-функцiй у поєднаннi з варiацiйним методом Рiтца. Розглянуто рiзнi пакування ТВЕлiв. Кожне пакування мiстить 91 стрижень, а вiдповiднi рiвняння побудованi з використанням нових конструктивних засобiв теорiї R-функцiй.
Рассмотрены сопряженные краевые задачи теплообмена для случаев, когда вязкая несжимаемая жидкость движется по каналам неканонического сечения, обтекая пучок стержней. Исследовано влияние вида упаковки на распределение скорости и температуры. Для решения использовалась теория R-функций в сочетании с вариационным методом Ритца. Рассмотрены различные упаковки ТВЭлов. Каждая упаковка содержит 91 стержень, а соответствующие уравнения построены с использованием новых конструктивных средств теории R-функций.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Ядернo-физические методы и обработка данных
The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
Метод R-функцiй у математичному моделюваннi конвективного теплообмiну у паливнiй касетi твелiв
Метод R-функций в математическом моделировании конвективного теплообмена в топливной кассете твэлов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
spellingShingle The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
Maksimenko-Sheyko, K.V.
Uvarov, R.A.
Sheyko, T.I.
Ядернo-физические методы и обработка данных
title_short The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
title_full The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
title_fullStr The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
title_full_unstemmed The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
title_sort r-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods
author Maksimenko-Sheyko, K.V.
Uvarov, R.A.
Sheyko, T.I.
author_facet Maksimenko-Sheyko, K.V.
Uvarov, R.A.
Sheyko, T.I.
topic Ядернo-физические методы и обработка данных
topic_facet Ядернo-физические методы и обработка данных
publishDate 2013
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Метод R-функцiй у математичному моделюваннi конвективного теплообмiну у паливнiй касетi твелiв
Метод R-функций в математическом моделировании конвективного теплообмена в топливной кассете твэлов
description Conjugate boundary value problems of heat transfer in cases, when viscous incompressible fluid flows via channels of non-canonical sections, bypassing the bundle of rods, is considered. The influence of the packaging pattern on the velocity and temperature distribution is researched. The theory of R-functions in combination with the Ritz variational method were used for the solution. Different packaging of fuel rods are examined. Each package contains 91 rods, and the corresponding equations are constructed with the new design tools of the theory of R-functions. Розглянуто пов’язанi крайовi задачi теплообмiну для випадкiв, коли в’язка нестисла рiдина рухається по каналах неканонiчного перерiзу, обтiкаючи пучок стрижнiв. Дослiджено вплив виду пакування на розподiл швидкостi i температури. Для розв’язування використовувалася теорiя R-функцiй у поєднаннi з варiацiйним методом Рiтца. Розглянуто рiзнi пакування ТВЕлiв. Кожне пакування мiстить 91 стрижень, а вiдповiднi рiвняння побудованi з використанням нових конструктивних засобiв теорiї R-функцiй. Рассмотрены сопряженные краевые задачи теплообмена для случаев, когда вязкая несжимаемая жидкость движется по каналам неканонического сечения, обтекая пучок стержней. Исследовано влияние вида упаковки на распределение скорости и температуры. Для решения использовалась теория R-функций в сочетании с вариационным методом Ритца. Рассмотрены различные упаковки ТВЭлов. Каждая упаковка содержит 91 стержень, а соответствующие уравнения построены с использованием новых конструктивных средств теории R-функций.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/111846
citation_txt The R-functions method in mathematical modeling of convective heat transfer in fuel cartridge with fuel rods / K.V. Maksimenko-Sheyko, R.A. Uvarov, T.I. Sheyko // Вопросы атомной науки и техники. — 2013. — № 3. — С. 205-209. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT maksimenkosheykokv therfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
AT uvarovra therfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
AT sheykoti therfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
AT maksimenkosheykokv metodrfunkciiumatematičnomumodelûvannikonvektivnogoteploobminuupalivniikasetitveliv
AT uvarovra metodrfunkciiumatematičnomumodelûvannikonvektivnogoteploobminuupalivniikasetitveliv
AT sheykoti metodrfunkciiumatematičnomumodelûvannikonvektivnogoteploobminuupalivniikasetitveliv
AT maksimenkosheykokv metodrfunkciivmatematičeskommodelirovaniikonvektivnogoteploobmenavtoplivnoikassetetvélov
AT uvarovra metodrfunkciivmatematičeskommodelirovaniikonvektivnogoteploobmenavtoplivnoikassetetvélov
AT sheykoti metodrfunkciivmatematičeskommodelirovaniikonvektivnogoteploobmenavtoplivnoikassetetvélov
AT maksimenkosheykokv rfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
AT uvarovra rfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
AT sheykoti rfunctionsmethodinmathematicalmodelingofconvectiveheattransferinfuelcartridgewithfuelrods
first_indexed 2025-11-26T19:00:14Z
last_indexed 2025-11-26T19:00:14Z
_version_ 1850769032849915904
fulltext THE R-FUNCTIONS METHOD IN MATHEMATICAL MODELING OF CONVECTIVE HEAT TRANSFER IN FUEL CARTRIDGE WITH FUEL RODS K.V. Maksimenko-Sheyko∗, R.A. Uvarov, T.I. Sheyko Podgorny Institute for Mechanical Engineering Problems of NAS of Ukraine, Kharkov, Ukraine (Received March 27, 2013) Conjugate boundary value problems of heat transfer in cases, when viscous incompressible fluid flows via channels of non-canonical sections, bypassing the bundle of rods, is considered. The influence of the packaging pattern on the velocity and temperature distribution is researched. The theory of R-functions in combination with the Ritz variational method were used for the solution. Different packaging of fuel rods are examined. Each package contains 91 rods, and the corresponding equations are constructed with the new design tools of the theory of R-functions. PACS: 02.70.-c, 44.05.+e, 67.40.Hf 1. INTRODUCTION At the core of modern nuclear power plants the nu- clear fuel is concentrated in the fuel elements (fuel rods). One of the main problems in the reactor cal- culation process is a definition of the temperature field, since the requirements to the reliability of the fuel rods are highest. The failure of several fuel rods, while the reactor has thousands of them, can lead to an emergency situation. In this case, there is a need to meet the relevant transport problems in the dual formulation, as these solutions allow to research the real heat transfer processes, which essentially show the mutual influence of the moving fluid, the channel walls, fuel rods, etc. Consider the conjugate heat transfer boundary value problems for cases, when viscous incompressible fluid flows through the channel of the non-canonical section, bypassing the rods. It is assumed that the physical properties of the fluid are constant, laminar flow is hydro-dynamically stable, and heat exchange process is stationary. Conditions of the first, second and third kind can be specified on the outer surface of the channel. It is assumed that the change of the heat flux along the channel due to the axial thermal conductivity is negligible compared to the change of the heat flux due to convection. It is also assumed that the pipe walls and the inner rods are made of an isotropic material, and the thermal conductivity of the latter can be considered as constant in this temperature range [1-3]. The presence of internal heat sources in the reac- tor components complicates both the heat equation, and the methods for its solution. A heat transfer in the bundle of infinite cylinders bypassed lengthwise is considered in [1,3]. A symmetry of the temperature field due to the symmetry of the system is assumed, and only the region is considered (Fig. 1). The aim of this work is the improvement of de- sign tools and algorithms of the R-functions method for mathematical and computer modeling of the con- jugate problem of convective heat transfer in arrays of fuel rods and the study of the packaging influ- ence on the velocity and temperature distributions. Fig.1. Location of operating channels in the reactor core by the pattern: hallway-on the left; checkerboard-on the right 2. MAIN PART The basic system of equations describing the process of heat transfer in a flow of viscous fluid with constant physical properties of the liquid and the temperature has the form   DT Dτ = a4T + qV ρcp + µΦ ρcp , D~V Dτ = − 1 ρ ~∇p + ν4~V , div ~V = 0 , where D Dτ = ∂ ∂τ + (~V · ~∇) is a substantial (or total) derivative, µΦ is a dissipation function; a = λ ρcp is a thermal diffusivity; ∗Corresponding author E-mail address: sheyko@ipmach.kharkov.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.205-209. 205 cp is a heat capacity of the medium; qV is a power of internal heat sources. For stationary processes, the temperature of an object is independent of time, and the heat conduc- tion equation, while bypassing the fuel rods length- wise, takes the form Vz ∂T ∂z = a4T + qV ρcp , and a mathematical model of the velocity field for laminar flow is given by 4Vz = −∇P µl = −C , where ∇P is a constant pressure drop along the pipe on the randomly selected portion of length l. In the thermal stability area, when ∂T ∂z = const, we will take −div(λ∇T ) = qV − VzCl . Thus, the mathematical model of heat transfer in laminar flow of the fluid in the cartridge with fuel rods is reduced to the system of equations { 4Vz = −C, in Ωb ⋂ Ωtν ; −div(λi∇Ti) = Fi, in Ωb, where { F1 = −Vz, in Ωb ⋂ Ωtν ; F2 = qV , in Ωtν , with boundary conditions Vz ∣∣∣∂Ωb T ∂Ωtν = 0, ∂T ∂n + hT |∂Ωb = 0, T1 |∂Ωtν = T2 |∂Ωtν , λ1 ∂T1 ∂n1 |∂Ωtν = λ2 ∂T2 ∂n2 |∂Ωtν . (1) Consider a typical constructive pattern of the re- actor core, which is collected of a large number of fuel cartridges [2, 3]. Cartridges are hexagonal cas- ings, possessing the fuel rods. Construct an equa- tion of fuel cartridge with 91 fuel rods and the tri- angular packaging moved apart (Fig. 2,a), which is called checkerboard sometimes. Note that ordinary technique used in the theory of R-functions allows to obtain 93 R-operations in the equation as a result. Cumbersome formula will lead not only to increase of the computation time, but also, perhaps, to some symmetry breaking due to the non-associativity of R- operations. Therefore, technique developed in [4, 5, 6] will be used for the construction of the equation of hexagonal casing. Consider the equation of a line σ ≡ Rν − x ≥ 0 and a periodic function µν = 4 3π ∑ k (−1)k+1 sin[(2k − 1)3θ] (2k − 1)2 . The result is ωb ≡ Rν − r cos µν = 0 , where r = √ x2 + y2, θ = arctg y x . To construct a triangle packing of fuel rods, define f1 = R2 − µ2 x − µ2 y ≥ 0, where µx = 4hx π2 ∑ k (−1)k+1 sin [ (2k − 1)πx hx ] (2k − 1)2 , µy = 4hy π2 ∑ k (−1)k+1 sin [ (2k − 1)πx hy ] (2k − 1)2 , f2 = R2 − µ2 x1 − µ2 y1 ≥ 0, where µx1 = 4hx π2 ∑ k (−1)k+1 sin [ (2k−1)π(x−hx/2) hx ] (2k − 1)2 , µy1 = 4hy π2 ∑ k (−1)k+1 sin [ (2k−1)π(y−hy/2) hx ] (2k − 1)2 , Then the equation of fuel cartridge is ω ≡ ωb ∧0 ωtν ≥ 0, ωtν ≡ (f1 ∨0 f2). Construction of the ω(x, y) is performed for the following values of parameters: R = 0.2; hx = 2.32; hy = 1.35; n0 = 6; rk = 6.7. It should be noted that R-operations are used only twice in new method of the cartridge equation construction. a b Fig.2. Fuel cartridge with 91 fuel rods located by: a - checkerboard pattern; b - distribution with cyclic symmetry and central fuel rod Let us also consider the construction of the func- tion ω(x, y) ≡ ωb ∧0 ωtν , when fuel rod is distributed with cyclic symmetry nd times along a circle of radius R, nb times along a circle of radius R1, and nc times along a circle of radius R2. 206 To construct the equations of the boundary of fuel rods distributed with cyclic symmetry nd times along a circle of radius R, the function ω0 ≡ 1 2Rtν ( R2 tν − (x−R)2 − y2 ) and the formula µd = 8 ndπ ∑ k (−1)k+1 sin [ (2k − 1)ndθ 2 ] (2k − 1)2 , will be used. The result is ωtν1 ≡ R2 tν − (r cosµd −R)2 − (r sin µd)2 2Rtν ≥ 0 . To construct the equations of the boundary of fuel rods distributed with cyclic symmetry nb times along a circle of radius R1, the function ω01 ≡ 1 2Rtν ( R2 tν − (x−R1)2 − y2 ) and the formula µb = 8 nbπ ∑ k (−1)k+1 sin [ (2k − 1)nbθ 2 ] (2k − 1)2 , will be used. The result is ωtν2 ≡ R2 tν − (r cos µb −R1)2 − (r sin µb)2 2Rtν ≥ 0 . To construct the equations of the boundary of fuel rods distributed with cyclic symmetry nc times along a circle of radius R2, the function ω02 ≡ 1 2Rtν ( R2 tν − (x−R2)2 − y2 ) and the formula µc = 8 ncπ ∑ k (−1)k+1 sin [ (2k − 1)ncθ 2 ] (2k − 1)2 , will be used. The result is ωtν3 ≡ R2 tν − (r cosµc −R2)2 − (r sin µc)2 2Rtν ≥ 0 . Thus, the equation of the boundary of the car- tridge with 91 fuel rods has the form ω ≡ (ωb ∧0 ωtν1 ∨0 ωtν2 ∨0 ωtν3) ≥ 0 , when nd = 38, R = 6, nb = 32, R1 = 4.5, nc = 21, R2 = 3 and it is a seven- parametric (nb, nd, nc, R, R1, R2, Rtν) family of curves (Fig. 2,b). It should be noted that the R- operations were used only three times. If the central fuel rod is present, the result is ω ≡ ωb ∧0 ωtν1 ∨0 ωtν2 ∨0 ωtν3 ∨0 Rtν 2 − x2 − y2 2Rtν ≥ 0 , when nc = 20. When the equation of the cartridge and fuel rods are known, we can rewrite the problem (1) in the form { 4Vz = −C, −div(λ∇T ) = F, with boundary conditions Vz ∣∣∣∂Ωb T ∂Ωtν = 0, ∂T ∂n + hT |Ωb = 0, T1 |∂Ωtν = T2 |∂Ωtν , λ1 ∂T1 ∂n1 ∣∣∣∣ ∂Ωtν = λ2 ∂T2 ∂n2 ∣∣∣∣ ∂Ωtν , where λ = λ1 1− sgn(ωtν) 2 + λ2 1 + sgn(ωtν) 2 , F = −Vz 1− sgn(ωtν) 2 + qV 1 + sgn(ωtν) 2 . The R-functions method in conjunction with the Ritz variational method were used for the solving. The structure of solution for the problem of laminar longitudinal flow of fuel rods by fluid has the form Vz = ωp1 , where ω(x, y) ≡ ωb ∧0 ωtν ≥ 0 is equation of the boundary of cartridge’s cross-section, p1 = ∑N i=1 cikϕik(x, y) is the undefined component, which will be found, minimizing the functional I = ∫ Ω [ (∇Vz)2 − 2CVz ] dΩ . Note that the solution Vz is obtained analytically and used without any further treatment (approxima- tion, interpolation). Therefore, the resulting distrib- ution of the velocity is substituted in the right side of the heat conductivity equation. The structure of solution for the problem of determining the temper- ature field was used both as exactly satisfying the boundary conditions on ∂Ωb u = p2 + ωb(−D1p2 + hp2) , and as T = p2 where, as before, p2 = N∑ i=1 dikϕik(x, y) . It should be noted that the boundary conditions ∂T ∂n + hT |Ωb = 0 , λ1 ∂T1 ∂n1 ∣∣∣∣ ∂Ωtν = λ2 ∂T2 ∂n2 ∣∣∣∣ ∂Ωtν are natural and result from the Ritz functional I = ∫ Ω [ λ(∇T )2 − 2FT ] dΩ + ∫ ∂Ωb hT 2d∂Ωb . As an approximation of ϕik(x, y) cubic splines of Schoenberg with N = 6400, 10000 were used. Com- putational experiments were carried out in POLYE- RL system developed in the department of applied mathematics and computational methods of IPMash 207 NASU. The results of researches for different pack- ages of fuel rods are shown below (Figs. 3-6). Each package contains 91 fuel rods with same other condi- tions λ1 = 1, λ2 = 10, h = 1, qV = 4. Different distributions of the researched fields were taken by changing the parameter values. V T Fig.3. Picture of the velocity and temperature distribution in the cartridge with fuel rods arranged in checkerboard pattern V T Fig.4. Picture of the velocity and temperature distribution in the cartridge with cyclically spaced fuel rods and central fuel rod V T Fig.5. Picture of the velocity and temperature distribution in the cartridge with cyclically spaced fuel rods without central fuel rod Fig.6. Graphs of the temperature field for different packages of fuel rods in the cross section : 1 is checkerboard pattern; 2 is cyclical symmetry with central fuel rod; 3 is cyclical symmetry without central fuel rod Analyzing the results, we can conclude that the presence of fuel rods in the central area leads to a higher temperature. Therefore, changing the packag- ing pattern and types of symmetry, we can adjust the nature of the flow and temperature distribution in the cartridge, achieving the value stated by technical re- quirements. Analysis of the velocity and temperature distribution allows to conclude that the consideration of the velocity field of the cell (see Fig. 1), if it is suffi- ciently far from the border, is appropriate. However, the temperature field at the same time is far from reality, as evidenced by the results obtained for the whole cartridge. 208 3. CONCLUSIONS It is shown that the R-functions method is effective for solving the problems of the physical field calcula- tion in complex shape structural elements of nuclear power plants. The developed design tools for con- structing the equations of domain boundaries with translational and cyclic symmetry types allowed to significantly reduce the number of operations with subsequent automation of the process, and, hence, to reduce the time for solving the problems. These experiments allow designers to choose certain types of packaging according to the specifications. During this, the essential point is to calculate the tempera- ture field for the whole cartridge. Mathematical mod- eling and associated computer experiment are indis- pensable in cases, when the natural experiment is im- possible or difficult, for various reasons. In addition, working with a mathematical model of the process and computer experiment allows to investigate the properties and behavior of the process in different situations painlessly, relatively quickly, and without significant cost. At the same time, the computational experiments with object models allow, based on mod- ern numerical methods, to study them deeply in de- tails. The reliability of analytical identification of geometric objects is approved by their visualization, while the reliability of calculation methods, results and conclusions is confirmed by comparison with the information known from the literature and the analy- sis of the numerical convergence of solutions and the calculation of the residual. References 1. A.P. Slesarenko, D.A. Kotulsky. Regional- analytical and variational methods in solving the conjugative problems of convective heat transfer // Heat mass exchange MIF-2000, Proceedings of IV Minsk international forum (Belarus, Minsk, May 2000). Minsk: IHME AS of Belarus, 2000, v. 3, p. 135-142 (in Russian). 2. B.S. Petukhov. Heat transfer and resistance in laminar flows of liquids in pipes. Moscow: ”En- ergy”, 1967, p. 412 (in Russian). 3. B.S. Petukhov, L.G.Genin, S.A. Kovalev. Heat exchange in nuclear power plants. Moscow: ”At- omizdat”, 1974, p. 367 (in Russian). 4. V.L.Rvachev. The theory of R-functions and its several applications. Kiev: ”Naukova dumka”, 1982, p. 552 (in Russian). 5. K.V.Maksimenko-Sheyko. The R-functions in mathematical modelling of geometrical objects and physical phields, Kharkiv: ”IPMach NASU”, 2009, p. 306 (in Russian). 6. K.V.Maksimenko-Sheyko, A.M. Matsevity, A.V.Tolok, T.I. Sheyko. The R-functions and the inverse problem of analytical geometry in three-dimensional space // Informational technologies, Moscow, 2007, N10, p. 23-32 (in Russian). МЕТОД R-ФУНКЦИЙ В МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ КОНВЕКТИВНОГО ТЕПЛООБМЕНА В ТОПЛИВНОЙ КАССЕТЕ ТВЭЛОВ К.В.Максименко-Шейко, Р.А.Уваров, Т.И.Шейко Рассмотрены сопряженные краевые задачи теплообмена для случаев, когда вязкая несжимаемая жид- кость движется по каналам неканонического сечения, обтекая пучок стержней. Исследовано влияние вида упаковки на распределение скорости и температуры. Для решения использовалась теория R- функций в сочетании с вариационным методом Ритца. Рассмотрены различные упаковки ТВЭлов. Каждая упаковка содержит 91 стержень, а соответствующие уравнения построены с использованием новых конструктивных средств теории R-функций. МЕТОД R-ФУНКЦIЙ У МАТЕМАТИЧНОМУ МОДЕЛЮВАННI КОНВЕКТИВНОГО ТЕПЛООБМIНУ У ПАЛИВНIЙ КАСЕТI ТВЕЛIВ К.В.Максименко-Шейко, Р.О.Уваров, Т.I.Шейко Розглянуто пов’язанi крайовi задачi теплообмiну для випадкiв, коли в’язка нестисла рiдина рухається по каналах неканонiчного перерiзу, обтiкаючи пучок стрижнiв. Дослiджено вплив виду пакування на розподiл швидкостi i температури. Для розв’язування використовувалася теорiя R-функцiй у поєд- наннi з варiацiйним методом Рiтца. Розглянуто рiзнi пакування ТВЕлiв. Кожне пакування мiстить 91 стрижень, а вiдповiднi рiвняння побудованi з використанням нових конструктивних засобiв теорiї R-функцiй. 209